视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

一步法氧化还原制备合金材料!

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2024/10/24 13:47:44
导读: 研究提出一种基于氢气的氧化还原合成新方法,将金属提取、合金化和热机械处理整合为单一固态操作,降低二氧化碳排放,提高能量利用效率,并展示出在制备具有优异性能的块状合金方面的潜力。

【研究背景】

随着可持续发展理念的日益重要,冶金生产中的环境影响引起了广泛关注。冶金生产传统上包括金属从矿石中提取、液态合金化以及热机械处理等多个步骤,这一方法自青铜时代以来沿用至今,然而由于其产生的温室气体排放和高能耗问题,逐渐暴露出其局限性。例如,近10%的温室气体排放源自化石燃料的使用和高温冶金处理,这使得寻找更为环保的合金制造方法成为研究热点。

为了解决这一挑战,德国马克斯·普朗克可持续材料研究所所长Dierk Raabe教授(德国国家科学院院士)团队提出了基于氢气的氧化还原合成和压实的新方法。这一方法将金属提取、合金化和热机械处理整合为一个单一的固态操作,极大地降低了二氧化碳排放,同时提高了能量利用效率。

研究表明,该方法能够从氧化物直接合成出具有优异性能的块状合金,且其合成过程在远低于金属熔点的温度下完成。例如,在Fe-Ni英瓦合金的制备中,所合成的合金不仅展现出接近零热膨胀的特性,还具有较高的微观结构可调性,显示出广阔的应用前景。

表征解读

本文通过使用二次电子成像(SEM)和能量色散X射线光谱(EDS)等表征手段,发现了Fe–Ni英瓦合金的均匀混合特性,从而揭示了这一合金在热膨胀性能上的优越表现。这些仪器的应用使作者能够详细观察合金的微观结构,确认了不同氧化物成分的均匀分布,为后续的合金性能研究提供了可靠依据。

针对热膨胀性这一重要现象,本文通过对合金在不同温度下的微观机理表征,获得了合金内部原子级别的结构信息,进而挖掘了其在低温和高温条件下的热膨胀特性。具体而言,微观结构的单相面心立方(fcc)相场特性,确保了Fe和Ni之间的无限溶解度,这一现象在材料设计中起到了关键作用,使得该合金能够在实际应用中实现近零热膨胀。

在此基础上,通过结合热力学设计宝藏图和动力学概念,作者的研究启发了对合金合成过程的深入理解,尤其是如何在单一固态操作中实现从氧化物到块状合金的直接转化。这一研究不仅推动了传统冶金工艺的革新,也为未来的合金设计提供了新的思路。值得强调的是,研究表明,优化合金成分及其微观结构的可调性,能够显著提升材料在高精度仪器和低温应用中的性能。因此,应该着重研究这一合金体系在不同合成条件下的微观机理,以及其在其他类型氧化物合金合成中的潜在应用。

图文速递

图1:用氧化物一步可持续合成具有确定微观结构的块体合金。

图2. 用氧化物制备的因瓦合金的合成动力学、微观结构和热膨胀特性。

图3. 合成机制的原位SXRD评估。

图4: 不同转化率下的微观结构分析和动力学机制探索。

科学启迪

总之,作者在此报告了一种基于氧化还原的可持续合金设计理念,能够实现从氧化物直接合成块状合金的一步法。遵循热力学指导方针和集成的动力学概念,作者将该方法应用于制造块状Fe–Ni英瓦合金,其微观结构和块体性能组合已准备好在实际应用中部署。所合成的合金不仅表现出接近零热膨胀的特性,与传统的多步骤金属提取、液态合金化和热机械处理方法制备的英瓦合金相一致,而且在微观结构的可调性方面也具有广泛的潜力。然而,作者方法的普遍性超越了Fe–Ni二元英瓦合金合成的特定范围:相同的理念可以扩展(1)到各种稀薄氧化物结合的过渡金属,以及(2)到来自不同来源的高度污染的氧化饲料。该方法还消解了提取冶金和物理冶金之间的一些经典界限,启发了从氧化物直接转化为具有应用价值的产品的一步固态操作。

原文详情:Wei, S., Ma, Y. & Raabe, D. One step from oxides to sustainable bulk alloys. Nature (2024). https://doi.org/10.1038/s41586-024-07932-w

[来源:仪器信息网] 未经授权不得转载

用户头像

作者:仪器 Go

总阅读量 3w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~