视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

大连化物所提升B,N@C纳米反应器的电化学氧还原性能

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2023/04/06 20:54:13
导读: 传质在催化过程中至关重要,特别是在涉及气体的电催化反应中。目前,大多数研究致力于提高活性位点的本证活性及数量,但对电催化传质过程的研究还较少。

近日,中科院大连化物所催化基础国家重点实验室微纳米反应器与反应工程学创新特区研究组(05T7组)刘健研究员团队和澳大利亚悉尼科技大学黄振国教授合作,在B,N@C纳米反应器的电化学氧还原研究方面取得新进展,通过平衡传质特性与活性位点暴露情况,有效提升催化剂电催化氧还原性能,为优化催化剂的结构提供了新思路。

传质在催化过程中至关重要,特别是在涉及气体的电催化反应中。目前,大多数研究致力于提高活性位点的本证活性及数量,但对电催化传质过程的研究还较少。由于气/液/固三相界面的复杂性,人们对电催化剂构效关系的理解非常有限,而且也缺乏合适的材料研究平台。

3.jpg

本工作中,合作团队通过主客体化学与限域刻蚀相结合的方法,制备了一系列活性点位相似但孔隙结构不同的催化剂,证明了传质强化的重要性。在氧还原反应测试中,具有丰富微孔、介孔和大孔的B,N@C纳米反应器表现出最高的催化活性。实验结果和有限元计算结果表明,与微孔和大孔结构相比,这种分级三模态多孔结构增强了传质和活性位点的可及性,从而提高了电催化氧还原的活性及反应速率。

刘健团队近年来在MOF衍生微纳米反应器的构筑及可持续催化应用方面进行了深入系统的研究(Angew. Chem. Int. Ed.,2016;Adv. Funct. Mater.,2018;Advanced Science,2019;National Science Review,2020;Nat. Commun.,2020)。

相关工作以“Balancing Mass Transfer and Active Sites to Improve Electrocatalytic Oxygen Reduction by B,N Codoped C Nanoreactors”为题,于近日发表在《纳米通讯》(Nano Letters)上,并选为前封面文章。该工作的第一作者是大连化物所05T7组联合培养博士研究生王雪飞。上述工作得到国家重点研发计划、国家自然科学基金、上海市科委科技基金、澳大利亚研究委员会Future Fellow、中国留学基金等项目的资助。


[来源:中科院大连化物所]

用户头像

作者:情绪波动

总阅读量 69w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~