本文要点:骨肉瘤是一种致命的骨肿瘤,多发于儿童和青少年,具有局部破坏性和高转移性。迫切需要针对骨肉瘤具有高治疗效果和精确诊断的独特纳米平台。多模态光学成像和程序化治疗,包括协同光热-化学动力学治疗 (PTT-CDT) 引发免疫遗传性细胞死亡 (ICD) 是一种有前途的策略,它具有高生物成像灵敏度,可准确描绘骨肉瘤,治疗效果显著,副作用可忽略不计。
方案1. 骨肉瘤靶向mCu&Ce@ICG/RGD的构建过程示意图,用于NIR-II荧光/MR生物成像和PTT-CDT-ICD协同肿瘤抑制
本文开发了一种简便的一步法合成具有介孔纳米结构的多功能 Cu&Ce 氧化物纳米球 (mCu&Ce)。据报道,在 ICG 封装和 RGD 肽表面接枝(mCu&Ce@ICG/RGD) 后,该纳米平台可准确识别骨肉瘤并在肿瘤微环境 (pH = 6.5) 下触发 ICG、Cu 和 Ce 离子的剧烈释放(方案1)。进入骨肉瘤肿瘤细胞后,mCu&Ce@ICG/RGD 可在近红外激光照射下有效产生高温并进而促进•OH 的生成。PTT/CDT 协同肿瘤消融将在体外和体内实现。同时,热量和扩增的 ROS 都通过激发 ICD 来激活有效的 T 细胞生成,从而产生全身抗骨肉瘤免疫反应,从而显著介导有效的肿瘤免疫治疗。此外,基于Cu&Ce 的纳米平台可以通过 NIR-II 荧光和磁共振双模生物成像对骨肉瘤进行精确的早期诊断。总之,本研究设计了一种具有双模生物成像特性的简便的 Cu&Ce 纳米平台。它可以特异性地识别骨肉瘤,并通过 PTT 增强的 CDT 实现癌细胞抑制,从而进一步显著诱导 ICD 增强。
图1. mCu&Ce@ICG/RGD 的表征
图2. pH 敏感生物降解、ROS 生成和高温测定
由于mCe&Cu@ICG/RGD是为了激活ICG的释放而设计的,因此在细胞外弱酸诱发下,mCe&Cu基框架生物降解发生了类Fenton反应。在pH=6.5条件处理下的生物降解效率在所有时间点都明显高于pH=7.4组,6h时框架初步崩溃,纳米颗粒释放,36h时所有纳米球消失,出现大量Cu&Ce基颗粒。这些纳米颗粒能够传导肿瘤组织浸润。在肿瘤组织中细胞外弱酸性pH值浸泡36小时后,mCe&Cu@ICG/RGD的平均直径从∼68nm急剧下降到 ∼5nm , 进一步表明结构整体崩解。同时,在不同的孵育期内还测定了pH=6.5生理缓冲液上清液中ICG的释放曲线。我们观察到ICG染料以时间依赖性方式逐渐释放(图2C)。同时,如pH=6.5条件下释放的游离ICG的NIR-II发光图像所示,荧光信号在36小时内显著增强,明显强于pH=7.4组(图 2D)。同时,在肿瘤微环境刺激缓冲液孵育不同时间后,Cu和Ce离子的释放趋势相似,孵育36h后约有90%的Cu/Ce离子被释放。同时,在弱酸性环境下处理36h后,以商业•OH指示剂3,3',5,5'-四甲基联苯胺(TMB)评价Cu&Ce离子的类Fenton催化效果。在•OH催化下,产物氧化物TMB具有三个特征峰,显然,与mCe&Cu@ICG/RGD + L基团相比,mCu@ICG/RGD仅表现出边际ROS生成率,正如预期的那样,mCe&Cu@ICG/RGD + H2O2 + L 的•OH 增加量增加了 2 倍。纳米平台在高 H2O2条件下加上 808 nm 光照射时增强的化学动力学能力(图 2E)。随后,由于 ICG 对 808 nm 激光的强吸收赋予 mCe&Cu@ICG/RGD 强大的光热转换性能。如图 2F、G 所示,纳米平台的温度呈现出明显的时间相关上升趋势,在连续 300 秒的 808 nm 激光照射下温度上升到最高水平(79.1 °C),证明了快速的近红外光响应。与此形成鲜明对比的是,在相同处理下,PBS 溶液中的温度略有上升,在激光照射终点仅为 36.3 °C。此外,为了进一步检测激光-热转换效率(η),最近从冷却-加热循环计算了分散在水溶液中的mCe&Cu@ICG/RGD的热量差异(图 2H),具体的η值大约为∼55.92 %(图2I)同时,在四次808nm激光开关循环后也监测到出色的光热稳定性(图 2J)。总体而言,所有结果证实了负载ICG的肿瘤响应性程序化介孔Cu&Ce纳米载体可进一步应用于通过PTT-CDT抑制恶性肿瘤。
图3. PTT -CDT体外细胞杀伤及 ICD 指标的表达
如图 3D所示,与其他制剂相比,用 mCu&Ce@ICG/RGD + H2O2+ L处理的 143b 和 b 细胞 介导了最高水平的 CRT,这与细胞内 ROS 扩增结果一致。此外,该组中还显示出 HMGB1 信号减弱,CRT 水平的这种相反趋势进一步证明了我们的纳米平台增强的 ICD 效应(图 3D)。随后,为了进一步说明 ICD 相关蛋白的表达,通过蛋白质印迹分析研究了各种处理后 143b 中的 CRT 和 HMGB1 水平。显然,当用 mCu&Ce@ICG/RGD + H2O2 + L 处理 143b 细胞时,CRT 在细胞膜上显著上调,而 HMGB1 在细胞质中显著下调 (图 3E 、F)。与mCu&Ce@ICG/RGD 组相比,mCu&Ce@ICG/RGD + H2O2+ L中上述表达的蛋白质水平分别大约高出 2 倍和降低 5 倍 (图 3I、J),揭示了该处理强大的 ICD激发能力。最后,分别用CLSM和流式细胞仪获得活死染色图像和细胞凋亡-坏死研究。与细胞内ROS生成和HMGB1的结果类似,143b细胞在mCu&Ce@ICG/RGD + H2O2+ L中经历最有效的细胞死亡 (图 3K -N)。正如预期的那样,当mCu&Ce@ICG/RGD的浓度增加到300µg / mL时,H2O2预孵育加激光照射组中143b细胞的细胞活力仅为纯纳米平台处理组的一半。这种最高的肿瘤细胞杀伤力主要由PTT同时扩增的ROS和ICD介导。
图4. 通过荧光成像、MRI 和光热评估进行体内肿瘤靶向性评估
之后,研究mCu&Ce@ICG/RGD在骨肉瘤荷瘤裸鼠模型中的生物分布和肿瘤富集行为。首先,为了获得准确的肿瘤轮廓辨别,将mCu@ICG/RGD和mCu&Ce@ICG/RGD分别静脉注射到荷瘤小鼠皮下,随后在特定时间拍摄NIR-II荧光生物图像,通过小动物NIR-II荧光成像生物系统监测该纳米平台在体内的肿瘤靶向性和生物分布。显然,在注射mCu&Ce@ICG/RGD后2 h,肿瘤轮廓逐渐清晰,荧光信号(超过1000 nm)最初集中在肿瘤部位,24 h时达最强,肿瘤轮廓与周围外周肌肉组织明显区分开来;随后,它随着时间的推移而缓慢衰减,残留纳米平台保持在48小时(图 4 A)。而mCu@ICG/RGD的荧光信号主要分散在肝脏中,并且在所有时间间隔内都明显高于mCu&Ce@ICG/RGD组。基于在肝脏中的这种高积累,后一组的肿瘤组织几乎无法区分(图 4 A)。同时,收获肿瘤和主要器官进行离体NIR-II荧光生物成像。值得注意的是,即使可以看到上述两组肿瘤中的比较光信号强度,mCu&Ce@ICG/RGD处理的肝脏的强度明显低于mCu@ICG/RGD(图 4 B)。此处,前者相对快速的生物降解行为有利于肝脏清除。因此,肿瘤与周围正常组织的比例通过半定量平均NIR-II信号强度来计算。mCu&Ce@ICG/RGD 在注射后 24 小时的数值比 mCu@ICG/RGD 高 6 倍(图 4D)。此外,本文还通过MRI 验证了Cu 基纳米平台对肿瘤的特异性识别,以临床Gd-DTPA 为对照。根据不同时间间隔的连续 T1WI MRI 生物图像,足底注射 mCu&Ce@ICG/RGD 的淋巴转移性骨肉瘤的 MRI 信号在注射后 24 小时急剧增加至峰值水平,从此时间点开始逐渐衰减至基础强度(图 4C)。然而,由于 Gd-DTPA 的快速排泄,可以在注射后 2 小时发现最高的肿瘤积累。我们的纳米平台在 24 小时的肿瘤与组织比明显高于 Gd-DTPA(图 4E),进一步证明了mCu&Ce@ICG/RGD有效的肿瘤靶向能力,此时最合适进行激光照射进行PTT。最后,研究了皮下骨肉瘤小鼠尾静脉注射PBS、mCu&Ce@ICG和mCu&Ce@ICG/RGD后在体内的光热转换效果。具体而言,纳米制剂处理的肿瘤部位温度急剧变化,升高到峰值(分别为48.9和52.8°C),并且最大光热维持率(图 4F,G)。毫无疑问,这种现象主要归因于RGD修饰的主动靶向能力。对于PBS处理的小鼠,即使经过300秒的照射,温度也仅略有升高(39.8°C)(图 4F,G)。因此,上述体内生物成像结果凸显了多模对比纳米剂在肿瘤诊断方面的潜力和令人满意的肿瘤抑制热疗性能。
图5. 体内 PTT CDT 和 ICD 评估
参考文献
heng, M., Kong, Q., Tian, Q. et al. Osteosarcoma-targeted Cu and Ce based oxide nanoplatform for NIR-II fluorescence/magnetic resonance dual-mode imaging and ros cascade amplification along with immunotherapy. J Nanobiotechnol 22, 151 (2024).
⭐️ ⭐️ ⭐️
NIR-II in vivo imaging system
有不同型号的样机可以测试,
请联系:021-61620699
⭐️ ⭐️ ⭐️
恒光智影
上海恒光智影医疗科技有限公司,被评为“国家高新技术企业”,荣获“科技部重大仪器专项立项项目”,上海市“科技创新行动计划”科学仪器领域立项单位。
恒光智影,致力于为生物医学、临床前和临床应用等相关领域的研究提供先进的、一体化的成像解决方案。
与基于可见光/近红外一区的传统荧光成像技术相比,我们的技术侧重于近红外二区范围并整合CT, X-ray,超声,光声成像技术。
可为肿瘤药理、神经药理、心血管药理、大分子药代动力学等一系列学科的科研人员提供清晰的成像效果,为用户提供前沿的生物医药与科学仪器服务。
上海恒光智影医疗科技有限公司
地址:上海市浦东新区张江高科碧波路456号 B403-3室
网址:www.atmsii.com
邮箱:liupq@atmsii.com
电话:137 6102 1531 (同微信)
更多
纳米探针 | 半导体聚合物纳米诊疗平台利用NIR-II荧光成像指导光热-NO-免疫治疗原位胶质母细胞
厂商
2024.10.23
纳米探针 | 半导体聚合物纳米诊疗平台利用NIR-II荧光成像指导光热-NO-免疫治疗原位胶质母细胞
厂商
2024.10.23
性能优异的NIR-II型试剂通过成像引导光热溶栓治疗
厂商
2024.10.16
性能优异的NIR-II型试剂通过成像引导光热溶栓治疗
厂商
2024.10.16