当前位置: 仪器信息网 > 行业主题 > >

上光机

仪器信息网上光机专题为您提供2024年最新上光机价格报价、厂家品牌的相关信息, 包括上光机参数、型号等,不管是国产,还是进口品牌的上光机您都可以在这里找到。 除此之外,仪器信息网还免费为您整合上光机相关的耗材配件、试剂标物,还有上光机相关的最新资讯、资料,以及上光机相关的解决方案。

上光机相关的资讯

  • 新型“光学分子”片上光谱仪
    光谱仪用于分解和测量电磁波的谱信息,广泛应用于材料分析、天文观测以及生物医学成像等领域。传统台式光谱仪基于棱镜或光栅等空间色散元件,导致其结构尺寸较大,并对机械振动敏感,通常只能用于实验室环境。新型片上光谱仪有望克服这些缺陷。这类光谱仪基于集成光子回路,其中各类光学器件均由固态平面波导构成,因此可以实现芯片尺度的密集集成,并可以消除环境扰动的影响。片上光谱仪在智慧医疗、地质勘探以及片上实验室(Lab-on-a-chip)等领域具有应用价值,特别对于实现小型化、便携式,甚至可穿戴的智能传感设备具有重要使能意义。然而,目前已报道的片上光谱仪大多存在分辨率-带宽限制这一共性缺陷。具体来说,对于片上光谱仪,实现较高的分辨率需要较长的波导光程,而这往往会降低输出响应的自由光谱范围,进而影响工作带宽。虽然可以通过采用光子晶体微腔等特殊结构,在一定程度上扩展自由光谱范围,但是这类结构加工较为困难,并且调谐效率较低。目前尚无突破这一限制的通用解决方案。近日,香港中文大学电子工程学系曾汉奇研究小组,通过采用一种新颖的“光学分子”结构,结合计算重建方法,实现了一种同时具有高分辨率与大带宽的新型片上光谱仪。该成果以“Breaking the resolution-bandwidth limit of chip-scale spectrometry by harnessing a dispersion-engineered photonic molecule”为题发表于Light:Science & Applications.这一结构的基本组成是一对相同的可调谐微环谐振腔(图1a)。在热光调谐过程中,输入光谱被滤波采样,进而在输出端口生成包含谱信息的信号,最终通过计算重建方法将输入光谱还原(图1b)。此过程中,需要解决的核心问题是,如何分辨相隔自由光谱范围整数倍的波长通道。对于单谐振腔而言,各个自由光谱范围之内仅包含一个谐振模式,因此无法实现宽带谱重建。当一对谐振腔发生强耦合,各个谐振模式将劈裂为一个对称模式与一个反对称模式(图1c)。这一现象类似于双原子分子中存在的能级劈裂。值得注意的是,谐振模式的劈裂强度正比于谐振腔之间的耦合强度。因此,可以通过增强耦合强度的色散,使得“光学分子”谱线的劈裂强度随波长变化,并基于这一特征,识别位于不同自由光谱范围的波长通道。具体来说,当热光调谐经过一个自由光谱范围,各个波长通道对应的输出信号均包含一对尖峰;此时,即便对于相隔自由光谱范围整数倍的波长通道,其尖峰之间的间距仍然不同,因此不同波长通道得以去相关(图1d)。图1.“光学分子”片上光谱仪的工作原理。在该工作中,作者实验证实了40pm的谱线分辨率与100nm的工作带宽。同时利用单片集成滤波器生成测试光谱,实验验证了各类特征光谱的高精度重建。该工作的创新与亮点可以总结为:1.作者提出了一种完全区别于传统方案的片上光谱仪。不同于可调谐滤波器方案,这一设计不受自由光谱范围限制,因此得以保持高分辨率的同时,极大地扩展工作带宽。不同于计算“光斑”光谱仪,这一设计不依赖于复杂拓扑结构,具有结构简单、尺寸紧凑等优势。2.设计思路具有可扩展性。在满足特定条件情况下,可以进一步增加待分辨的自由光谱范围数目,进一步扩展工作带宽与通道容量,同时保证较低的功耗。3.该工作涉及的概念源于高品质微腔中一种极为常见的现象——模式劈裂。同时,结构完全基于集成光子回路中极为常见的单元器件——微环谐振腔。这使得这一方案具有加工简便、通用性强等优势。这一工作为新型片上光谱仪的研发提供了一种全新思路,同时对计算光谱学等研究方向具有启发意义,并可能用于单片集成的光谱传感系统。
  • 基于折叠数字型超构透镜的片上光谱仪
    近日,哈尔滨工业大学(深圳)徐科教授、宋清海教授课题组,提出一种基于像素编码的片上数字型超构透镜,因其灵活的设计自由度而具备强大的光场调控能力。该工作以折叠级联的方式构建了高度紧凑的色散元件,结合重构算法实现了片上集成的高分辨率光谱仪。文章提出的数字型超构透镜可显著提升面内光束聚焦、准直和偏转能力。所设计的级联折叠型超构透镜组能够很好地解决传统色散光谱仪尺寸和分辨率互为矛盾的问题。结合重构算法,该器件以100 μm ×100 μm的紧凑尺寸在近红外波段超过35 nm的波长范围内实现了0.14 nm的分辨率,并且可以完成任意光谱的重构和解析。该光谱仪完全通过标准硅光工艺制造,在系统级集成和CMOS兼容性方面具有优势。所提出的超构透镜结构还可移植到氮化硅或其他光子集成平台,以轻松扩展到可见光或中红外波长等波段,为成像、光学计算等其他应用提供有力的光场调控方案。该研究成果以“Folded digital meta-lenses for on-chip spectrometer”为题于2023年4月11日在线发表在《Nano Letters》上。随着物联网、消费电子等应用领域的不断发展,对光谱仪的小型化提出了更高的要求。近40年里,光谱仪的微型化技术经历了从基于分立器件技术到集成光学技术的发展,逐渐趋于低成本和片上集成化。近年来,受到自由空间超构表面波前调控的启发,基于超构波导的一些平面内衍射光网络正在成为片上光波操纵的有力工具。目前已报道的片上超构系统都是基于各单元长度不等的传输阵列,结构规则简单但设计自由度受限,导致系统集成度和功能的局限性。如何突破设计自由度的限制,是提升片上超构表面光场调控能力以及拓展应用的关键。借助超构表面强大的光学操控能力,有望突破传统片上光谱仪分辨率和器件尺寸相互制约的矛盾。为了解决设计自由度受限的问题,文章提出了一种基于像素编码的数字型超构表面。基本思想为求解超构表面目标相位分布。为降低算力消耗,我们将目标区域划分为多个单元,通过逆向设计对每个单元图案分别进行编码,在平面任意区域实现任意相位响应。与数字型超构波导在局部区域内的原位控制不同,本文提出的数字型超构表面可以整体操纵面内波衍射及其在整个平板区域内的传播。这种特性使该结构能够设计连续大相位梯度的高色散数字型超构透镜,允许光束在紧凑的尺寸内实现聚焦、准直和大角度弯曲等类似几何光学透镜的功能。具体设计原理如图1所示。图1. 基于数字型超构表面的超构透镜逆向设计原理。(a)超构透镜在1550 nm处的光弯曲 (θ=45°)和聚焦(f = 19.5 μm)的射线光学演示。(b)透镜的理想相位轮廓曲线(φ),可视为45°弯曲相位曲线 (φ1)和聚焦相位曲线(φ2)的叠加。I:计算的绝对相位,II:对应的菲涅耳相位。(c)每个单元的优化器件图案和对应的理想相位曲线(φ)。(d) 计算出的理想相位掩模(黑色实线)与所设计超构透镜的模拟相位响应(红色虚线)之间的比较。(e)所设计单个超构透镜的模拟光场分布。(f)模拟超构透镜的焦点AI不同波长下沿x'轴的偏移。插图为不同波长下焦点的横截面光场分布图。要实现更高的波长分辨率,需要累积色差和增加光程。为了验证设计效果,本文设计并制备了一种基于五层折叠超构透镜的光谱仪,器件尺寸仅为100 μm×100 μm。该器件的模拟光场和实测结果如图2所示。图2(a)中的五层超构透镜功能不同,透镜I用于准直扩束输入光同时转折光路,透镜II-IV则承担着累积色散和波长分束的作用。受到读出波导间距的限制,此时该器件直接读出的分辨率约为1 nm (图2(d))。为了进一步提高光谱仪性能以及器件的制备容差,在色散分光的基础上引入了光谱重构算法。图2. 基于五层折叠超构透镜的光谱仪。(a)五层折叠超构透镜光谱仪在1550 nm处的模拟光场分布。(b)器件尺寸为100 μm×100 μm的光谱仪显微镜图像。插图:超构透镜和输出波导阵列的局部电镜图像。(c)器件实测的输出强度与输入波长的映射图。(d)两个相邻输出通道11和12的透射光谱,通道间距约为1 nm。(e)谱相关函数C(δλ)的半高半宽δλ为0.108 nm,与光谱仪的估计分辨率相对应。为了体现光谱仪的性能,构造了几种不同类型的预编程光谱来测试光谱仪的性能。重构光谱见图3。结果表明,结合重构算法后,该光谱仪的光谱分辨率提升至0.14 nm(图3(a)),整体工作带宽覆盖1530 nm-1565 nm,且性能在边带依旧保持稳定(图3(c))。此外,对于同时具有宽高斯背景和窄带单峰特征的复杂频谱(图3(d)),本文提出的片上光谱仪依旧能与商用光谱仪保持良好的一致性。图3. 使用基于五个折叠超构透镜的片上光谱仪进行光谱重建(实线表示重建光谱,虚线表示商用光谱仪测试结果)。(a)两条相隔约0.14 nm的窄光谱线的重建光谱。(b)距离约20.61 nm的双峰重建光谱。(c)在工作带宽上分别重建7处不同波长的窄带光谱。(d)宽带光源入射的重建光谱。此文提出的基于数字型超构透镜的片上光谱仪在超过35 nm的波长范围内实现了0.14 nm的分辨率。整体尺寸仅为100 μm ×100 μm,最小特征尺寸为120 nm,可通过标准硅光工艺大规模制造。该设计方案具有可移植性,使用氮化硅或其他集成平台,基于超构透镜的光谱仪可以扩展到可见光或中红外波长。目前器件的数据读出依赖于片外功率计,可以通过集成片上光电探测器阵列来改善。此外,片上数字型超构透镜作为一种功能强大的片上光场调控器件,在成像、光计算等领域也有应用潜力。
  • Advacam发布MiniPIX EDU 掌上光子计数X射线探测器 新品
    千呼万唤始出来:为教育而生,MiniPIX EDU掌上光子计数X射线探测器 产品介绍:MiniPIX EDU是一款以教育教学为使用目的而设计定价的小型X射线探测器。它把现代的辐射成像技术带进课堂,让学生可以探索围绕在我们身边却看不见的电离辐射世界,可以了解不同类型辐射的来源,观察这些放射性同位素是如何在自然界和建筑、城市、工业等人造环境中移动。美国宇航局(NASA)在太空中也使用了同样的技术来监测宇航员受到的太空辐射。MiniPIX-EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到许多普通材料物体上的放射性强度,例如吸尘器里或口罩上的一点点花岗岩、灰尘或纸袋碎片;可以在白天观察空气中放射性物质的移动;寻找宇宙μ子并查看他们的方向;看看海拔高度如何影响辐射类型的存在;可以尝试搭配豁免源,并对其发出的辐射进行屏蔽;可以检查放射性衰变的规律;可以直接观察不同的辐射类型是如何与物质相互作用的,以及随后会发生什么。将MiniPIX EDU设备插入PC的USB端口,启动软件就可以开始使用了。也可搭配专为教学应用而研发的的RadView辐射可视化软件,迷人的电离粒子图像将立刻呈现在你面前。主要特点:专为教育教学设计,与传统的X射线探测器相比,具有更高的性价比 体积小巧,形似U盘 通过USB接口连接,笔记本电脑即可运行(支持Windows,MacOS or Linux) 人性化软件操作界面 主要参数:读出芯片Timepix像素大小55x55μm传感器分辨率256x256pixels一帧动态范围11082暗电流none接口USB2.0最大帧频55fps尺寸88.9x21x10mm重量30g工作模式:类型模式精度描述帧率(读取所有像素)Event13bit/frame 1 output image: Number of Events per pixel ToT13bit/frame 1 output image: Sum of all Energies deposited in given pixel (Time Over Threshold) ToA13bit/frame 1 output image: Time of arrival of first event in given pixel 典型应用:教育:运用现代辐射成像技术的课堂每种被探测到粒子的类型都以放大的形式被呈现。可以将最感兴趣的粒子轨迹保存到日志文件中,以供之后分析。在上图中我们可以看到,在过去几天的历史图表中显示了四个类型粒子的计数。不同类型的粒子会呈现不一样的神秘图案α粒子会产生较大的圆形斑点;β射线显示为狭窄的波浪线,像“蠕虫”;γ射线会产生小点或斑点;宇宙μ子观察到为长直线。你甚至可以观察到一些更为罕见的现象:δ电子,α和β粒子序列形成的抽象花,高能质子的轨迹… 技术平台:源自捷克技术大学实验及应用物理研究所的Advacam S.R.O.,致力于在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像探测器和X射线成像解决方案。Advacam核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。北京众星联恒科技有限公司为advacam公司在中国的独家授权代理,现可提供MiniPIX样机免费试用,如有需要,请联系我司工作人员预约时间。创新点:由捷克Advacam S.R.O.于2020年5月推出最新款掌上型X射线探测器MiniPIX EDU。与之前同系列产品项目,它的定位专门面向课堂,可以作为一款教学工具。是专为教育教学而设计定价的探测器。它把现代的辐射成像技术带进课堂,让高校,甚至是高中的学生得以探索围绕在我们身边的电离辐射世界,可以了解不同类型辐射的来源,观察这些放射性同位素是如何在自然界和建筑、城市、工业等人造环境中移动。它可以搭配advacam公司专为教学展示目的研发的RadView辐射软件,将电离粒子图像以可视化在线的方式呈现。这一用途,基本填补了国内这一领域的空白。MiniPIX EDU 掌上光子计数X射线探测器
  • 为教育而生,MiniPIX EDU掌上光子计数X射线探测器
    为教育而生,MiniPIX EDU掌上光子计数X射线探测器Advacam公司现特别推出新品MiniPIX EDU,它是一款以教育教学为使用目的而设计定价的小型X射线探测器。它把现代的辐射成像技术带进课堂,让学生可以探索围绕在我们身边却看不见的电离辐射世界,可以了解不同类型辐射的来源,观察这些放射性同位素是如何在自然界和建筑、城市、工业等人造环境中移动。美国宇航局(NASA)在太空中也使用了同样的技术来监测宇航员受到的太空辐射。MiniPIX-EDU可记录非常低的放射性强度,这种强度无处不在。学生可以记录到许多普通材料物体上的放射性强度,例如吸尘器里或口罩上的一点点花岗岩、灰尘或纸袋碎片;可以在白天观察空气中放射性物质的移动;寻找宇宙μ子并查看他们的方向;看看海拔高度如何影响辐射类型的存在;可以尝试搭配豁免源,并对其发出的辐射进行屏蔽;可以检查放射性衰变的规律;可以直接观察不同的辐射类型是如何与物质相互作用的,以及随后会发生什么。将MiniPIX EDU设备插入PC的USB端口,启动软件就可以开始使用了。也可搭配专用的RadView辐射可视化软件,迷人的电离粒子图像将立刻呈现在你面前。主要特点:专为教育教学设计,与传统的X射线探测器相比,具有更高的性价比;体积小巧,形似U盘;通过USB接口连接,笔记本电脑即可运行(支持Windows,MacOS or Linux);人性化软件操作界面主要参数:读出芯片Timepix像素大小:55x55μm传感器分辨率:256x256pixels一帧动态范围:11082暗电流:none接口:USB2.0最大帧频:55fps尺寸:88.9x21x10mm重量:30g工作模式:类型模式精度描述 帧率(读取所有像素)Event13bit/frame 1 output image: Number of Events per pixel ToT13bit/frame 1 output image: Sum of all Energies deposited in given pixel (Time Over Threshold) ToA13bit/frame 1 output image: Time of arrival of first event in given pixel 典型应用:教育:运用现代辐射成像技术的课堂每种被探测到粒子的类型都以放大的形式被呈现。可以将最感兴趣的粒子轨迹保存到日志文件中,以供之后分析。在上图中我们可以看到,在过去几天的历史图表中显示了四个类型粒子的计数。不同类型的粒子会呈现不一样的神秘图案α粒子会产生较大的圆形斑点;β射线显示为狭窄的波浪线,像“蠕虫”;γ射线会产生小点或斑点;宇宙μ子观察到为长直线。你甚至可以观察到一些更为罕见的现象:δ电子,α和β粒子序列形成的抽象花,高能质子的轨迹̷技术平台:源自捷克技术大学实验及应用物理研究所的Advacam S.R.O.,致力于在多学科交叉业务领域提供硅传感器制造、微电子封装、辐射成像探测器和X射线成像解决方案。Advacam核心的技术特点是其X射线探测器(应用Timepix芯片)没有缝隙(No Gap),因此在无损检测、生物医学、地质采矿、艺术及中子成像方面有极其突出的表现。Advacam同NASA(美国航空航天局)及ESA(欧洲航空航天局)保持很好的项目合作关系,其产品及方案也应用于航空航天领域。
  • 千人盛会“逐梦光电” 卓立汉光成功举办线上光谱新品与应用研讨会
    p  2020年6月10日至6月12日,北京卓立汉光仪器有限公司成功举办首届 “逐梦光电” 线上光谱新品与应用研讨会。会议直播页面关注度超过15000人次,参会报名近1400人,出席人数超过1000人。会议现场大家积极交流,现场提问超过200次。/pp style="text-align: center"a href="https://www.instrument.com.cn/zt/zolix" target="_blank"img style="max-width:100% max-height:100% " src="https://img1.17img.cn/17img/images/202006/uepic/fcb3a713-4226-44d7-90b9-db6378e83ac1.jpg" title="微信图片_20200617171529.png" alt="微信图片_20200617171529.png"//a/pp  本次会议主要聚焦于拉曼光谱、荧光光谱及光电探测等新产品新技术在各行业领域的应用研究,以邀请报告、新品发布、前沿技术分享等的形式,致力于为大家呈现主流光谱技术及应用新进展,给广大用户提供一个高效便捷的学习和交流的平台。/pp  从内容层面而言,本次会议安排的报告理论结合实践,涉及了基础研究、应用拓展等多方面的内容,三天的时间涉及三大主题:(1) 拉曼在生物医学、环境、刑侦等领域的应用;(2)新型发光材料及荧光检测技术;(3)半导体材料及器件与光电检测技术。/pp  会议共安排了32个邀请报告,报告嘉宾均为国内外高等院校、科研院所和相关企业的知名学者与专家,研究领域涵盖物理、化学、材料、新型能源等多个学科。/pp  部分视频回放如下(span style="color: rgb(255, 0, 0) "strong标红为可回看视频/strong/span):/pp style="text-align: center "strong拉曼在生物医学、环境、刑侦等领域的应用(6月10日)/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="13%"p style="text-align:center "09:00-09:10/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112871.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong开幕-致欢迎词/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6713" target="_blank"strong张志涛(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "09:10-09:35/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6714" target="_blank"手性介观结构无机材料的组装及其手性响应性/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6714" target="_blank"车顺爱(上海交通大学)/a/p/td/trtrtd width="13%"p style="text-align:center "09:35-10:00/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6716" target="_blank"拉曼探针构建及其生物标志物快检应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6716" target="_blank"杨海峰(上海师范大学)/a/p/td/trtrtd width="13%"p style="text-align:center "10:00-10:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112872.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong卓立汉光总体介绍与寄语/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6712" target="_blank"strong丁良成(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "10:20-10:30/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "10:30-10:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6727" target="_blank"拉曼光谱在无标记细胞检测微流控芯片的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6727" target="_blank"胡波(西安电子科技大学)/a/p/td/trtrtd width="13%"p style="text-align:center "10:55-11:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112873.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong重磅产品介绍--卓立科研拉曼系统介绍/strong/span/a/p/tdtd width="37%"p style="text-align:center "strong董安宁(北京卓立汉光仪器有限公司)/strong/p/td/trtrtd width="13%"p style="text-align:center "11:20-11:45/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112818.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong人工智能在拉曼光谱数据处理中的应用/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6757" target="_blank"strong尹愚(成都大象分形智能科技有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "11:45-11:50/p/tdtd width="50%"p style="text-align:center "致谢/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:00-14:05/p/tdtd width="50%"p style="text-align:center "开场寄语/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:05-14:30/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6746" target="_blank"充油电气设备拉曼光谱检测及诊断技术/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6746" target="_blank"王建新(重庆大学)/a/p/td/trtrtd width="13%"p style="text-align:center "14:30-14:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6728" target="_blank"等离激元增强光电技术用于高灵敏生物分析/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6728" target="_blank"王琛(中国药科大学)/a/p/td/trtrtd width="13%"p style="text-align:center "14:55-15:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112821.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong新品发布-手持拉曼光谱仪 Finder Edge 1064nm 系列/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6760" target="_blank"strong李敏(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "15:20-15:30/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "15:30-15:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6720" target="_blank" textvalue="拉曼光谱法在微量物证检验中的应用"拉曼光谱法在微量物证检验中的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6720" target="_blank"姜红(中国人民公安大学)/a/p/td/trtrtd width="13%"p style="text-align:center "15:55-16:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112823.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong新品发布--三维荧光光谱系统 SmartFluo-Pro系列/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6749" target="_blank"strong石广立(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "16:20-16:45/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6731" target="_blank"荧光敏感材料制备、光物理及其应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6731" target="_blank"刘太宏(陕西师范大学)/a/p/td/trtrtd width="13%"p style="text-align:center "16:45-17:10/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6732" target="_blank"硅量子点的生医應用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6732" target="_blank"杜长庆(上海交通大学)/a/p/td/trtrtd width="13%"p style="text-align:center "17:10-17:15/p/tdtd width="50%"p style="text-align:center "致谢/p/tdtd width="37%"p style="text-align:center "主持人/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong新型发光材料及荧光检测技术(6月11日)/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="13%"p style="text-align:center "09:00-09:05/p/tdtd width="50%"p style="text-align:center "开场寄语/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "09:05-09:30/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6736" target="_blank"闪烁体研究进展、特性及测试方法/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6736" target="_blank"陈俊锋(中国科学院上海硅酸盐研究所)/a/p/td/trtrtd width="13%"p style="text-align:center "09:30-09:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6733" target="_blank"新型发光透明微晶玻璃/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6733" target="_blank"任晶(哈尔滨工程大学)/a/p/td/trtrtd width="13%"p style="text-align:center "09:55-10:10/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "10:10-10:35/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112825.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong重磅产品介绍--显微稳态瞬态全功能荧光光谱系统OminiFluo-900系列/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6748" target="_blank"strong赵怡然(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "10:35-11:00/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6722" target="_blank"时间分辨显微荧光在钙钛矿研究中的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6722" target="_blank"文小明(澳大利亚墨尔本大学)/a/p/td/trtrtd width="13%"p style="text-align:center "11:00-11:25/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6724" target="_blank"多元硫属铜基纳米材料的发光性能调控/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6724" target="_blank"唐爱伟(北京交通大学)/a/p/td/trtrtd width="13%"p style="text-align:center "11:25-11:50/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112826.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong必创科技与卓立汉光核心技术的融合及发展/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6998" target="_blank"strong唐智斌(北京必创科技股份有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "11:50-11:55/p/tdtd width="50%"p style="text-align:center "致谢/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:00-14:00/p/tdtd width="50%"p style="text-align:center "开场寄语/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:05-14:30/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6734" target="_blank"摩擦/力致发光材料研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6734" target="_blank"王赵锋 (中科院兰州化学物理研究所)/a/p/td/trtrtd width="13%"p style="text-align:center "14:30-14:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6735l" target="_blank"基于配体媒介的界面工程策略实现高效率钙钛矿光伏器件/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6735" target="_blank"董化(西安交通大学)/a/p/td/trtrtd width="13%"p style="text-align:center "14:55-15:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6742" target="_blank"重磅产品介绍--国产新型条纹相机与应用 TIMART 系列/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6742" target="_blank"朱炳利(中科院西安光机所)/a/p/td/trtrtd width="13%"p style="text-align:center "15:20-15:30/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "15:30-15:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6741" target="_blank"时间分辨光谱测量技术概述/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6741" target="_blank"金鹏(中科院半导体研究所)/a/p/td/trtrtd width="13%"p style="text-align:center "15:55-16:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6737" target="_blank"非富勒烯有机太阳能电池的聚集体调控/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6737" target="_blank"王涛(武汉理工大学)/a/p/td/trtrtd width="13%"p style="text-align:center "16:20-16:45/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6738" target="_blank"硅基-钙钛矿叠层太阳能电池发展动态/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6738" target="_blank"徐集贤(中国科学技术大学)/a/p/td/trtrtd width="13%"p style="text-align:center "16:45-17:10/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6740" target="_blank"光电探测和太阳能电池的应用/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6740" target="_blank"杨智(西安交通大学)/a/p/td/trtrtd width="13%"p style="text-align:center "17:10-17:15/p/tdtd width="50%"p style="text-align:center "致谢/p/tdtd width="37%"p style="text-align:center "主持人/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: center "strong半导体材料及器件与光电检测技术(6月12日)/strong/ptable border="1" cellspacing="0" cellpadding="0" width="600" align="center"tbodytr class="firstRow"td width="13%"p style="text-align:center "09:00-09:05/p/tdtd width="50%"p style="text-align:center "开场寄语/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "09:05-09:30/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6721" target="_blank"第三代半导体:从外延材料芯片到人工智能/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6721" target="_blank"李晓航(沙特阿卜杜拉国王科技大学KAUST)/a/p/td/trtrtd width="13%"p style="text-align:center "09:30-09:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112831.html" target="_blank" style="color: rgb(255, 0, 0) text-decoration: underline "span style="color: rgb(255, 0, 0) "strong重磅产品介绍--微纳器件光电性能测试系统DSR300系列/strong/span/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6750" target="_blank"strong张素侠(北京卓立汉光仪器有限公司)/strong/a/p/td/trtrtd width="13%"p style="text-align:center "09:55-10:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/video_112832.html" target="_blank"新型二维材料的光电特性/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6719" target="_blank"王琳(南京工业大学先进材料研究院)/a/p/td/trtrtd width="13%"p style="text-align:center "10:20-10:30/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "10:30-10:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6725" target="_blank"和扫描探针联合的纳米光电探测技术/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6725" target="_blank"刘争晖(中科院苏州纳米所)/a/p/td/trtrtd width="13%"p style="text-align:center "10:55-11:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6730" target="_blank"生物质碳及半导体基多元复合材料的太阳能光蒸汽转换/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6730" target="_blank"杨鹏(云南大学)/a/p/td/trtrtd width="13%"p style="text-align:center "11:20-11:45/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6718" target="_blank"有机半导体微腔激光器/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6718" target="_blank"翟天瑞(北京工业大学)/a/p/td/trtrtd width="13%"p style="text-align:center "11:45-11:50/p/tdtd width="50%"p style="text-align:center "致谢/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:00-14:05/p/tdtd width="50%"p style="text-align:center "开场寄语/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "14:05-14:30/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6717" target="_blank"基于胶体量子点的红外光电探测器/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6717" target="_blank"宁志军(上海科技大学)/a/p/td/trtrtd width="13%"p style="text-align:center "14:30-14:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6743" target="_blank"二维结型光电探测器/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6743" target="_blank"诸葛福伟(华中科技大学)/a/p/td/trtrtd width="13%"p style="text-align:center "14:55-15:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6744" target="_blank"钙钛矿光伏器件工作稳定性提高/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6744" target="_blank"魏静(北京理工大学)/a/p/td/trtrtd width="13%"p style="text-align:center "15:20-15:30/p/tdtd width="50%"p style="text-align:center "用户互动/p/tdtd width="37%"p style="text-align:center "主持人/p/td/trtrtd width="13%"p style="text-align:center "15:30-15:55/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6747" target="_blank"前沿新技术--Wide-Field FLIM products/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6747" target="_blank"Yury Prokazov(Photonscore GmbH)/a/p/td/trtrtd width="13%"p style="text-align:center "15:55-16:20/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6745" target="_blank"新型光电传感器系统/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6745" target="_blank"杨亚(中科院北京纳米能源与系统研究所)/a/p/td/trtrtd width="13%"p style="text-align:center "16:20-16:45/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6946" target="_blank"宽禁带半导体材料的光电性能研究/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6946" target="_blank"林涛(广西大学)/a/p/td/trtrtd width="13%"p style="text-align:center "16:45-17:10/p/tdtd width="50%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6729" target="_blank"又炫又酷玩转光电设备/a/p/tdtd width="37%"p style="text-align:center "a href="https://www.instrument.com.cn/webinar/meetings/News/expert?id=6729" target="_blank"康斌(南京大学)/a/p/td/trtrtd width="13%"p style="text-align:center "17:10-17:15/p/tdtd width="50%"p style="text-align:center "谢幕与总结/p/tdtd width="37%"p style="text-align:center "丁岳(北京卓立汉光仪器有限公司)/p/td/tr/tbody/tablepstrongbr//strong/pp style="text-align: left "  基于光栅分光技术的光谱仪器及系统,是卓立汉光成立二十年来的主力产品,涵盖了拉曼光谱测试系统、荧光光谱测试系统和太阳能应用测试系统三大门类。本次会议除上述大会报告以外,会议期间,卓立汉光公司结合用户各种需求,还适时发布了五大产品系统,其中部分产品系统提供免费测样:br//psection class="_135editor" data-role="paragraph"p  1、手持拉曼光谱仪 Finder Edge 1064nm 系列/pp  2、三维荧光光谱系统 SmartFluo-Pro系列/pp  3、显微稳态瞬态全功能荧光光谱系统OminiFluo-900系列/pp  4、国产新型条纹相机与应用 TIMART 系列/pp  5、微纳器件光电性能测试系统DSR300系列/pp  为了鼓励大家积极参与会议交流环节,活跃会议气氛,本次会议还特别安排了多个用户互动环节,提问奖、幸运奖、调研奖让人应接不暇,后续卓立汉光将送出精心准备的礼品!另外,特别值得一提的是,鉴于首届会议取得了非常不错的效果,卓立汉光计划明年继续举办第二届会议,敬请期待!/pp style="text-align: center"img style="max-width: 100% max-height: 100% width: 600px height: 230px " src="https://img1.17img.cn/17img/images/202006/uepic/34eaa32e-3394-480c-9c3b-2806cf6acf64.jpg" title="a41db9a8-4c59-4433-97a3-5fff1b92cd04.jpg" alt="a41db9a8-4c59-4433-97a3-5fff1b92cd04.jpg" width="600" height="230" border="0" vspace="0"//ppbr//p/section
  • 半导体所硅基外延量子点激光器研究取得进展
    硅基光电子集成芯片以成熟稳定的CMOS工艺为基础,将传统光学系统所需的巨量功能器件高密度集成在同一芯片上,提升芯片的信息传输和处理能力,可广泛应用于超大数据中心、5G/6G、物联网、超级计算机、人工智能等新兴领域。硅(Si)材料发光效率低,因此将发光效率高的III-V族半导体材料如砷化镓(GaAs)外延在CMOS兼容Si基衬底上,并外延和制备激光器被公认为最优的片上光源方案。Si与GaAs材料间存在大的晶格失配、极性失配和热膨胀系数失配等问题,因而在与CMOS兼容的无偏角Si衬底上研制高性能硅基外延激光器需要解决一系列关键的科学与技术难点。   近期,中国科学院半导体研究所材料科学重点实验室杨涛与杨晓光研究团队,在硅基外延量子点激光器及其掺杂调控方面取得重要进展。该团队采用分子束外延技术,在缓冲层总厚度2700nm条件下,将硅基GaAs材料缺陷密度降低至106cm-2量级。科研人员采用叠层InAs/GaAs量子点结构作为有源区,并首次提出和将“p型调制掺杂+直接Si掺杂”的分域双掺杂调控技术应用于有源区,研制出可高温工作的低功耗片上光源。室温下,该器件连续输出功率超过70mW,阈值电流比同结构仅p型掺杂激光器降低30%。该器件最高连续工作温度超过115°C,为目前公开报道中与CMOS兼容的无偏角硅基直接外延激光器的最高值。上述成果为实现超低功耗、高温度稳定的高密度硅基光电子集成芯片提供了关键方案和核心光源。   6月1日,相关研究成果以Significantly enhanced performance of InAs/GaAs quantum dot lasers on Si(001) via spatially separated co-doping为题,发表在《光学快报》(Optics Express)上。国际半导体行业杂志Semiconductor Today以专栏形式报道并推荐了这一成果。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1.硅基外延量子点激光器结构示意及器件前腔面的扫描电子显微图像。图2.采用双掺杂调控的器件与参比器件在不同工作温度下的连续输出P-I曲线,插图为双掺杂调控激光器在115℃、175mA连续电流下的光谱。
  • 我国科学家在极化激元领域取得新进展
    如何在微观世界里更好地操控光,让通信、成像等技术实现新飞跃?我国一支科研团队通过国际合作,在极化激元领域取得最新进展,有望实现纳米尺度上光的精确操控并提升纳米级光电互联和光学传感等应用水平。研究成果18日由国际学术期刊《自然纳米技术》在线发表。极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式,也可以认为是一种光子与物质耦合形成的准粒子。它具有优异的光场压缩能力,可以轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。论文通讯作者之一、国家纳米科学中心研究员戴庆介绍,研究团队巧妙设计石墨烯/α相氧化钼异质结并结合独特的化学掺杂手段,首次在实验上证明了杂化极化激元的等频轮廓发生拓扑转变,不仅使其传播方向突破了原有晶向的限制,还能够将能量高效汇聚进行定向低损传输。“通俗来讲,我们的研究工作就是把10微米的红外光压缩到千分之一再做调控,还要传得远、调得动。”戴庆说,“打个比方,不仅要把大象装进粉笔盒,还要驱使大象在里面自由活动。”在前期的研究工作中,戴庆课题组发展了气体分子高效掺杂石墨烯的方法,保持着室温下石墨烯等离激元最长传输距离的记录。微纳光学是光学学科发展的活跃前沿之一,也是新型光电子产业的重要发展方向。微纳光学元件可以在局域电磁相互作用的基础上实现许多全新功能,因此在光通信、互联、存储、传感和成像等领域起到重要的作用。据悉,上述研究成果将为进一步操控电磁波的定向传播和能量汇聚提供新途径,也为设计纳米光电互联芯片提供了新的思路。
  • 上海微系统所在硅基胶体量子点片上发光取得重要进展
    PbS胶体量子点(CQDs)由于具有带隙宽、可调谐以及溶液可加工性强等优点,已广泛应用于气体传感、太阳能电池、红外成像、光电探测以及片上光源的集成光子器件中。然而PbS CQDs普遍存在发射效率低和辐射方向性差的问题,因此科学家们尝试利用半导体等离子体纳米晶或全介质纳米谐振腔来增强PbS CQDs的近红外荧光发射,使其成为更高效、更快的量子发射器。但是普遍存在光场限制能力弱,Q值低的问题。   针对这些问题,近日中国科学院上海微系统与信息技术研究所武爱民研究员团队与浙江大学金毅副教授团队合作在Nanophotonics发表最新文章,将BIC引入到PbS CQDs发光应用中,提出了一种支持对称保护BIC的硅超表面通过激发相邻的高Q泄露导波模式来增强室温下PbS CQDs的自发辐射的方案,实现了硅基量子点近红外片上发光。   该超表面由亚波长尺寸的硅棒周期性排列而成(图1a),结构具有各向异性且与偏振相关。其反射率是入射光角度和波长的函数,当TE偏振激发时,对称保护型BIC会出现在布里渊区的Γ点处(图1b),对应的电场分布如图1c所示。基于洛伦兹拟合方法分别从仿真和实验反射谱中提取出Q值曲线(图1d),两者趋势一致,且激发的高Q导波模式可以有效的增强量子点的发射。由图1e的实验结果可以看出,制备的超表面使包覆的PbS CQDs的荧光辐射显著增强,并且在波长1408 nm处的发射峰的Q值高达251。随后,研究人员利用实验简单演示了该系统的传感潜力。将稀疏度为4/1000 μm2,直径为60 nm的Au纳米颗粒随机分布在涂敷PbS CQDs的超表面顶部,通过与不含Au纳米颗粒的样品相比,PL峰从1408 nm红移到1410 nm,且强度出现明显的增强(图1f)。该研究成果不仅为实现支持BIC的介电超表面可以有效地增强PbS CQDs的发射性能提供了设计指导与实验验证,并为PbS CQDs在硅基片上光源和集成传感器等各种实际应用提供了新思路。   研究团队提出的基于BIC超表面增强PbS CQDs近红外发射的新方法,是一种普适、高效、功能广泛的方法。该方法证明了BIC系统在荧光增强方面的有效性,它是提高PbS胶体量子点在光源和荧光传感器等各种应用中的最好选择之一。通过提高制造精度或者合并的BIC可以进一步提高增强效果,并且可以通过改变几何尺寸来调节工作波长。这种无源超表面结构可以在商用CMOS平台上以简单的工艺制造,因此它可以结合到硅光子集成中,用于硅基片上光源以及荧光传感器,在多通道通信,近场传感和红外成像等领域都有广阔的应用前景。   相关成果以“Fluorescence Enhancement of PbS Colloidal Quantum Dots from Silicon Metasurfaces Sustaining Bound States in the Continuum”为题在线发表在Nanophotonics (https://doi.org/10.1515/nanoph-2023-0195)上。   这项工作的作者包括 Li Liu, Ruxue Wang, Yuwei Sun, Yi Jin*, Aimin Wu*,其中上海微系统所博士研究生刘丽为该文章的第一作者,浙江大学金毅副教授和上海微系统所武爱民研究员为论文的共同通讯作者。上述研究工作得到了国家重点研发计划项目(2021YFB2206502)、中科院青促会(2021232)、上海市学术带头人项目(22XD1404300)和国家自然科学基金委(61875174,62275259)的支持。图1:(a)硅超表面的结构示意图;(b)TE偏振激发时,反射率是入射角和入射波长的函数。在Γ处形成了一个对称保护型BIC,对应波长为1391 nm;(c)对称保护型BIC的Ey电场分布。灰线表示结构边界;(d)与BIC相邻的泄露导波模式在同一能带上的Q值随入射角度的变化。虚线为实验结果,实线为仿真结果。插图为硅超表面的SEM图像;(e)在同一块SOI衬底表面旋涂PbS CQDs,超表面结构区域(黑色曲线)和无结构区域(红色曲线)的实测PL谱。插图为顶部涂敷PbS CQDs的超表面的SEM图像;(f)在超表面结构上引入随机Au纳米颗粒前(红色曲线)和后(黑色曲线)的实测PL谱。插图为表面随机分布Au纳米颗粒的顶部涂敷PbS CQDs的超表面的SEM图像。
  • 等离子体“彩虹”芯片级智能光谱仪,可实现“光谱+偏振”双功能传感
    近年来,研究人员和业内主要厂商已将研发重心转向微型化、便携式且低成本的光谱仪系统,使之可以在日常生活中实现现场、实时和原位光谱分析的许多新兴应用。然而,受到过度简化的光学设计和紧凑型架构的机械限制,微型光谱仪系统的实际光谱识别性能通常远低于台式光谱仪系统。如今,克服这些限制的一种策略便是在光子方法学中引入深度学习(DL)进行数据处理。据麦姆斯咨询报道,近日,美国纽约州立大学布法罗分校(University at Buffalo,the State University of New York)与沙特阿卜杜拉国王科技大学(King Abdullah University of Science & Technology)的联合科研团队在Nature Communications期刊上发表了以“Imaging-based intelligent spectrometer on a plasmonic rainbow chip”为主题的论文。该论文第一作者为Dylan Tua,通讯作者为甘巧强(Qiaoqiang Gan)教授。在这项研究工作中,研究人员开发了一种紧凑型等离子体“彩虹(rainbow)”芯片,能够实现快速、准确的双功能传感,其性能可在特定条件下超越传统的便携式光谱仪。其中的分光纳米结构由一维或二维的梯度金属光栅构成。该紧凑型等离子体光谱仪利用普通相机拍摄的单幅图像,即可精确地获得照明光源光谱的光谱信息和偏振信息。在经过适当训练的深度学习算法的辅助下,研究人员仅用单幅图像就能表征葡萄糖溶液在可见光光谱范围内的双峰和三峰窄带照明下的旋光色散(ORD)特性。该微型光谱仪具有与智能手机和芯片实验室(lab-on-a-chip)系统集成的潜力,为原位分析应用提供新的可能。研究人员利用彩虹捕获效应(rainbow trapping effect)来开发片上光谱仪系统。图1展示了该研究工作所提出的片上光谱仪和一维彩虹芯片的设计原理。如图1a所示,该光谱仪利用等离子体啁啾光栅实现分光功能。这种表面光栅几何形状的逐渐变化,导致了局部等离子体共振的空间调谐(即为光捕获“彩虹”存储)。如图1b所示,研究人员采用聚焦离子束铣削技术,在300 nm的银(Ag)薄膜上制备了啁啾光栅。当白光垂直入射时,通过简单的反射显微镜系统(如图1c),就可以观察到明显的“彩虹”色图像,如图1d的顶部所示,该现象源于光栅引发的等离子体共振。图1 片上光谱仪的等离子体啁啾光栅根据这些空间模式图像,可以建立共振模式与入射波长一一对应的关系,这是片上光谱仪的基础。因此,研究人员探讨了该光谱仪对任意光谱特征的空间分辨能力。通过深度学习辅助的数据处理和重建方法,研究人员利用这种分光功能可以构建用于光学集成的智能化、微型化光谱仪平台。具体而言,研究人员提出了基于深度学习的智能彩虹等离子体光谱仪概念,并构建了带有等离子体啁啾光栅的光谱仪示例,如图2所示。该光谱仪利用深度神经网络预测了所测量的共振模式图像中的未知入射光光谱,而无需使用传统的线性响应函数模型。实验中的光谱仪架构如图2a所示。智能光谱仪主要由三部分构成:空间模式、预训练神经网络以及对应的波长。图2 基于深度学习的数据重建光谱分辨率是评价传统光谱仪性能的重要参数之一。因此,研究人员对该光谱仪的分辨率做了详细测试,测试结果如图3所示。图3 智能等离子体光谱仪的分辨率以上初步测试数据表明,智能彩虹芯片光谱仪具有实现高分辨率光谱分析的潜力,其性能可与传统台式光谱仪相媲美。随后,研究人员将一维光栅扩展到二维,以利用紧凑型智能等离子体光谱仪实现偏振光谱的测定,其性能超越了传统的光学光谱仪系统。同时,研究人员展示了等离子体彩虹芯片光谱仪可以引入简化、紧凑且智能的光谱偏振系统,具有准确且快速的光谱分析能力。图4a为具有梯度几何参数的二维光栅。图4 用于测定偏振光谱的二维啁啾光栅接着,研究人员利用该二维偏振光谱仪芯片对旋光色散进行了简单而智能的表征。图5a为传统的旋光色散系统测量由物质引起的旋光度随入射波长的函数变化。最后,研究人员展示了将二维光栅作为光谱偏振系统,并介绍了用于葡萄糖传感应用的示例。图5 更简单、准确且智能的光谱偏振分析综上所述,本研究中提出了一种集成了片上彩虹捕获效应与紧凑型光学成像系统的智能芯片级光谱仪。研究结果表明,该等离子体芯片可以在可见光光谱(470 nm - 740 nm)范围内区分不同的照明峰值。该芯片充分利用其波长敏感结构,能够根据照明光谱峰值显示不同的等离子体共振模式。随后将芯片扩展到二维结构,共振模式的复杂性增加,从而在入射光偏振方面提供更多信息。通过使用片上共振模式的空间和强度分布图像来训练深度学习算法,研究人员在同一系统内分别实现了光谱分析和偏振分析。随后,研究人员利用一种将旋光引入透射光的手性物质(即葡萄糖),证明了所提出光谱仪在旋光色散传感方面的可行性,旋光色散是一种有助于手性物质检测和定量的偏振特异性特征。深度学习模型的分析表明,该算法能够基于等离子体芯片的共振模式准确预测葡萄糖引入的旋光。即使在分析多峰照明下的共振模式时,这种性能也得到了保留。这种由深度学习支持的基于图像的光谱仪能够通过利用纳米光子平台的单幅图像同时进行光谱分析和偏振分析。因此,该光谱仪标志着在单一紧凑型且轻量化设计中实现了高性能的光谱偏振分析,为深度光学和光子学在医疗保健监测、食品安全传感、环境污染检测、药物滥用传感以及法医分析等领域的应用赋能。这项研究获得了沙特阿卜杜拉国王科技大学物理科学与工程部的科研基金(BAS/1/1415-01-01)和NTGC-AI项目(REI/1/5232-01-01)的资助和支持。
  • 上海光机所在自注入锁定窄线宽可调谐片上光源方面取得进展
    近期,中国科学院上海光机所空间激光信息传输与探测技术重点实验室研究团队联合张江实验室提出光反馈强度可调的自注入锁定窄线宽可调谐片上激光器,理论及实验研究了不同光反馈强度下激光器动态演变过程,表明优化光反馈强度可以有效提升自注入锁定的稳定性、优化噪声抑制效果、扩展锁定调谐范围。相关研究成果以“A Self-Injection Locked Laser Based on High-Q Micro-Ring Resonator with Adjustable Feedback”为题发表于Journal of Lightwave Technology。目前,硅基光电子芯片系统级集成迅速发展,在相干激光通信、相干探测激光雷达、精密计量传感、光计算等应用场景中扮演着重要角色,芯片系统级集成对前端低噪声激光光源的体积、重量、功耗同样提出了严格要求。高品质因子氮化硅微环谐振腔可提供积累的背向瑞利散射光反馈,将其与分布式反馈半导体激光器进行混合集成可获得高集成度的自注入锁定片上窄线宽光源。但由于反馈回激光器的背向瑞利散射强度与微环谐振腔波导加工工艺以及芯片间耦合封装损耗相关,通常强度较低且难以精确调控,自注入锁定片上激光器存在稳定性不高、调谐范围受限的问题。   研究团队提出一种基于高Q值微环谐振腔的光反馈强度可调片上自注入锁定窄线宽激光器(如图1所示),通过引入由马赫曾德尔干涉仪和萨格纳克环形镜构成的反射率可调后腔镜,通过调节MZI两臂相位差调整反馈光强,在保证输出激光频率处于微环谐振腔谐振中心的同时,解决了微环谐振腔光反馈强度不可控的难题。反馈光强度经过优化的自注入锁定激光器具有更低的频率噪声和更大的锁定带宽,本征线宽压低至60 Hz,锁定调谐范围拓展到6.3 GHz(如图2、图3所示)。相关工作在FMCW激光雷达、高精度光纤传感等相干探测和精密计量领域具有重要的应用价值。图 1. 混合集成自注入锁定窄线宽激光器结构示意图、封装成品图 2. 不同光反馈强度下激光器频率噪声、线宽测试结果。(a)激光器频率噪声功率谱密度;(b) 激光器本征线宽、1ms 积分线宽图 3. 优化光反馈强度前后激光器调谐范围对比。(a) 后反射腔镜反射率为 0% 时调频结果;(c) 后反射腔镜反射率为 32% 时调频结果
  • 当AI遇上光学:深度学习如何大幅提升痕量气体分析灵敏度?
    今天七月,Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy (SAA)期刊上发表了一个来自安徽大学周胜副教授课题组的研究成果《Optimized adaptive Savitzky-Golay filtering algorithm based on deep learning network for absorption spectroscopy》。此项工作将深度学习应用在激光光谱气体分析技术上的Savitzky-Golay(简称S-G)滤波抗噪算法,并通过仿真和实验证实该方法能够提升痕量NO2气体分析中光谱信号的信噪比,有助于实现更高灵敏度的气体分析。激光光谱分析是一个很强大的气体分析技术,能够实现非接触式、高精度、高灵敏度、高选择性的痕量气体分析(ppm或ppb量级)。然而,实际操作中所测得的吸收光谱会受到噪声的干扰,导致不准确的测量结果。过去的研究工作中提出了一些抑制噪声的算法,其中S-G滤波算法由于速度快、无需提供过多的参数、且能较好的保留原始光谱的形状和高度,成为近年来较受关注的方法,并且已经在某些应用场景(例如连续血糖监测)证明其面对各类噪声的有效性。S-G滤波算法的性能决定于两个参数:多项式阶数(k)和平均计算的窗口大小(b)。但是,噪声源和吸收光谱在实际应用中是未知的,因此难以获得固定的参数值使得滤波效果达到优。为了解决这个问题,研究人员提出了一种优化的自适应S-G算法,将深度学习网络与传统的S-G 滤波相结合,以提高测量系统的性能。深度学习网路以其非线性映射和建模能力对数据的规律性进行研究,并实现出色的“自我调整”和“跟踪反馈”。相较于传统的S-G算法,经过优化的算法可以调整滤波参数以实现光谱的佳信噪比。图一展示了用于训练S-G滤波算法参数的深度学习网络。这个具有多层感知器的人工智能网络提供了设计上的弹性,可以通过调整层数、神经元数量、和一些优化指标以达到所需的性能。用庞大的数据集进行高效训练后,相应的网络模型将达到最状态。接着,经过训练的网络模型将使用变量数据输入找到好的 k 和 b。 与此同时,输入数据集也将按传统方式计算以获得佳参数k 和 b。通过比较模型预测和人机计算的结果,由人工决定出佳的网络参数。图一 用于计算S-G滤波算法参数的深度学习网络 研究组以NO2为目标气体,选取波数位于1630.1至1630.42 cm-1的吸收谱线,进行了软件仿真和实验测量作为新方法(adaptive S–G filtering, 以下称ASGF)的验证,同时与另一常用的multi-signal averaging filtering(MAF)方法作比较。MAF计算时间长且主要用于白噪声的抑制。仿真结果显示在白噪声干扰的条件下(图二),MAF将信噪比从原始的6.58 dB提升至12.62 dB,新的ASGF算法则能提升至15.51 dB。图三则显示了非白噪声的背景噪声干扰,MAF方法将信噪比从原始的7.14 dB提升至13.22 dB,新的ASGF算法则提升至了更高的17.37dB。 图二 仿真验证ASFG算法在白噪声干扰下的性能表现 图三 仿真验证ASFG算法在其他背景噪声干扰下的性能表现 图四展示了实际实验的设置,它由一个光源、一个带压强控制器的多通气体吸收池、一系列反射镜、一个碲镉汞光电探测器和一台计算机组成。昕虹光电为此项研究工作提供的激光源为Q-Qube型量子级联激光发射头,这是一款热电冷却,空气制冷型,内准直输出的连续波CW室温分布反馈型量子级联激光(DFB-QCL)源,最峰值输出功率为 30 mW,由QC750-Touch型一体化激光驱动器,集温度控制器和低噪声恒流电流控制器驱动于一身,使光源系统发出6.2 μm波长的激光。极低的光学噪声和驱动器稳定性为此实验奠定了高质量信号基础。激光通过多通池由热电致冷型的碲镉汞光电探测器接收,信号传输至电脑后进行数据处理与分析。 图四 用于验证ASGF算法用于痕量NO2气体分析的实验设置 实验设置在压力0.1 atm和温度296 K的氮气中对4 ppm NO2的测量。其测量和过滤后的吸收光谱如图五(a)所示,原始数据测吸收特性淹没在噪声中,而经ASGF算法过滤后的频谱已显着平滑,使识别更容易。研究组对吸收光谱数据与理论Voigt 函数拟合,图五(b)结果表明拟合的R平方值高达0.99934,表明滤波后的吸收光谱与理论形状吻合良好。 图五 实测NO2的吸收光谱和经ASFG算法后的吸收光谱,可以看到滤波后的吸收光谱与理论形状吻合良好 结合了深度学习的神经网络技术,研究组提出的自适应S-G滤波算法表现出显着的滤波效果,在激光光谱气体分析领域中能够大幅改善光谱信号的信噪比。面对大气环境中具有挑战性的痕量气体分子检测,将能提供更优异的灵敏度和可靠性。
  • 欧洲食安局认定小烛树腊作为食品添加剂的安全性
    2012年11月16日,欧洲食品安全局(EFSA)就小烛树腊(candelilla wax ,E 902)作为食品添加剂发布再评估科学意见,认定了小烛树腊的安全性。欧盟允许将小烛树腊作为上光剂,用于糖果(包括巧克力)等食品以及某些水果的表面处理 同时可用于膳食补充剂。  EFSA专家组认为,由于缺乏小烛树腊的长期毒性评估数据,因此无法确定小烛树腊的ADI。然而根据现有文献数据,未发现小烛树蜡主要成分的潜在危害,而且采用最大容许量进行评估也证明了其安全性,因此认定小烛树腊作为食品添加剂是安全的。
  • 上海技物所研制光学载荷随风云三号G星顺利入轨
    北京时间2023年4月16日9时36分,风云三号G星在酒泉卫星发射中心成功发射。上海技物所研制中分辨率光谱成像仪(降水型)、高精度定标器、短波红外偏振多角度成像仪和红外地平仪(已在卫星入轨初期捕获地球)随星入轨,将按既定程序开展工作。   中分辨率光谱成像仪(降水型)作为业务主载荷之一,单轨道规则刈幅达1200公里,可获取可见光/红外云图以及云顶温度、云顶高度、有效粒子半径和云形态学方面参数,辅助判断降水云的存在。   高精度定标器和短波红外偏振多角度成像仪是星上两个试验载荷。高精度定标器将首次开展在轨太阳交叉定标技术验证试验,并将高精度辐射定标结果传递给同平台或其他卫星可见/近红外遥感仪器,为星上光学载荷测量结果的统一定一个“标尺”,为未来卫星监测资料融合应用、建立气候数据集奠定研究基础。   短波红外偏振多角度成像仪使国内首次具备短波红外波段的偏振多角度卫星观测能力,将探索为实现云、气溶胶和地表等相关参数的高精度定量化反演提供观测信息,从而提高在天气预报、气候变化和地球环境监测领域等方面的能力。
  • 基恩士获《gongkong2011 第十届自动化年度评选》创新产品奖
    2011年12月2日至24日,经历了网络投票及专家评选,2011中国自动化年度评选结果终于揭晓。在此届评选活动中基恩士荣获两大奖项《创新产品奖》和《热点新闻奖》。 《创新产品奖》 专家评语:基恩士(KEYENCE)LV-S系列数字激光传感器增大受光面,使反射光亮度级别达到平衡,可以稳定检测透明物体。区域光点型受反射镜光线量变化的影响较小,它可以阻止因振动与温度变化所引起的光点位移。高频叠加驱动电路可抑制透明物体上光线量的变化。可用于长距离透明物体检测。《热点新闻奖》 2011年基恩士(KEYENCE)凭借其直销经营模式和优越的技术被美国《福布斯》杂志评为&ldquo 全球最具创新能力企业&rdquo ,位列第17位,在自动化技术和制造商排名第一。通过基恩士的成功经验,直销经营模式在未来将会得到更多企业重视。 关于基恩士 基恩士自创建以来,一直致力于新产品的研发和设计,以创造高附加值为目标,不断创新。每年发布的新产品超过70%都是行业首创。基恩士坚持的直销经营方式,使得基恩士能够更快、更准确的了解和掌握客户在自动化方面的潜在和显在需求,把握市场动向。基恩士自1974年以来一直稳步成长,现已成为开发与制造传感设备的世界领先者,产品范围包括传感器、测量仪器、视觉系统、激光刻印机以及数码显微镜等全面的工业自动化产品线。 欢迎访问基恩士官方网站
  • 中国仪器仪表学科奠基人——纪念王大珩先生诞辰100周年
    在纪念德高望重的王大珩先生诞辰100周年之际,许多仪器界的朋友心中都充满着美好的回忆。王老先生光灿的一生,光辉的实践,爱国奉献的感人业绩,一直在激励和鼓舞着我们。我们对王老充满着无限的敬仰和深深的怀念!  王老在多个领域对我国科技事业、学术思想和创新的发展都做出了很大贡献,其贡献是全方位的、战略性的,影响深刻而久远。王老为国家培养了众多领域的技术领军人才和光学领域的学术接班人。王老还是国际上光学领域的战略型科学家,曾担任国际光学委员会、国际计量委员会委员,并代表国家参加国际太空会议等。  王老1948年回国,参加了大连大学建设。1950年负责创建中国科学院仪器馆,先后创建中科院五个光学研究所(安光所、长光所、西光所、四川光电所、上光所)。王老率领研究团队研发了50年代仪器界有名的&ldquo 八大件&rdquo (一秒精度大地测量经纬仪、一微米精度万能工具显微镜、大型石英摄谱仪、中型电子显微镜、中子晶体谱仪、地形测量用多臂航摄投影仪、光电测距仪、高温金相显微镜等高水平的先进的光学仪器)和一批重大的国防测量仪器设备、&ldquo 两弹一星&rdquo 的测量设备等。1956年,王老参加了国家《十二年科学技术发展规划》中仪器仪表规划的制定以及《国家中长期科学和技术发展规划纲要》制定工作。据不完全统计,王老领衔并联合其他院士向中央、国务院提出的重大咨询性、战略性建议多达20多项,例如863高技术、建立卫星地面站、建立中国工程院、国家信息网络、月球探测、发展我国航空事业及微系统、开展激光核聚变研究、海洋高技术等等。特别是1995年以后,关于仪器仪表方面就有6次建议,对将科学仪器创新发展放在国家发展战略地位、优先发展领域,列入国家重点科技计划,进入国家各种计划,进入&ldquo 知识创新工程&rdquo 以及十三五国家设立重大科研仪器研制和科学仪器设备开发专项起到了重大的作用。  为了仪器仪表发展的需要,1996年王老倡议组织《现代仪表技术与设计》编写工作,并担任主编。王老在此书中提出将创新设计、现代设计科学理念和商品化设计融合的&ldquo 综合化设计&rdquo 理论,提出仪器仪表是工业信息化产业,是信息技术的源头,仪器技术是信息技术的源头技术等理念。王老还特意建议将此书免费赠送给相关大学的图书馆。  王老一生奋斗的历程中,对我国科学仪器创新发展倾注了极大的心血,对科学仪器技术与科学研究,社会经济发展、国家安全、民众健康、精神文明建设、高技术产业发展的关系,进行了系统全面的研究,提出了很多独到的、精辟的创新思想,受到政府和社会各界广泛的赞同。王老在科学仪器技术与仪器设备发展上呕心沥血、鞠躬尽瘁。王老于80岁到92岁期间还先后担任了11次香山科学会议执行主席,对不同学术领域仪器学科与技术前沿和重大问题提出新的学术思想和发展建议。特别是2007年(当时王老已92岁高龄),由王老发起,联合另外两位院士向时任国务院总理温家宝提交&ldquo 加强创新方法工作&rdquo 的建议,提出了&ldquo 自主创新、方法先行&rdquo 的观点,同年国家成立了我国&ldquo 创新方法研究会科学工具专业委员会&rdquo 。  王老是我国仪器仪表工业发展的领航人,他的学术思想是仪器界同仁们的思想宝库,让我们发扬王老的爱国奉献,敢为天下先的精神,形成仪器界万众创新、协同创新、开拓科学仪器发展新时代,早日实现仪器强国的中国梦。  美国火箭之父罗伯特· 戈达德曾说,&ldquo 一个人的净价值是他在同行中获得尊敬的总和&rdquo 。王老在仪器仪表界获得的净价值是最高的,最大的,最美的。王老开创的事业,我们后人将会不懈地继续下去,他的精神将与我们同在并不断鞭策我们前行! 王大珩(1915.2.26─2011.7.21) 原籍江苏吴县(今苏州市),生于日本东京。1936年清华大学物理系毕业,&ldquo 两弹一星功勋奖章&rdquo 获得者,中国科学院、中国工程院院士。 王大珩主持制成了中国第一台激光器,第一台大型光测装备和许多国防光学仪器。七十年代主持制定了全国第一个遥感科学规划,领导了综合性的航空遥感试验。1986年3月和陈芳允、杨嘉墀、王淦昌等4名科学家向中央提出&ldquo 发展中国的战略性高技术&rdquo 的建议,得到邓小平同志批准,由此国务院发出了&ldquo 高技术发展计划纲要&rdquo 的通知,这一&ldquo 纲要&rdquo 被称为&ldquo 863计划&rdquo 。1992年与其他五位学部委员倡议并促成中国工程院的成立。1999年荣获&ldquo 两弹一星功勋奖章&rdquo 。2011年7月21日在北京逝世,享年96岁。
  • 纪念中国仪器仪表学科奠基人王大珩先生诞辰100周年
    在纪念德高望重的王大珩先生诞辰100周年之际,许多仪器界的朋友心中都充满着美好的回忆。王老先生光灿的一生,光辉的实践,爱国奉献的感人业绩,一直在激励和鼓舞着我们。我们对王老充满着无限的敬仰和深深的怀念!  王老在多个领域对我国科技事业、学术思想和创新的发展都做出了很大贡献,其贡献是全方位的、战略性的,影响深刻而久远。王老为国家培养了众多领域的技术领军人才和光学领域的学术接班人。王老还是国际上光学领域的战略型科学家,曾担任国际光学委员会、国际计量委员会委员,并代表国家参加国际太空会议等。  王老1948年回国,参加了大连大学建设。1950年负责创建中国科学院仪器馆,先后创建中科院五个光学研究所(安光所、长光所、西光所、四川光电所、上光所)。王老率领研究团队研发了50年代仪器界有名的“八大件”(一秒精度大地测量经纬仪、一微米精度万能工具显微镜、大型石英摄谱仪、中型电子显微镜、中子晶体谱仪、地形测量用多臂航摄投影仪、光电测距仪、高温金相显微镜等高水平的先进的光学仪器)和一批重大的国防测量仪器设备、“两弹一星”的测量设备等。1956年,王老参加了国家《十二年科学技术发展规划》中仪器仪表规划的制定以及《国家中长期科学和技术发展规划纲要》制定工作。据不完全统计,王老领衔并联合其他院士向中央、国务院提出的重大咨询性、战略性建议多达20多项,例如863高技术、建立卫星地面站、建立中国工程院、国家信息网络、月球探测、发展我国航空事业及微系统、开展激光核聚变研究、海洋高技术等等。特别是1995年以后,关于仪器仪表方面就有6次建议,对将科学仪器创新发展放在国家发展战略地位、优先发展领域,列入国家重点科技计划,进入国家各种计划,进入“知识创新工程”以及十三五国家设立重大科研仪器研制和科学仪器设备开发专项起到了重大的作用。  为了仪器仪表发展的需要,1996年王老倡议组织《现代仪表技术与设计》编写工作,并担任主编。王老在此书中提出将创新设计、现代设计科学理念和商品化设计融合的“综合化设计”理论,提出仪器仪表是工业信息化产业,是信息技术的源头,仪器技术是信息技术的源头技术等理念。王老还特意建议将此书免费赠送给相关大学的图书馆。  王老一生奋斗的历程中,对我国科学仪器创新发展倾注了极大的心血,对科学仪器技术与科学研究,社会经济发展、国家安全、民众健康、精神文明建设、高技术产业发展的关系,进行了系统全面的研究,提出了很多独到的、精辟的创新思想,受到政府和社会各界广泛的赞同。王老在科学仪器技术与仪器设备发展上呕心沥血、鞠躬尽瘁。王老于80岁到92岁期间还先后担任了11次香山科学会议执行主席,对不同学术领域仪器学科与技术前沿和重大问题提出新的学术思想和发展建议。特别是2007年(当时王老已92岁高龄),由王老发起,联合另外两位院士向时任国务院总理温家宝提交“加强创新方法工作”的建议,提出了“自主创新、方法先行”的观点,同年国家成立了我国“创新方法研究会科学工具专业委员会”。  王老是我国仪器仪表工业发展的领航人,他的学术思想是仪器界同仁们的思想宝库,让我们发扬王老的爱国奉献,敢为天下先的精神,形成仪器界万众创新、协同创新、开拓科学仪器发展新时代,早日实现仪器强国的中国梦。  美国火箭之父罗伯特戈达德曾说,“一个人的净价值是他在同行中获得尊敬的总和”。王老在仪器仪表界获得的净价值是最高的,最大的,最美的。王老开创的事业,我们后人将会不懈地继续下去,他的精神将与我们同在并不断鞭策我们前行!  王大珩(1915.2.26─2011.7.21)  原籍江苏吴县(今苏州市),生于日本东京。1936年清华大学物理系毕业,“两弹一星功勋奖章”获得者,中国科学院、中国工程院院士。  王大珩主持制成了中国第一台激光器,第一台大型光测装备和许多国防光学仪器。七十年代主持制定了全国第一个遥感科学规划,领导了综合性的航空遥感试验。1986年3月和陈芳允、杨嘉墀、王淦昌等4名科学家向中央提出“发展中国的战略性高技术”的建议,得到邓小平同志批准,由此国务院发出了“高技术发展计划纲要”的通知,这一“纲要”被称为“863计划”。1992年与其他五位学部委员倡议并促成中国工程院的成立。1999年荣获“两弹一星功勋奖章”。2011年7月21日在北京逝世,享年96岁。中国仪器仪表学会 发布于2015年3月3日
  • 半导体所等在高功率、低噪声量子点DFB单模激光器研究中获进展
    分布反馈(DFB)激光器具有结构紧凑、动态单模等特性,是高速光通信、大规模光子集成、激光雷达和微波光子学等应用的核心光源。特别是,以ChatGPT为代表的人工智能领域呈现爆发态势,亟需高算力、高集成、低功耗的光计算芯片作为物理支撑,对核心光源的温度稳定性、高温工作特性、光反馈稳定性、单模质量、体积成本等提出了更高要求。近期,中国科学院半导体研究所材料科学重点实验室研究员杨涛-杨晓光团队与研究员陆丹,联合浙江大学兼之江实验室教授吉晨,在高功率、低噪声的量子点DFB单模激光器研究方面取得重要进展。该团队采用高密度、低缺陷的叠层InAs/GaAs量子点结构作为有源区,结合低损耗侧向耦合光栅作为高效选模结构,研制出宽温区内高功率、高稳定、低噪声、抗反馈的高性能O波段量子点DFB激光器。在25-85 °C范围内,激光器输出功率均大于100 mW,最大边模抑制比超过62 dB;最低的白噪声水平仅为515 Hz2 Hz-1,对应的本征线宽低至1.62 kHz;最小平均RIN仅为-166 dB/Hz(0.1-20 GHz)。此外,激光器的抗光反馈阈值高达-8 dB,满足无外部光隔离器下稳定工作的技术标准。该器件综合性能优异,兼具低成本、小体积的优势,在大容量光通信、高速片上光互连、高精度探测等领域具有规模应用前景。相关研究成果以High-Power, Narrow-Linewidth, and Low-Noise Quantum Dot Distributed Feedback Lasers为题,发表在Laser & Photonics Reviews上。研究工作得到国家重点研发计划和国家自然科学基金等的支持。图1. 量子点材料的形貌和荧光特性,以及器件与光栅结构图2. 器件的输出特性、光谱特性、光频率噪声特性和外部光反馈下的光谱稳定性
  • 操控片上飞秒光脉冲传播的新方法
    随着高度集成化的纳米光子器件的发展,人们开始追求在更小空间尺度(如纳米尺寸)、更快时间尺度(如飞秒尺度)上灵活操纵片上光信号的方法。通过在纳米空间尺度和飞秒时间尺度上对光信号的操纵,不仅能够为光与物质相互作用的超快动力学过程研究提供新方法、新思路,还能为超高时空分辨的光学探测和成像,以及片上超快光信号处理、传输、精密波前调控和光谱测量提供有效的研究平台,因此在光子芯片器件、量子信息处理、光子神经网络与人工智能、超快光学波前测量等领域具有广泛应用前景。在空间尺度方面,近年来人们通过研究超材料、超表面等人工微纳结构来精确调控光波前,已经能够在纳米空间尺度上自由控制光信号的传播特性,例如让光信号沿着艾里光束的抛物线轨迹进行传播,应用于显微成像、光镊、光通信等领域。在时间尺度方面,传统的动态调控设备(如空间光调制器SLM)和动态调控材料(如电光材料)受制于材料的响应速度,难以达到飞秒量级。而随着飞秒激光脉冲整形技术的发展,频域调控逐渐成为超快时域调控的主要手段。将飞秒脉冲频域调控方法与人工微纳结构相结合,就有望实现极小时空尺度(飞秒时间尺度、纳米空间尺度)下的光场产生和调控,创造出很多新颖的时空光场并拓展新应用。深圳大学的袁小聪、闵长俊教授团队将脉冲频域调控与纳米结构空间调控相结合,提出了基于时空傅里叶变换(FT)的片上光脉冲调控方法,可用来操纵片上光脉冲的时空传播轨迹,让脉冲在不同时刻展现出不同的传播特性,从而使得极小时空尺度下的光场时空特性操控成为可能。FT作为一种常用的数学工具,已经被广泛应用于光学相关的应用中,如白光的光谱测量、脉冲整形和全息等。该团队研究发现,通过片上纳米聚焦结构调控空间域FT,可实现光场空间分布的构建;再通过光的色散效应来调控时域FT,可实现飞秒脉冲时域上的波前整形;最后将时空FT结合就有望同步调控飞秒脉冲传播的时空特性。为了验证这个方法,该团队以金属表面传播的表面等离激元(SPP)作为例子,理论研究了时空FT方法对飞秒SPP脉冲时空传播轨迹的调控效果。SPP作为一种可以突破光学衍射极限的光学表面波,不仅可以提供纳米尺度的空间分辨,还能够极大增强局域电磁场,因此被广泛应用于片上光子器件、光存储、光学传感、光镊、拉曼增强等领域。而由飞秒激光激发的飞秒SPP脉冲,同时具备纳米尺度的空间分辨能力与飞秒尺度的时间分辨能力,在极小时空尺度下的光场调控,以及光与物质相互作用的研究中具有重要价值。该团队基于金属膜上时空FT纳米结构的设计和入射光色散的调制,成功展示了多种新颖的时空光学效应,包括:将传统SPP聚焦形成的单个焦点逐步弯曲,形成一个环形分布的时空焦点;产生SPP-Airy脉冲并灵活控制其在不同时刻的传播方向,形成S形的时空传播路径(图1)。图1 时空傅里叶变换结构激发和调控飞秒SPP脉冲传播的示意图与传统片上光学调控方法只能调控空间、时间其中一个维度相比,这种时空FT方法提升了光脉冲调控的自由度,尤其在时域方面提供了更加出色的调控效果,为超快片上光学信息处理提供了新思路,在超快光子调控器件等领域有重要应用价值。
  • 传承辟新、寻优勇进——访中国科学院上海光学精密机械研究所主任朱健强
    “珩”星虽陨,光耀长存。2021年7月21日是王大珩先生逝世十周年的日子,中国仪器仪表学会联合中国光学学会、中国科学院长春光学精密机械与物理研究所,特别召开了王大珩先生学术思想研讨会。仪器信息网作为本次会议的支持媒体参加并报道了此次研讨会,并在会前采访到了上海光学精密机械研究所朱健强主任。围绕着上海光学精密机械研究所的建设与发展,朱健强分享了王大珩先生的故事。敏锐意识到激光的重要性1963年,苏联科学代表团来中国展示了其所谓的“高技术”——刮胡子刀片上有个洞,这个小洞就是激光打的。这也是最早的激光技术,在这个时候,王大珩先生敏锐地意识到“激光的重要性”。同年,他就向中国科学院建议,要成立专门的激光技术研究所。1964年,上海光学精密机械研究所(以下简称上光所)就在中国科学院的批复下正式成立。1986年,也是王大珩先生等科学家的倡议与领导下,中国科学院和原核工业部九院(现中国工程物理研究院)在上海光学精密机械研究所又成立了“高功率激光物理联合实验室”(以下简称联合室)。这些重要的举措为我国在激光领域的长足发展奠定了重要的基础,更让我国成为继美、法之后,第三个开展激光聚变的国家,使得我国的激光技术水平在国际上处于领先地位,有力地保障了我国核领域实验的开展。 重视科研队伍的培养王大珩先生非常重视科研队伍的培养。1958年,召集了当时国内光学领域的精英,在长春建立了长春光学精密机械学院(现长春理工大学),这些人才现在很多都成为了我国光学领域的顶级专家!后来,上海光机所的建立又培养了一批人才。实际上,人才的建设对于学科发展是有着非常深远的意义的。王大珩先生更是身体力行,即使在年近九十之际,仍会去到实验室,并特别强调:青年工作者们要注重工艺,要真正理解仪器和设备设计的原理。大珩先生精神永流传王大珩先生经常说,要坚持“传承辟新、寻优勇进”,这句话对朱健强有着很深远的影响,他在接受采访中反复提起。正是在这些耳濡目染,朱健强也讲述了曾经担任上光所所长时,做出的几件令他非常自豪的事情:2005年,上光所开始与以色列国家接触,共同建设以色列国家激光装置。6年的谈判时间才签下合同。这期间经历了与美国竞争、以色列质疑等重重困难,而上光所在如此压力下,只花了5年的时间就建成了以色列国家激光装置。这极大地奠定了我国激光技术的国际影响,美国专家在交流过程中的不吝赞扬代表了国际上对我国高技术的认可。2013年,上光所打造了激光领域内影响力最好的一本期刊(今年影响因子是3.599),该期刊中的一篇文章还被2018年诺贝尔奖获得者摩洛教授在颁奖词中引用,他特别点出中国的一些工作,有着非常了不起的进展。朱健强简单地提出了对当下科学仪器行业的一些看法。首先,对于青年工作者应重视传统工艺,传承成熟的技术;同时,还应该积极地获取新知识,开拓新领域。另外,重大科学仪器设备的研发,应该有一个带头人将问题解构清楚,从而有效推动工作。最后,他还提到要关注职业教育,就职人员要定期培训,让从业人员不断地学习,终身学习!更多内容请观看视频:王大珩先生虽然已经永远离开了我们,但是他对国家科学仪器行业带来的深远影响,他对国家战略布局所做出的重要贡献,他牵头组织建立的科研院所和高校,仍然历历在目!以大珩先生为代表的老一辈科学家们的科学家精神一直在影响着整个科学仪器行业、乃至整个科学届的人,科学家精神将不断地传承。
  • 东莞半导体照明重点实验室“花落”勤上
    近日,LED行业龙头企业东莞勤上光电股份有限公司的勤上半导体照明实验室,经东莞市科技局组织专家进行现场考察论证和评审后,成功获评东莞市半导体照明重点实验室,并获100万专项资助资金。  “此次获评东莞市半导体照明重点实验室,既是对我们的技术、研发实力充分肯定,也给我们带来了更多的信心和动力”。据勤上光电相关负责人介绍,勤上半导体照明实验室主要从事光电产品的质量检测、质量与可靠性分析研究、环境适应性研究、评估等。主要围绕半导体照明应用领域,进行从材料到器件、从器件到整机、从整机到系统的安全、性能、电磁兼容、环境适应性、可靠性、寿命、节能、环保等项目的测试认证和综合质量研究分析,服务于企业的科研、生产、销售、维护、回收、报废等整个产品生命周期。其提供的检测科研服务以依托勤上光电产品为主,涵盖部分重要供应商及合作伙伴的产品的研发及试验服务能力,为配套厂家或同行提供独立公正的研发及试验服务,提供技术合作。  勤上半导体照明实验室还积极与清华大学、信息产业部电子第五研究所、西北工业大学、中央美院等相关高校院所科展开合作,在LED路灯配光、LED散热、LED综合环境适应性、LED系统可靠性、LED封装、LED光衰等学术领域合作广泛,取得较为突出的应用成果,获得了良好的社会效益和经济效益。同时,该室验室积极与国内外相关机构和部门合作,开展了部分国内及国际认证的现场试验和目击试验,也受到国内外业界同行的充分好评。
  • 王兴军课题组攻克激光雷达抗干扰和高精度并行探测难题
    北京大学电子学院王兴军教授课题组-常林研究员课题组在两年攻关的基础上,研制出一种全新的硅基片上多通道混沌光源,提出了一种基于混沌光梳的并行激光雷达架构,攻克了激光雷达抗干扰和高精度并行探测这两个世界性难题,保证高性能高安全的同时,极大降低未来激光雷达系统体积、复杂度、功耗和成本。团队的研究成果《突破时间-频率拥塞的并行混沌激光雷达》于日前发表在《自然-光子学》杂志。随着高级别自动驾驶的日益普及,确保行驶舒适安全的激光雷达作为其核心器件,受到越来越多的重视。高性能、小体积、低成本、低功耗、高安全的激光雷达是未来厂商竞相追逐的方向。研究团队通过集成微腔光梳的调制不稳定状态产生天然的多通道随机调制信号,使其信号混沌带宽可超过7GHz,且光梳的调制不稳定态在18GHz的失谐范围内展现出良好的鲁棒性,能够应对外部泵浦光源的频率抖动。同时,材料的高非线性系数使产生的调制不稳定光梳的阈值功率相比其他材料平台低1~2个数量级,能够与片上分布式反馈激光器共集成。在此基础上,研究团队还搭建了并行激光雷达演示系统并对实物目标进行了高精度三维成像,验证了10通道规模的单像素成像,证明了各通道间良好的正交隔离性。此外,研究团队还对接收信号在不同信号干扰混叠下的抗噪功率抑制比进行了测试,实测可得在3dB阈值判据和12.5微秒积分时间下,单路信号的功率动态范围接近60dB,对调频连续波信号的抗噪功率抑制比接近30dB,对自身随机调制信号的抗噪功率抑制比可达22dB,展现出了良好的有源抗干扰能力。上述结果有望推动下一代高性能抗干扰激光雷达的变革。记者了解到,最近几年,研究团队在集成光电子学方面也取得了多项重要进展,包括实现了Tb/s硅基片上大容量光通信和跨C-V波段高精度微波光子信号处理、铌酸锂集成光子芯片、1.04TOPS/mm2高算力密度片上光计算、30nm极小粒径病毒检测、36μW最低功率阈值光学频率梳光源等多个国际领先成果。
  • 我国科学家创制极化激元晶体管
    纳米尺度的光电融合是未来高性能信息器件的重要发展路线。如何在微纳甚至原子尺度对光进行精准操控是其中的关键的科学问题。中国科学院国家纳米科学中心研究员戴庆研究团队率先提出利用极化激元作为光电互联媒介的新思路,充分发挥它对光的高压缩和易调控优势,不仅有望实现高效光电互联,而且可以提供额外的信息处理能力,从而进一步提升光电融合系统的性能。   该团队通过十多年的努力,实现了极化激元的高效激发和长程传输。在此基础上,研究设计并构筑了微纳尺度的石墨烯/氧化钼范德华异质结,实现了用一种极化激元调控另一种极化激元开关的“光晶体管”功能。研究表明该晶体管可实现光正负折射的动态调控,类似电子晶体管能切换(1,0)两个高低电位,为构筑与非门等光逻辑单元奠定了重要基础。该研究充分发挥了不同材料的纳米光子学特性,从而突破了传统结构光学方案如使用人工结构(超材料和光子晶体等)在波段、损耗、压缩和调控等方面的性能瓶颈。   与电子相比,光子具有速度快、能耗低、容量高等优势,被寄予未来大幅提升信息处理能力的厚望。因此,光电融合系统被认为是构建下一代高效率、高集成度、低能耗信息器件的重要方向。光电互联(电-光-电转换)是光电融合主的基础,相当于光电两条高速公路交汇的收费站。而现有硅基光电集成方案存在效率低(依赖多次光电效应)、体积大(光模块无法突破衍射极限)等问题,制约光电器件之间的信息流转。然而,光子不携带电荷且光的传输受限于光学衍射极限,相比于能轻易通过电学调控的电子,对光子的纳米尺度局域和操控并不容易。   极化激元是一种由入射光与材料表界面相互作用形成的特殊电磁模式(表面波)。它具有优异的光场压缩能力,可轻易突破光学衍射极限从而实现纳米尺度上光信息的传输和处理。   戴庆团队以攻克高速光电互联这一世界技术难题为目标,提出以纳米材料的表面波(极化激元)为媒介,实现高效光电互联的新思路。构筑光-极化激元-电转换路径相当于将高速公路的收费站改造成立交桥,具有显著优势:一是效率高,光/电激发材料表面波的效率相比光电效应提升潜力巨大;二是集成度高,光波转化成材料表面波可将波长压缩百倍轻松突破衍射极限,从而显著提升光模块集成度;三是算力强,材料表面波具有光子性质可进行高效并行计算,从而将现有光电融合的“光传输、电计算”拓展成为“光传输、电计算+光计算”,实现“1+12”的效果。   戴庆提出,我们利用电学栅压对极化激元这种光波的折射行为实现了动态调控,使其从常规的正折射转变到奇异的负折射。这好比可以像操纵电子一样操纵光子,为将来高性能光电融合器件与系统的发展提供重要促进作用。这一研究在应用上面向光电融合器件大规模集成缺乏高效、紧凑光电互联方式的重大需求,在科学上为解决突破衍射极限下高效光电调制的难题提供了新思路。   2月10日,相关研究成果以Gate-tunable negative refraction of mid-infrared polaritons为题,发表在《科学》(Science)上。该论文审稿人评价道,这证实了一项非常规的物理现象,为研究纳米尺度的光操控提供了崭新的平台。图示极化激元晶体管的基本原理,通过在氧化钼上覆盖石墨烯构筑范德华异质结,天线激发极化激元传输穿过界面后形成负折射。极化激元晶体管的光学显微镜照片
  • 实验室也有人机大战?放心,这有仪器维修秘籍!
    p style="text-align: left "  今天,韩国棋手李世石与谷歌AlphaGo的人机大战闹得沸沸扬扬,大家都在关注,人与机器到底谁更胜一筹?/pp  其实在实验室,“人机大战”无时无刻不在上演,电源不通、指示灯不亮、软件不运行,色谱出峰拖尾、质谱抽真空不给力、原吸石墨管烧断......于是乎,无所不能的仪器操作者们展开了轰轰烈烈的“人机大战”....../pp style="text-align: center "img title="人机大战.jpg" src="http://img1.17img.cn/17img/images/201603/insimg/91451624-805b-4e84-9aca-bbce7f122e19.jpg"//pp  如何在实验室“人机大战”中获得完胜?聪明的各位当然不会错过任何“武功秘籍”!仪器信息网编辑特此奉上光谱、色谱、质谱等仪器维修“红宝书”,实验室的同仁们一定要抓住机会哦!/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20150515/160695.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong原子吸收光谱仪200问 留着绝对有用!/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20150518/160833.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong拉曼光谱常见问题集锦,看完“门外汉”也会了/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20150311/155062.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong气相色谱仪维修手册(堪称最全,没有之一)/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20150211/153761.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong盘点那些年网友们讨论过的ICP-MS使用常见问题/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn/news/20160309/185942.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong质谱的N多东西 不容错过/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn//news/20150105/150216.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong如何区分仪器检出限、方法检出限、样品检出限及测定下限/strong/span/a/ppspan style="color: rgb(255, 0, 0) "strong◆ /strong/spana title="" style="color: rgb(255, 0, 0) text-decoration: underline " href="http://www.instrument.com.cn//news/20150203/152952.shtml" target="_self"span style="color: rgb(255, 0, 0) "strong各种仪器分析的基本原理及谱图表示方法/strong/span/abr//p
  • 森泉光电邀您共聚第二十届全国分子光谱学学术会议暨2018年光谱年会
    会议简介由中国光学学会和中国化学会主办的“第20届全国分子光谱学学术会议”暨由中国光学会光谱专业委员会主办的“2018年光谱年会”将于2018年10月19-22日在山东省青岛市黄岛区召开,森泉光电作为行业内的佼佼者受邀参加此次行业盛会。自1979年在桂林召开第一届会议以来,全国分子光谱学学术会议已经成功举办了19届,2018年将迎来会议的四十周年,也将是时隔28年再次在青岛市举办。本次会议是我国光谱科学工作者的又一次盛会,将全力展示我国在光谱及相关领域的最新研究进展及取得的成果,增进广大光谱科学工作者及其支持光谱事业人们间的交流与合作,促进我国光谱事业的发展。届时大会组委会将邀请国内外光谱及相关领域的院士、知名专家学者到会作大会报告,同时会议还将组织各类专题讨论和学术交流。时间:2018年10月19-22日地点:山东省青岛市黄岛区银沙滩温德姆至尊酒店(山东省青岛市黄岛区银沙滩路178银沙滩畔)森泉展位:一楼3号展位精彩看点此次会议森泉将重点展示:Camlin光源、可调谐光源、单色器,光谱仪、高光谱成像及荧光计系统等模块化光谱。 APOLLO 光源 Camlin Photonics提供一系列专业高性能、高稳定性光源:连续式/脉冲式氙弧灯,氘灯和卤钨灯等。 光源的选择取决于应用所需的光谱范围、光源亮度、稳定性以及光谱平滑度等要求。 APOLLO 可调谐光源 我们光源的创新设计使ATLAS单色仪与我们配套光谱成像仪系列可简单方便对准,可形成功能强大的可调谐光源系统 - APOLLO TLS系列。 在以上光源和单色器范围内,我们可以提供高度定制的可调谐光源,以有效地满足客户对功率和分辨率的要求。 ATLAS系列-单色仪 ATLAS系列Czerny-Turner单色仪可提供一系列定制的高质量直接扫描单色仪系统。焦距为150 mm, 300 mm, 500 mm和750 mm以及多光栅转台设计特点,我们可以为低,中,高分辨率应用提供合适的系统。 例如,ATLAS 150的分辨率为0.4nm,而ATLAS 750的分辨率高达0.03 nm。 Fluoro SENS分子荧光光谱仪系统 fluoroSENS系统是一款具有极高的光谱灵敏度 - 单光子计数的多功能台式荧光系统。有两种标准配置可供选择:fluoroSENS MINI 和fluoroSENS PRO。模块化设计适用于对各种光源、单色仪、样品架和探测器等配置进行完全控制。 fluoroSENS系统也很容易从稳态升级到时间分辨测量。 高光谱成像软件 用于数据采集、查看和分析的综合软件是任何高光谱系统的关键部分。我们spectraSENS软件是一个完全集成的高光谱平台,可用于收集、查看和处理数据。 可直接通过软件单光谱或多光谱相机操作,可输出高分辨率RGB图像,传感器触发信号,数据流和直接可视化信号。 spectraSENS软件已经配备了全面的内置数据分析功能库,包括有监督和无监督的方法,以及用于地面参考(训练)数据集的偏最小二乘建模,以实现材料的浓度Mapping。森泉光电诚挚的欢迎国内外光谱界的同仁莅临我们的展位,共同见证光谱会议四十年的发展成果,真诚期待大家2018年金秋10月在青岛相聚!
  • 最强光催化剂“出手”“水变氢”效率刷新世界纪录
    在太阳光或一缕LED紫外光照拂下,玻璃烧杯中加入一点点白色粉末,无须加热也无须其他能源,烧杯里的水便可源源不绝产生氢气,且经过数百小时的实验,这种白色粉末的量并未衰减。在云南大学材料与能源学院实验室,你能见到这样的“奇观”。  在碳达峰、碳中和背景下,洁净的氢成为未来的重要能源,高效、低成本制氢,特别是光解水制氢是科学家研究的方向。1月10日,国际著名期刊《自然通讯》发表了云南大学柳清菊教授团队与英国伦敦大学学院唐军旺教授团队、华东师范大学黄荣教授团队合作的一项重要研究成果——以单原子铜锚定二氧化钛,成功制备新型光催化剂,其分解水制氢量子效率高达56%,被审稿人称为“世界纪录”。这意味着“水变氢”有了一条可实用化的新路径。  提高催化效率 才能助推光解水制氢走向实用化  氢能是一种清洁无污染的可再生能源,燃烧值很高,可达每千克140兆焦耳,其具有来源丰富、燃烧产物无二次污染等优点,有望代替石油和天然气,因而受到世界范围的广泛关注。若能得以大规模实际应用,将为“双碳”目标的顺利实现作出贡献。  “目前,制备氢的主要方法有化石燃料制氢和电解水制氢,但两种方法都需消耗传统能源。”柳清菊向科技日报记者介绍,化石燃料制氢,二氧化碳排放量大,每生产1千克氢气,将产生10千克左右的二氧化碳;而电解水制氢也存在能耗和成本问题。“在环境和能源问题日益严重的今天,开发清洁、可持续、低成本的制氢技术,推进氢能的发展显得尤为迫切和重要。”柳清菊说,采用光催化技术,利用太阳能驱动水分解制氢是一种极具发展前途的新方法。  自1972年科学家发现二氧化钛半导体具有光催化性能以来,光解水制氢一直受到学术界及产业界的关注与重视。在能量大于或等于半导体禁带宽度的光照射下,光催化材料价带中的电子吸收入射光子的能量跃迁到导带,形成“电子—空穴”对,空穴和电子迁移到材料表面,与表面吸附的水分子发生氧化还原反应,也就是电子与水发生还原反应产生氢气,空穴氧化水产生氧气。  然而,由于电子带负电,空穴带正电,使得光催化材料中光照所产生的“电子—空穴”很容易复合,导致产氢量子效率低下,严重阻碍了光解水制氢的发展。因此,如何阻止“电子—空穴”的复合,提高光催化制氢效率,成为目前国际上光催化研究领域的重大挑战之一,也是制约光催化制氢技术实用化的瓶颈难题。  这其中,光催化材料是核心。而光催化材料的活性、稳定性和成本是决定光催化技术能否实际应用的关键。  铜离子“补位” 新型光催化材料设计制备突破瓶颈  金属单原子催化剂是近年来迅速发展起来的新型催化剂。相比传统金属催化剂,金属单原子催化剂中的原子以单个的形式负载在载体上,在催化反应中可充分参与反应,实现反应活性中心的最大化,利用效率可接近100%,在理论上可以同时提高催化活性并降低成本。然而由于单原子具有极高的表面能,在合成和催化反应过程中容易团聚、稳定性差、寿命短且制备成本高,阻碍了其实际应用。  “这次起光催化作用的二氧化钛,是一种钛和氧规则排列的晶体,我们通过独特的合成工艺,在其中生成大量的钛空位。”柳清菊向记者解释,有了这些钛空位,就可以请铜离子来帮忙“补位”。  “通过对钛基有机框架材料MIL-125中钛空位的设计和可控合成,我们研制出具有大比表面积和丰富钛空位的二氧化钛纳米材料,以此为载体锚定过渡金属铜单原子,使铜与二氧化钛形成了牢固的‘铜—氧—钛’键。”柳清菊介绍,在光催化制氢反应过程中,一价阳离子铜和二价阳离子铜的可逆变化,大大促进了光生“电子—空穴”的分离和传输,大幅提高了光生电子的利用率,使产氢量子效率获得突破,达到56%。这项突破获得了欧洲科学院院士、伦敦大学学院光催化和材料化学终身教授唐军旺团队的验证。  成本、工艺更“亲民” 光解水制氢产业已初露曙光  新研制的二氧化钛基光催化材料,具有性能稳定、无毒、无二次污染等优点,且生物相容性好、制备方法简单、成本低,与传统方法相比优势明显。通常含贵金属的催化剂,催化活性高,但相应的成本也极高。“新材料中,我们用的是‘贱金属’铜,它储量大、价格低、易获得,这是成本降低的第一个方面。” 柳清菊介绍,此外,原有的催化材料中单个金属原子活性很大,很容易形成团簇,使得催化活性降低。研发团队将铜原子牢固地锚定在钛空位上,不容易团聚,创新性地解决了这个问题,稳定时间很长,在常温常湿条件下,样品放置380天之久,仍然具有与新制备样品相当的产氢性能,进一步降低了产氢成本;另外,新型光催化材料制备工艺简单,无需昂贵的设备,使光催化制氢更加“亲民”。  近年来,柳清菊团队在实验室进行了大量的基础研究,包括材料设计、合成工艺、机理研究、性能优化等,已获得稳定的高性能光解水制氢光催化材料的实验室制备工艺,正准备开展放大工艺研发,为后续产业化奠定基础。虽然传统的光催化材料成本高、量子效率低,国内光催化产氢市场尚未成熟,但随着产业链衔接及相关政策的完善,光催化制氢产业化已是曙光初露。  对柳清菊团队而言,56%的产氢量子效率也不是终点。“我们还在继续努力,使效率进一步提高,如果能够提高到70%以上,对生产应用的意义将是不言而喻的。”柳清菊说,找准了方向,效率再提升将不是梦。随着光解水效率进一步提高和成本进一步降低,氢能时代将加速到来,人类也将还地球以绿水青山。
  • 可伐-玻璃组装式(无吹制)氦氖激光器研制成功并批产
    据悉,镭测科技公司经过7年的研发,在国内首次研究成功可伐-玻璃组装式的氦氖激光器,并实现批量生产。这一成果终结了我国50年靠玻璃吹制氦氖激光器的历史,有力推动我国高端激光仪器的发展。  清华大学教授、镭测科技公司顾问张书练表示,氦氖激光器是气体激光器的一种,是气体激光器中最先研发问世的产品类型。氦氖激光器是以中性原子气体氦和氖为工作物质、由放电管和光学谐振腔构成的激光器,可输出连续激光。氦氖激光器工作在可见光与红外光频段,可输出绿光543.5nm、红光632.8nm、红外光1.15μm和3.39μm等多种波长。其中,红色波长632.8nm在氦氖激光器家族中有独一无二的品质,应用最广泛。波长632.8nm氦氖激光束质量高、光束横截面上光强度非常接近完美的高斯分布,非常小的发散角,传播百米后光斑直径还保有几毫米大小;输出功率稳定,噪声非常低;有天然的频率(波长)稳定点,波长稳定性可以非常高,可以做到1小时时间内632.8nm仅漂移百万甚至亿分之一;造价低,可靠性高,一致性好互换性强等。  张书练指出,氦氖激光器在仪器仪表、精密测量方面应用广泛,无可替代。国内外的单频干涉仪,双频干涉仪,面型干涉仪,测振仪,椭偏仪,激光陀螺仪等都采用氦氖激光器做光源,这些仪器是精密机床、光刻机、航空、航天、机械和光学加工,薄膜技术等领域精度的保证。我国这些产业向高端发展的速度加快,市场对相关仪器的需求将持续增长,将会拉动我国对可伐-玻璃组装式的氦氖激光器需求规模不断扩大。  根据某研究中心发布的《2022-2026年氦氖激光器行业深度市场调研及投资策略建议报告》显示,2021年,全球氦氖激光器市场规模约为0.74亿元;预计2021-2026年,全球氦氖激光器市场将以4.2%左右的年均复合增速增长,到2026年市场规模将达到0.91亿元左右。在全球市场中,氦氖激光器生产商主要有美国Lumentum Operations、美国Melles Griot(被Pacific Lasertec收购)、美国Thorlabs、美国Excelitas Technologies、德国Lasos、德国Phywe、日本Neoark。  张书练表示,多年来,我国依赖玻璃吹制技术生产氦氖激光器(管),激光器之间一致性较差,稳定性不佳,不能达到各类激光仪器的应用要求。过去几十年,虽然国内也有对可伐-玻璃组装式(无吹制)氦氖激光器进行了研究,但没有坚持下来,也曾引进了一条国外(装配)生产线,运行几年,终因没有自己元器件供应链,没有自己的工艺被迫停产。激光仪器仪表仪器装配的氦氖激光器都从国外购买,因为容易频率突跳或不出双频振荡,淘汰率很高。  镭测科技自主研发的可伐-玻璃组装式的氦氖激光器用已成批用于双频激光干涉仪上和光刻机的失效激光器替换。用作双频激光器时,激光功率可以达到1.3mW以上,激光频率差可选定3MHz、7MHz、10 MHz、20 MHz,或更大,这是国内外以前没有实现的。此外,之前,不论是单频还是双频激光干涉仪,国产还是国外购买,各型号都有几纳米甚至十几纳米的非线性误差,可伐-玻璃组装式的氦氖激光器作光源的双频激光干涉仪非线性误差不大于1纳米。
  • 刘舜维、汪根欉、胡斌:延伸发光偶极各向异性动力学实现34.01%外量子效率
    本文重点:1. 平面定向的发光偶极必须在时域和能量域上都展现延伸的各向异性动力学,这是研发高效OLEDs的必要条件。2. 通过在平面定向的Exitplex杂合体中引入Ir(ppy)2(acac),可以抑制主宾体散射,使发光偶极的各向异性动力学延伸 至微秒量级。3. 采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。明志科技大学有机电子研究中心主任兼工程学院副院长刘舜维教授、中国台湾大学化学系汪根欉教授以及美国田纳西大学先进材料与制造工程研究所材料科学系胡斌教授三方研究团队,近日共同在《先进光学材料》(Advanced Optical Materials)期刊发表研究报告。该研究基于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体,使用包括时间解析和稳态两种光聚合物各向异性度量方法,全面研究了发光偶极在时间和能量两个维度的各向异性动力学特征。研究结果发现,相较于随机定向的发光偶极,设计能够形成平面定向的发光偶极是研发高效OLEDs的关键方法之一,这可以显著提高光的提取效率。但是,平面定向的发光偶极必须同时在时域和能量域都展现足够的偏振记忆效应,使各向异性动力学延伸至整个发光寿命时间范围,这才能大程度地增强OLED的光提取率。该研究充分证明,这种延伸的各向异性动力学是研发高效OLEDs的必要条件。研究团队将平面配置的红色磷光体Ir(ppy)2(acac)以很低的摩尔浓度分散于平面定向的Exitplex杂合体[BCzPh:CN-T2T]主体之中,构建了发光层。结果发现,平面定向的杂合体主体可以通过抑制主宾体之间的库仑散射,显著延长磷光体发光偶极的各向异性动力学,使其从纳秒量级延伸到微秒量级,与磷光寿命时间范围相当。这满足了采用Ir(ppy)2(acac):杂合体系统来提高OLED光提取效率的必要时域条件。更重要的是,研究还发现,在抑制主宾体库仑散射的情况下,高能态的发光偶极也可在杂合体主体的作用下维持延伸的各向异性动力学,而不会随着热电子从高能态松弛至LUMO而随机化。这是由于杂合体主体的偏振记忆效应不仅影响低能态,也可维持高能态发光偶极的平面定向分布。综合时域和能量域两个维度的研究结果可以看出,发光偶极延伸的各向异性动力学是研发高效OLEDs的必要条件。最终,采用延伸各向异性动力学的Ir(ppy)2(acac):杂合体系统成功实现了高达34.01%的外量子效率。该成果为进一步提升OLED性能提供了有力指导,将促进高效OLED显示技术的进一步研发。本次研究,团队采用了光焱科技Enlitech所设计生产的超低光源光致发光量子产率高校量测设备LQ-100X-PL,Enlitech所设计的LQ-100X-PL采整合型设计,精心严选高档用料材质,设备寿命长,且拥有软、硬件整合与调校,凭借光焱科技多年量测PLQY经验,出场即校正完成,即装即用,可大幅免除自行搭建设备的难度与光强不足等扰人问题。LQ-100X-PL采用LED光源设计,整体结构紧凑,尺寸仅502.4mm(L) x 322.5mm(W) x 352mm(H),可整合手套箱,并在搭配定制样品盒下,不论研究产品是薄膜、粉末、液体型态,让研究人员十秒内完成待测物量测装载,超快速精准且方便进行PLQY量测,无须烦恼样品尺寸与积分球开口尺寸两难问题,整体量测结果精准、重复性高,更可以进行原位时间光谱解析,量测数据经得起投稿审查时高品质要求,且加上光焱科技Enlitech专业服务与销售团队服务,更能为PLQY量测进行把脉,让客户将心力专注于研究。
  • 全自动菌落计数仪华丽蜕变,“仪”见倾心!
    1.产品简介ZR-1101型全自动菌落计数仪是针对微生物菌落分析的专用设备,利用全新设计的软件图像处理技术和科学的数学分析方法对微生物菌落分析,计数迅速准确。适用于医院、科研院所、卫生防疫部门、疾病控制中心、检验检疫、质量技术监督、环境检测机构以及制药、食品饮料、医疗卫生用品行业等的微生物检测。2.技术特点快速捕获高清菌落图像高分辨率彩色工业相机,自带仪器标定功能,对菌落直径尺寸进行校准,消除拍摄与实物的尺寸误差;单色、多色菌落同时自动识别检测方式;上光源具有环绕360度无影照射功能,为菌落成像提供多方位、立体、清晰的成像效果。下光源采用透射光暗室拍摄系统,侧光源采用环形矩阵系统。多样化标准与测量,计数快捷准确依据标准研发的独到菌落计数统计软件,根据不同模式选择下快速智能计数;通过上光源的环形光源,背景光源的底光源和侧光源组合方式,可实现对菌落的光学染色;;自动粘连分割、手动分割、蔓延菌落自动处理统计,计数回退功能,计数准确快速;强大的图像处理软件包含多种图形标注、测量功能;选定区域统计,高效快速,瞬间输出菌落直径、圆度、周长、面积、数目等数据;优异的多功能模块设计内置254nm(用于消毒灭菌)和365nm紫外灯(用于菌落荧光激发和统计实验),可对腔体杀菌消毒、紫外诱变和大肠埃希氏菌、大肠菌群荧光、绿色荧光蛋白等激发实验;具备审计追踪功能,数字和安全管理符合FDA21CFRPart11中的相关要求,操作人员在软件上的操作自动记录,以便后续结果数据的追溯;人机交互体验优异扫码功能,快速录入培养皿信息利于数据追溯,支持条形码录入;(选配功能)数据可保存、查询、打印或以EXCEL、PDF等格式导出;标配高性能图像处理电脑一台。
  • 科学家首次“拍摄”到光催化剂光生电荷转移演化的全时空图像
    太阳能光催化反应可以实现分解水产生氢气、还原二氧化碳产生太阳燃料,是科学领域“圣杯”式的课题,并受到全世界关注。在过去半个世纪的光催化研究中,科学家在光催化剂制备和光催化反应研究方面做出了努力,但光催化反应中光生电荷的分离、转移和参与化学反应的时空复杂性,因而关于该过程的基本机制一直不清楚。  日前,中国科学院院士、中科院大连化学物理研究所研究员李灿,研究员范峰滔等揭开了这一谜团。研究人员综合集成多种可在时空尺度衔接的技术,对光催化剂纳米颗粒的光生电荷转移进行全时空探测,揭示了复杂的多重电荷转移机制,“拍摄”到光生电荷转移演化全时空影像。该研究明确了电荷分离机制与光催化分解水效率之间的本质关联,为突破太阳能光催化反应的“瓶颈”提供了新的认识和研究策略。10月12日,相关研究成果发表在国际学术期刊《自然》(Nature)上。  光催化分解水的核心科学挑战在于如何实现高效的光生电荷的分离和传输。由于这一过程跨越从飞秒到秒、从原子到微米的巨大时空尺度,揭开这一全过程的微观机制颇具挑战性。“长期以来,我们的团队前赴后继致力于解决这一问题,在这个工作中,集成多种先进技术和理论,在时空全域追踪了光生电荷在纳米颗粒中分离和转移演化的全过程。”李灿说。  光催化过程中,光生电子和空穴需要从微纳米颗粒内部分离,并转移到催化剂的表面,从而启动化学反应。范峰滔介绍,在如此微小的物理尺度上,光催化剂往往缺乏分离电荷所需的驱动力,因此,实现高效的电荷分离需要一个有效的电场。为了在光催化剂颗粒中形成一个定向重排的电场,科研人员将一种特定的缺陷选择性地合成到颗粒的特定晶面,有效促进了电荷的分离。为了更好地剖析纳秒范围内高效电荷分离机制,科研人员使用了时间分辨光发射电子显微镜,发现了光生电子在亚皮秒时间尺度就可以选择性的转移到特定晶面区域,且电子在超快的时间尺度上可以从一个表面移动到另一个表面。  “长期以来光催化中的主导电荷分离机制很难解释跨越如此大空间尺度超快电荷转移。”范峰滔说,“我们将超快的电荷转移归因于新的弹道传输机制,其中载流子以极高的速度传播,在与晶格发生作用之前就已经跨越了整个粒子。”  进一步,为了直接观察电荷转移过程,研究人员进行了瞬时光电压分析,发现随着时间尺度从纳秒到微秒的发展,空穴逐渐出现在含有缺陷的晶面。研究表明,晶面上光生电子和空穴的有效空间分离是由于时空各向异性的电荷转移机制共同决定的,这一复杂机制可以通过各向异性晶面和缺陷结构来可控的调整。  “通过集成结合多种先进的表征技术和理论模拟,包括时间分辨光发射显微镜(飞秒到纳秒)、瞬态表面光电压光谱(纳秒到微秒)和表面光电压显微镜(微秒到秒)等,像接力赛一样,第一次在一个光催化剂颗粒中跟踪电子和空穴到表面反应中心的整个机制。”李灿说,“时空追踪电荷转移的能力将促进对能源转换过程中复杂机制的认识,为理性设计性能更优的光催化剂提供了新的思路和研究方法。”  “未来,这一成果有望促进太阳能光催化分解水制取太阳燃料在实际生活中的应用,让梦想逐渐变为现实,为我们的生产和生活提供清洁、绿色的能源。”李灿说。  该项工作得到国家自然科学基金委“人工光合成”基础科学中心项目、中科院稳定支持基础研究领域青年团队计划、国家重点研发计划及大连化学物理研究所创新基金等的支持。
  • 首次实现单个量子光源的超分辨选择性激发和成像
    p  光的衍射极限限制了常规光学成像的分辨率和介质光子器件的尺寸,将对光的操控和利用制约在波长水平,而金属纳米结构的表面等离激元可以将光场束缚在纳米结构表面,使突破衍射极限的纳米尺度光操控成为可能。金属纳米线不仅具有显著的局域电磁场增强效应,可以在纳米尺度上增强光与原子、分子、量子点、色心等纳米量子光源的相互作用,而且支持传输的表面等离激元模式,可作为等离激元纳米波导实现亚波长束缚的光信号传输,是构建片上纳米光子回路的基本元件。金属纳米线与单个纳米量子光源的耦合可以实现单个量子化的表面等离激元的产生和传输,对该体系的研究对于深入认识单光子水平上光与物质相互作用的基本物理和设计纳米量子光子器件都具有重要意义。集成在金属纳米线上的多个纳米量子光源可以通过表面等离激元发生相互作用,产生新的光学现象,如协同辐射和量子纠缠。当纳米光源之间的距离达到亚波长尺度时,光学显微镜的分辨率限制了对金属纳米线上的多个纳米光源进行超分辨成像和超分辨可控激发,阻碍了相关实验的进展。/pp  针对上述问题,中国科学院物理研究所/北京凝聚态物理国家研究中心纳米物理与器件实验室魏红副研究员和合作者设计了一种利用金属纳米线上的表面等离激元干涉场作为激发源的超分辨激发和成像方法。由于表面等离激元干涉条纹的周期远小于激发光波长,这种方法具有突破衍射极限的光学分辨率。银纳米线上的传输表面等离激元与局域表面等离激元的干涉形成之字形分布的电场,反向传输的两束表面等离激元干涉形成周期性对称分布的电场。通过调控两束激发光之间的相位差,上述两种等离激元干涉场的分布都沿着纳米线移动,使纳米线上的量子点处的电场强度发生变化,从而可以调控量子点的激发。利用该方法可以实现对相距几十纳米的两个量子点的选择性激发,实验中通过对相距100 nm的两个量子点的选择性激发演示了该技术的可行性。通过将结构照明显微成像技术与金属纳米线上的表面等离激元干涉场相结合,利用模拟计算实现了对多个量子点的超分辨光学成像,分辨率约为96 nm。该工作为研究和表征等离激元纳米波导与多个纳米量子光源耦合体系的光学特性提供了一种实验方法,对于深入认识纳米尺度上表面等离激元增强的光与物质相互作用的机理和规律、设计基于表面等离激元的纳米/量子光子器件和回路等具有重要意义。相关研究结果发表在Nano Letters 18, 2009-2015 (2018)。/pp  魏红副研究员对金属纳米线表面等离激元的物理特性及其调控进行了长期的系统的研究,取得了一系列原创性的成果。最近她和合作者受邀在国际著名综述期刊Chemical Reviews(影响因子47.9)上发表邀请综述Plasmon Waveguiding in Nanowires [Chemical Reviews 118, 2882-2926 (2018)]。该论文得到了审稿人一致的高度评价,被认为是一篇非常及时、全面和权威的综述(“a very timely and comprehensive review”, “a comprehensive and authoritative review”),是纳米等离激元光子学领域最好的综述论文之一(“one of the best reviews in nanoplasmonics field”)。/pp  上述工作得到了中国科学院、国家自然科学基金委和科技部的资助。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/4a2fb2c3-f2db-44d4-9c56-367bfaca07e6.jpg" title="1.png"//pp  图1. 利用银纳米线表面等离激元实现对量子点的可控激发(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/0f754c10-d33c-4c70-a4cc-9aabce79ba2c.jpg" title="2.png"//pp  图2. 利用银纳米线表面等离激元选择性激发两个相距100 nm的量子点中的任意一个(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/1074f43b-c0b0-4cd4-99b6-6f18fcfa4c79.jpg" title="3.png"//pp  图3. 将表面等离激元干涉场用于结构照明显微成像技术实现对多个量子点的超分辨光学成像(Nano Lett. 18, 2009-2015 (2018))。/pp  img src="http://img1.17img.cn/17img/images/201805/insimg/04354f19-0558-4348-9b78-f63646341f13.jpg" title="4.jpg"//pp  图4. 金属纳米线中表面等离激元传输的示意图、表面等离激元模式色散关系的示意图以及三个研究方向(Chem. Rev. 118, 2882-2926 (2018))。/ppbr//p
Instrument.com.cn Copyright©1999- 2023 ,All Rights Reserved版权所有,未经书面授权,页面内容不得以任何形式进行复制