视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

中美科学家实现“可定制化裁剪”单壁碳纳米管,或催生室温下的超导体,为量子计算机和量子通信带来广阔前景

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2022/09/05 18:05:12
导读: 据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。

在北京化工大学、和美国阿克伦大学读完本硕博之后,林志伟历经三站博士后研究。

除第一站过渡性博士后仍在阿克伦大学,其余两站分别在美国哥伦比亚大学、美国国家标准与技术研究院(NIST,National Institute of Standards and Technology)完成。2022 年 1 月,林志伟回国加入华南理工大学前沿软物质学院担任教授。

▲图 | 林志伟(来源:林志伟)

时隔数月,其担任第一兼通讯作者的论文,发表在 Science 上。研究中,他利用 DNA 首次实现了单壁碳纳米管的可控有序修饰。对于发展超导材料和量子材料,将起到重要的推进作用。

据介绍,超导材料、量子材料等性能独特的变革性材料,被认为具备解决人类当前面临的信息、能源、量子计算等重大问题的可能,甚至有望推动下一次产业革命。

正如美国马里兰大学化学与生物化学系教授 YuHuang Wang教授在同期 Science 评论文章所指出的:美国物理学家威廉·雷透(William A. Little)在 50 年前提出了经典的室温超导材料的分子模型(即 Little 模型)。

然而,经过几十年的努力,人们一直无法在实验上设计出符合 Little 模型的超导分子。而该成果为实现 Little 模型迈出了重要一步,是里程碑式的发现。

量子材料,是指由于其自身电子的量子力学特征,而产生奇异物理特性的材料。在发展变革性的数据存储、数据处理、通讯、以及计算机相关技术上具备巨大潜力,并可能产生惊人的经济效益。

2016 年,美国能源部确立以量子材料为优先发展方向的变革性能源相关技术。由于具有独特性能,单壁碳纳米管可用于构建一维量子材料,但其缺点是量子产率较低。

通过化学修饰,在sp2结构的单壁碳纳米管中引入缺陷构筑量子缺陷,可大大提高量子产率,这让单壁碳纳米管成为很好量子发光材料。可以预见,其将在量子计算机、量子通信等领域拥有广阔的应用前景。

像服装设计师一样,"裁剪"单壁碳纳米管的化学结构

超导材料,是指电阻为零的材料。在传输电流的时候,既不损失能量也不会产生热量。目前的超导材料都需要在很低的温度下(-100℃ 以下)才能产生超导性能。若发展出室温的超导材料,则有望用于制备超快计算机、超小的电子设备、高速磁悬浮列车等。

如前所述,威廉·雷透(William A. Little)曾首次提出室温超导体的分子模型——Little 模型。过去 50 年,学界已开展大量实验,但一直未能设计出其设想的超导分子。

直到 2016 年,科学家提出碳纳米管或有望实现 Little 室温超导材料,但是得对碳纳米管的结构进行精确可控的化学修饰。可以说,这又是一项难于逾越的重大难题。

碳纳米管(Carbon Nanotubes,CNTs),于 1991 年由日本物理学家饭岛澄男(Sumio Iijima)发现。

据维基百科介绍,"碳纳米管是一种管状的碳分子,管上每个碳原子采取 sp2杂化,相互之间以碳-碳 σ 键结合起来,形成由六边形组成的蜂窝状结构,以作为纳米碳管的骨架。"

按照管子的层数不同,碳纳米管可分为单壁碳纳米管(SWCNT,Single-walled carbon nanotubes)和多壁碳纳米管(MWCNTs,Multi-walled carbon nanotubes)。

单壁碳纳米管的结构简单,均匀一致性好,而且缺陷少、 性质稳定,受到的关注更多。鉴于此,自碳纳米管被发现以来,一直是热点研究材料。

▲图 1 | 单壁碳纳米管(来源林志伟)

凭借优异的光学、电学、力学、热学等性能,单壁碳纳米管已被广泛用于电子器件、光学仪器、锂离子电池、航空航天材料、疾病检测等领域。

对单壁碳纳米管进行化学修饰,可以改变它的晶格结构电学性能和光学性能也会随之改变。这一手段对于发展有机超导材料、量子材料等新型材料具有重大意义。

然而,在单壁碳纳米管中,所有碳原子的化学环境均为一致,存在着 sp2 杂化(sp2hybridization),即"一个原子同一电子层内由一个 n s 轨道和两个 n p 轨道发生杂化的过程"。

因此,对单壁碳纳米管实现可控化学修饰,是领域内长期存在的一项重大挑战。针对此,林志伟与 NIST 的 Ming Zheng研究员,借助 DNA 让单壁碳纳米管,得以实现可控的有序修饰(图 2)。

林志伟指出:"精确可控的修饰方法,让科学家有望像服装设计师一样,按自己的想法 ‘可定制化’地设计单壁碳纳米管化学结构,以实现特殊的性能(例如超导性能和量子性能等),进而实现在航空航天、量子计算机、量子通信、新一代生物医疗等领域的前沿应用。"

▲图 2 | 有序可控修饰的单壁碳纳米管(来源:林志伟)

近日,相关论文以《DNA 指导的碳纳米管晶格重构》(DNA-guided lattice remodeling of carbon nanotubes)为题,发表在 Science 上。林志伟兼任第一和通讯作者,Ming Zheng 研究员为共同通讯作者。

(来源:Science)

其中一位审稿人认为,该工作实现了一个宏大目标。此前,很多学者反复尝试却无功而返。因此,此次成果是领域内的重大进展。

另一位审稿人指出,常温超导材料是无数科学家长期追寻的远大目标。该论文提出了有序可控地修饰单壁碳纳米管的方法,为制备常温超导材料提供了一种潜在解决方案。

心情"忐忑"地给美国科学院院士发邮件

据介绍,参与此次合作的 Ming Zheng 团队,长期致力于 DNA-碳纳米管复合材料方面的研究,尤其在 DNA 分离高纯度碳纳米管方面有着深厚积累。

但是对于碳纳米管的化学修饰,团队的经验稍有不足。在加入 NIST 之前,林志伟本人并没有碳纳米管领域的工作经验,但在大分子精确合成、特别是在富勒烯(英文名为 Fullerene,又名C60)的精确修饰上,已经积累多年经验。

C60是一种由 60 个碳原子组成的球型分子,它和碳纳米管同属于碳纳米材料的同素异形体。两者在结构和性能上,有一定的相似性。

当有学科背景互补的人在一起讨论,很容易碰出"火花"。结合 NIST 团队在 DNA-碳纳米管复合材料、以及林志伟 C60 精确合成方面的背景,他们很快在科研想法上达成共识,提出了利用 DNA 来调控碳纳米管化学修饰的思路,并借此解决碳纳米管有序可控修饰的艰巨任务。

接下来便是正式立项和开展实验。确定研究思路之后,如何选择 DNA 的序列、碳纳米管的种类,以及如何发展高效的化学修饰方法,成为新的工作重点。

基于前期积累,该团队选取含有鸟嘌呤碱基(Guanine,G)的 DNA 序列,将其缠绕到多种单手性单壁碳纳米管的表面,通过调控单壁碳纳米管种类、DNA 序列和构象,实现了预先定制的反应位点。

在 525nm 光照下,名为玫瑰红(Rose Bengal)的光敏剂得以激发,借此产生了单线态氧,进而引发鸟嘌呤碱基与单壁碳纳米管发生反应。之后,课题组利用吸收光谱、光致发光光谱、拉曼光谱,对产物结构进行表征(图 3)。

▲图 3 | 单壁碳纳米管与 DNA 的反应示意图和光谱表征(来源:Science)

为了研究反应机理,以及反应之后单壁碳纳米管晶格中的反应位点的空间分布,该团队设计出一系列鸟嘌呤碱基含量相同、鸟嘌呤碱基相对位置不同的 DNA(2G-n)。

结果发现,在拉曼、荧光光谱中与单壁碳纳米管晶格缺陷相关的峰强里,

C3GC7GC3(2G-7)和(8,3)单壁碳纳米管的反应产物出现了极小值。这表明,单壁碳纳米管中形成了有序排列的晶格缺陷,即有序排列的反应位点(图 4)。

▲图 4 | 筛选 DNA 序列并在单壁碳纳米管中构筑有序的反应位点(来源:Science)

紧接着便是寻求合作和交叉验证。虽然通过上述光谱分析,该团队首次证实了有序可控修饰的单壁碳纳米管结构。但是这一结论太过重要,他们反复告诫自己必须非常谨慎对待,在论文发表前务必借助多渠道,对结论进行交叉验证。

因此,课题组怀着"忐忑"的心情给美国科学院院士、弗吉尼亚大学哈里森生物化学和分子遗传学系的爱德华·H·埃格尔曼(Edward H. Egelman)教授写信,以寻求合作。

埃格尔曼教授是冷冻电镜方面(cryo-EM,Cryogenic electron microscopy)的顶尖学者,在利用冷冻电镜解析 DNA-蛋白质等复杂生物分子结构方面有着深入研究。

之所以怀着"忐忑"心情,是因为该团队之前和埃格尔曼教授并未有交集,而且后者的主要研究兴趣在生物学,很少涉及材料科学。那么,对方是否愿意合作?课题组表示比较担心。

不过,令人激动的是埃格尔曼教授表现出极大的兴趣。双方很快就定下合作方式和目标,即利用冷冻电镜进一步验证有序可控的碳纳米管的结构。

有了冷冻电镜的结果之后(图 5),课题组满怀信心地把论文投到 Science,并获得期刊主编和审稿人的高度赞赏。

论文接收后,埃格尔曼教授接受 Science Daily 的采访时表示:"虽然我们经常使用物理学中的工具和技术来研究生物学,但是我们这次的工作表明,生物学中开发的方法实际上也可以用于解决物理学和工程学中的问题。科学研究常常会产生预料之外的结果,这正是科学令人着迷的原因所在。"

▲图 5 | 冷冻电镜重构有序修饰的单壁碳纳米管结构及反应机理示意图(来源:Science)

力争在有机超导和新型量子材料上,实现相关应用

和很多在新冠大流行中完成的科研成果一样,如果没有疫情,论文或将更早面世。

2019 年 9 月,研究正式启动。2020 年 1 月的一天,林志伟正在做实验,被临时要求必须马上离开实验室,整个马里兰州(NIST 所在的州)进入紧急隔离状态。

临走时他和同事聊天,以为最多两个星期。两周很快过去,实验室并未解除隔离。之后进入漫长的等待。1 个月、2 个月、6 个月...... 幸运的是,实验室重新开放后,课题进展得很快。

尽管此次研究诞生了符合 Little 模型的超导分子。但是,其超导方面的性能尚未得到真正的验证。针对这些新型单壁碳纳米管材料的性能表征,并揭示材料结构与性能关系,是该团队的后续重点。

另一方面,他们还计划将含有不同结构和功能的化学官能团,通过有序可有的修饰方法,引入到单壁碳纳米管中,从而设计出结构更精确、性能更多样的单壁碳纳米管,力争在有机超导和新型量子材料上实现相关应用。

目前,林志伟课题组主要围绕高分子、DNA、碳纳米管,致力于新型复合与杂化功能材料的精确设计、精准组装和先进应用等方面的研究。课题组常年招募博士后、博士和硕士研究生。



[来源:DeepTech深科技]

用户头像

作者:管晨光

总阅读量 133w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~