视频号
视频号
抖音号
抖音号
哔哩哔哩号
哔哩哔哩号
app
前沿资讯手机看

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

二维码

我要投稿

投稿请发送邮件至:weidy@instrument.com.cn

邮件标题请备注:投稿

联系电话:010-51654077-8129

需求导向 拓展革新 人机互融——13位专家寄语热分析仪器与技术

分享到微信朋友圈

打开微信,点击底部的“发现”,

使用“扫一扫”即可将网页分享到朋友圈。

分享: 2020/10/16 17:10:24
导读: 仪器信息网组织举办了第六届“热分析与联用技术”网络研讨会;会后,仪器信息网对参会专家进行了采访,各位专家就未来热分析技术发展趋势分别发表了各自的看法。

  为促进国内热分析领域研究人员间的互动交流,仪器信息网组织举办了第六届“热分析与联用技术”网络研讨会,聚集13位热分析领域的知名专家进行了为期1.5天的学术交流。会后,仪器信息网对参会专家进行了采访,各位专家就未来热分析技术发展趋势分别发表了各自的看法。


dc64b974-3f8a-4762-8154-ecf147efea05.jpg

中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师 丁延伟

  丁延伟,博士,中国科学技术大学合肥微尺度物质科学国家研究中心高级工程师。自2002年开始从事热分析与吸附技术的分析测试、实验方法研究等工作,中国化学会化学热力学与热分析专业委员会委员、中国分析测试协会青年学术委员会委员、全国高校分析测试研究会青年部秘书长。曾获中国分析测试协会科学技术奖(CAIA奖)二等奖,主持修订教育行业标准《热分析方法通则》(JY/T 0589.1~4-2019),以主要作者发表SCI论文30余篇,编著《热分析基础》(2020年3月,512千字,中国科学技术大学出版社)、《热分析实验方案设计与曲线解析概论》(2020年8月,387千字,化学工业出版社)。

丁延伟:

概括来说,在热分析仪器方面,未来热分析仪器的发展应在以下几个方面有所突破:

1.提高仪器的准确度、灵敏度以及稳定性。

提高仪器的灵敏度和稳定性是多年来热分析仪器研发人员的一直努力的目标,随着电子技术和自动化技术的发展,这些性能指标还有提升的空间。

2.扩展仪器功能

例如:

(i)在不影响灵敏度的前提下拓宽温度范围;

(ii)可实现超快的加热/降温温度调制、热惯性能的快速等温实验;

(iii)配置自动进样装置来提高仪器的利用率;

(iv)开发适用于仪器的光照装置、温度控制装置、高压实验装置、真空实验装置、电磁物装置等可用于特殊用途的实验附件。

在研发时,应注重加强热分析仪器标准化、全局化、微型化、智能化,实现高新技术的集成,加强仪器网络化和测控软件的研发。

3.加强并推广与其他分析方法的联用

目前热分析仪可以实现与红外光谱、质谱、气相色谱、气相色谱质谱联用仪、拉曼光谱、显微镜、X-射线衍射仪等技术的联用,由于联用时连接部件的不完善以及成本和应用领域等多方面的限制,联用技术自二十进纪五六十年代出现以来,直到近二十年才开始出现速建发展,这类方法,由于功能较常规仪器强大,有着十分远大的发展前景。

4.拓展软件功能

随着计算机的硬件和软件的飞速发展,实验数据的记录和分析显得越来越方便。随着热分析技术在不同领域的应用的不断深入,这些需求对热分年的数据处理的要求是动力学方需求越来越小。

目前的动力学分析虽有商品软件,但由于动力学方法本身的复杂性和快速的发展,一款成型的商品软件很难满足大多数要求,这就要求商品化的动力学软件要能够功能强大并且可以及时反映出动力学最新发展。

5.开发可以满足特殊领域需求的新型热分析仪

为了满足一些特殊的测试需求,近年来新型的热分析仪不断出现,如Mettler Toledo公司推出的一种可以实现每分钟几百万度加热速率的差示扫描量热仪,这些仪器有的已经实现商品化,有的仅限于实验室使用,使用这些新型仪器完成的科研论文在一些学术期刊中经常可以见到。

6.在不影响仪器性能的前提下减小仪器的体积,节约成本、提升产品的竞争力。

7.不断拓宽热分析技术的应用领域

随着科技的进步,人们生活质量的不断提高,热分析仪器的应用范围得到了快速扩展,市场需求呈现出良好态势。随着科学研究的进一步发展,热分析技术有望在这些新的领域中发挥其独特的作用。

我们有充分理由相信,在全球热分析工作者的共同努力下,热分析技术将继续保持现有的高速发展势头,其在各领域中将得到更加广泛和更加深入的应用。

韩婷.jpg

梅特勒-托利多中国区热分析仪器部技术经理 韩婷

  韩婷,梅特勒-托利多中国区热分析仪器部技术经理。华东理工大学材料化学工程博士,研究方向为各类添加剂对多种工程塑料理化性能的影响。从事热分析相关应用近十年,具有丰富的仪器使用和材料热物性分析经验,对于各新兴行业热分析的前沿应用有独到见解。致力于推动和完善特色的联用系统在各行业的解决方案,并取得一定的研究进展。

韩婷:

热分析技术起源于130年前,近60年商业化的热分析仪器问世并高速发展。1977年在国际热分析协会会议上才有了统一定义。现在,计算机技术和智能化数据处理快速发展,热分析测量技术也变得更加准确和便捷。当下,随着人们对物质表征的需求、对机理分析研究的深入,对分析仪器的依赖度和要求也越来越高,热分析仪器逐渐往高精度、高灵敏度、多功能化、小型化的方向发展。在仪器的软件操作性方面,逐渐在向全自动化、智能化和合规化发展。与此同时单一的技术已经不能满足当下的全部需求,发展与完善热分析技术与其他分析测试手段的多种联用技术必是大势所趋。热分析与红外、质谱、气质、湿度、紫外、显微镜等仪器的联用技术均已出现,未来诸如与拉曼、XRD等更多仪器的联用方案也将随着特定测试的需求陆续登场,同时多级联用的方案也会越来越完善,各类表征方式百家争鸣,相得益彰。


夏红德.jpg

中国科学院工程热物理研究所研究员 夏红德

  夏红德,博士,现工作于中国科学院工程热物理研究所,目前主要研究质谱定量解析技术、反应过程机理的分析与研究,重点研究热反应过程控制机理与工艺流程改进。在国际上首次提出了基于质谱工作原理的反应过程定量分析理论——等效特征图谱法(ECSA?),实现了复杂反应过程逸出气体中不同组分质量流量的精准测量,为深度解析基元反应过程及其动力学特性提供了坚实的技术基础。该技术已获得日本、德国、美国等全球领先设备供应商的高度认可,目前获得日本理学公司的支持,研发国际领先的质谱解析方法,与德国耐驰公司建立长期数据分析合作伙伴关系。相关测试分析技术已经广泛成熟的应用于能源、药物、环境、化工、材料、地质、半导体、文物等领域,推动国内诸多领域检测标准的技术创新并促进其在国际上形成技术领先地位。

夏红德:

热分析技术的目标在于发现热反应过程动态规律,而同步热分析技术虽然提供了检测手段,但是该技术仅给出反应过程在某一时刻的两个参数,质量与能量的标量数值信息,从理论上讲仅能分析两个同时发生的过程,但是实际的样品及其反应过程的复杂动态变化的,需要依靠气体组分的产率(非浓度参数)标量信息,才可解析反应过程特征。

为了适应解析复杂反应过程特征的广泛需求,未来热分析技术的发展将侧重以下几点:

1.完善热分析技术背后的基础理论体系。尽管热分析技术发展了几十年,各类操作标准与规范在形式上内容丰富,数据分析以花样翻新的数学手段为主,存在大量默认的逻辑误区及失真假设,失去了真正的物理意义。未来将发展基于热力学规律与质量守恒的科学基础理论体系。

2.联用检测手段应建立反应过程的质量平衡体系。热分析联用技术形式较多,但GC、FTIR、GCMS等从原理上给出的是气相组分浓度,无法建立反应过程质量平衡体系。质谱定量分析应基于科学原理,构建主动面对复杂未知反应过程的同时多组分检测技术,避免传统“黑箱”逻辑与线性假设造成的不良影响,而ECSA®定量分析方法将不仅改变热分析研究体系,还将深入各类反应过程的机理分析。

3. 能量(DSC、DTA)的热力学方程将引入物质变化项。反应过程的发生伴随物质种类变化,未来DSC、DTA分析理论中将考虑物质质量、种类的变化项,理论基础将更符合实际。

4.应用层面将以质量能量耦合分析解析复杂反应过程。对于复杂反应过程将原位检测全组分质量变化,而非浓度、相对转化率等相对参数,结合能量标量信息变化特性,利用质量、能量守恒等解析基元反应,并促进反应动力学的全新认识。


曾洪宇.jpg

法国凯璞科技集团塞塔拉姆仪器技术总监 曾洪宇

  曾洪宇,博士,担任塞塔拉姆技仪器中国区技术和应用中心负责人,毕业于中科院硅酸盐研究所,主攻材料专业,师从施剑林院士。曾博士曾派驻法国里昂塞塔拉姆总部参与热分析和量热仪器的技术研发工作,从事热分析研究工作近15年,是最早一批将塞塔拉姆理论与操作融会贯通的实践者。作为塞塔拉姆中国区最资深的技术专家,曾博士对塞塔拉姆独有的EYRAUD天平和卡尔维三维量热技术具有独到见解。曾博士在热分析及量热方面的建树,已成为塞塔拉姆中国,以及亚太区域技术与应用的中流砥柱。

曾洪宇:

热分析及微量热是普适性的经典分析测试技术,是材料、化学、生物、安全等研究领域的有力工具。但广泛的应用不代表不存在局限性,当前制约热分析及微量热进一步提升应用价值的因素暨热分析及微量热仪器未来的发展方向有如下几点:

1.应用的普适性。首先是对样品的普适性,即通过传感器,样品容器及仪器总体设计优化以适应各类型样品;然后是测试条件的普适性,即在单一主机基础适应各种气氛/真空、温度条件,摆脱束缚;最后是对对“操作者”普适性,即提升人机界面效能,简化操作流程,提升售后支持服务效能,降低对使用者专业技能要求的门槛。

2.功能的拓展性。即走出传统热分析及微量热的思维定式,提升与其他分析测试手段、仪器装置等联用的能力,从而获得更加丰富的原位数据,更加全面解读材料及相关物理化学变化的本质。

3.仪器的智能化。综合以上两点,仪器自动识别样品,自主选择条件,并进行初步数据分析及筛选,最终做到样品放进去-测试报告/文章送出来,实现家用电器级别的使用体验。这不单单是热分析仪器制造商的梦想,也应该是是所有仪器供应商对产品的终极目标。当然达成这一目标的路还很漫长,需要业内外有识之士的共同努力。


徐颖.jpg

苏州大学分析测试中心高级实验师 徐颖

  徐颖,苏州大学分析测试中心,负责热分析仪器。主要从事各种材料的热性能的研究,熟悉高分子、材料、药物、有机、无机等各类样品的热分析表征,论著1本(《热分析实验》,学苑出版社,2011年出版),发表论文20余篇。

徐颖:

1.  仪器结构方面:

操作更方便,如触屏式、远程监控这些新的技术将越来越多得到应用;

配件使用趋向傻瓜式、用户亲和力更好(配件更换简单插拔、组合);

观察更直观,通过光学镜头,数码记录或者石英窗口,直接观察到测试过程中样品外观的变化。 

2.  仪器软件方面:

使用更亲和,新手易操作(如内装推荐对应实验所用常用测试程序,自动校正模式等等)。热分析仪器种类多,均可通过同一软件多窗口控制,分析和测试整合于同一软件。 

3.  数学方法的应用。例如HIGHWAY高分辨技术、TTS(时间温度等效推主曲线)技术均通过数学方法推演得到所期望的测试结果。如高分辨技术是指在常规升温速率下记录数据,然后通过数学方法(峰温/曲线分离和阿伦尼乌斯一级动力学)来模拟不同升温速率的测量结果,尤其适用于重合曲线(热重或热量信号)的分离,利用软件提高了分析的灵敏度和分辨率。TTS在DMA测试中用来推算样品在极端(高或低)频率下的力学性能。峰分离技术将部分重叠的两个峰分别计算峰面积。

 4.  联用技术是指在程序控温和气氛下,对一个试样采用两种或多种热分析技术,大致分同步联用、串接联用和间歇联用。同步联用最常见的是和差热分析法联用,例如热重仪、静态力分析仪、动态力学分析仪在样品附近配备热电偶传感器,从而可以同时获得DSC或DTA信号。此外在各种热分析仪器中我们常常配备光学附件,例如DSC 或流变仪和紫外、红外、热台、拉曼、显微镜、XRD粉末衍射等联用,观察反应或者变形过程的同时,样品特征光谱、外观、特征衍射峰是否发生变化。还有DTA、TMA、DMA和介电传感器DEA联用,以同步获得材料电学特性。另外还有一种湿度控制配件,也属于同步联用,将热分析仪器的测试环境加入湿度元素,来观察不同湿度对所检测物理量的影响。串接联用、间歇联用都属于对逸出气(反应气体产物)的分析鉴定。一般是热分析仪器和红外、质谱或者气相等方法联用。有助于对反应气体产物定性定量,并对反应机理加深理解。 

5.  温度扫描方式的创新,例如调制技术MDSC、MTGA是在传统的线性控温基础上叠加一个正弦振荡,由此可以将可逆、不可逆热效应分离,提高了灵敏度、分辨率。再如快速DSC,每分钟几百万摄氏度的升温速度可以观察到常规测试下无法抓取的热现象。 

6.  微量热仪的发展,样品用量小,可实现无破坏检测,可以多个样品进行平行或者不同条件的测试,主要应用于生化、食品和含能材料的研究。能进行热效应较弱的测试,灵敏度、精度远高于常规DSC,也适用于观察液体、气体参与的反应。


于惠梅.jpg

华东理工大学副研究员 于惠梅

  于惠梅,博士,华东理工大学材料科学与工程学院副研究员,中国化学会热力学和热分析专业委员会委员,上海市科技翻译学会理事;报告人长期从事热分析研究工作,开展了联用技术以及脉冲热分析方法研究,建立了热分析-质谱联用技术中逸出气体的定量新方法,申请实用新型和国家发明专利共7项。2012~2013年赴美Pennsylvania State University,开展了温室气体CO2的捕获和转化利用研究工作。起草制定了多项国家标准方法、行业标准和上海市企业标准,完成了国家自然科学基金、国家科技支撑(攻关)计划课题、中国科学院仪器研制等项目,在国内外核心期刊和会议上发表论文共40余篇。

于惠梅:

热分析技术是在程序温控下,测量物质的物理性质与温度或时间关系的一类技术。它可以用于研究材料的各种转变,例如熔融、相变等过程,是一种十分重要的分析测试方法。随着材料科学的发展,在这些单一热分析的基础上,出现了联用技术。例如热分析跟质谱分析和红外光谱联用,可以实现对逸出气体产物的质荷比和有机物官能团的表征分析,同时热分析还实现了同色谱质谱联用。这些联用技术拓展了热分析的表征范围,成为热分析学科发展的重要方向。除了联用技术,动力学也是热分析学科的研究热点之一。单一热分析和联用技术,以及热分析动力学这三部分,未来将成为研究材料的热分解过程、热动力学、热化学反应机制的重要研究手段,发展前景良好。


刘文广.jpg

珀金埃尔默技术专家 刘文广

  刘文广,珀金埃尔默公司材料表征产品线技术支持,主要负责分子光谱,热分析仪器及联用分析设备的应用支持工作。

刘文广:

EGA联用技术涉及到热分析、光谱学、 色谱学的内容,对检测分析人员的综合素质要求比较高,未来的仪器与软件发展应该会进一步提高仪器操作和数据分析的自动化,完善各模块的谱库等基础资料,减轻操作人员学习上手和日常使用的难度;另外使用GCMS对逸出气体混合组分进行分离与鉴别是非常重要的,但是受限于色谱分离的效率,目前Offline模式的质谱分析要花费很多时间,随着色谱技术的发展,比如珀金埃尔默公司的Fast GC技术,会大幅缩短气相色谱分离分析的时间,显著提高EGA分析的效率。


王晓红.jpg

西安近代化学研究所副研究员 王晓红

  王晓红,女,1976年8月生,中共党员,1999年7月大学毕业入西安近代化学研究所工作至今,副研究员职称。从事含能材料热分析,动力学,构效关系及计量学研究,发表各类科技论文四十余篇,2014年~2015年在加州大学圣克鲁兹分校生物与化学系物理化学专业访学。

王晓红:

1. 多机联用技术会进一步扩展和发展,原来的DSC-TG,发展到DSC-TG-MS, DSC-TG-FTIR, 进一步发展到DSC-TG-MS-FTIR,DSC-TG-GC-MS, DSC-TG-TPR-GC等。以后会有更多的联用仪器加入其中。同时,联用方式也会变得多样化,有串接方式,并行方式,连续和间断方式等。

2. 仪器工作温度范围也会变得更加宽泛,选择余地更大。温度范围不仅有室温到600摄氏度低温段,还有室温到1650摄氏度高温段,-150摄氏度到1650摄氏度范围。

3. 未来的仪器一定需要自动测量技术成熟,减轻人力的压力。仪器自动化进样技术的发展和自动谱图分析技术结合联用新技术将是是未来的发展趋势。

4.数据库的进一步完善和应用必将变得普遍,谱图分析技术会更加快捷便利。


李忠红.jpg

江苏省食品药品监督检验研究院检验技术研究中心副主任 李忠红

  李忠红,博士,江苏省食品药品监督检验研究院检验技术研究中心副主任,主任药师。江苏省分析测试协会热分析专业委员会委员。从事药品检验工作已有30年,一直未脱离实验工作,具有丰富的药品质量控制所用仪器的操作经验。近年来主要致力于药品质量标准提高以及新仪器、新方法在药品质量控制中的应用工作。

李忠红:

热分析技术发展到今天,已经有了很长足的进步。从网上可以看到国内各大分析测试平台以及各大高校的热分析仪器有很多种,例如闪速差示扫描量热仪(Flash DSC)、超高温同步热分析仪(带自动进样器)、热膨胀仪、热流法导热系数测量仪、激光闪射法导热系数测量仪、闪射法导热仪、动态热机械分析仪、反应量热仪、绝热加速量热仪等,以及热分析法与其他各种仪器的联用仪,例如热重分析与质谱联用(TG-MS)、热重分析与气相色谱联用(TG-GC)、热重分析与气相色谱-质谱联用(TG-GC-MS)、热重分析与红外光谱联用(TG-IR),等等。另外,一些原位X-射线衍射仪也有温度控制装置,可以被认为是热分析联用技术的一种。

上面这些仪器,可以说完全能够满足新药研究的需求。当然,如果从药品质量控制的角度来看,热分析仪要成为药物分析实验室日常用的仪器,我个人认为还需要向小型化发展。虽然从广义来说,实验室常用的熔点仪和现在一些企业用作中间体水分控制的快速水分测定仪(水分天平)也属于热分析仪器,但是我们作药物研究的人提及的热分析仪,主要还是指的热重分析仪、差热分析仪与差示扫描量热仪。热分析仪在药物研发过程中的应用还是不少的,在药品质量标准中被使用的也越来越多,目前来说,在我们药品检验工作中采用热分析法对药物进行质量控制的应用主要有:原料药熔点的测定(DSC仪)、化学对照品的纯度测定(DSC仪)、药物水分的测定(TG仪)等,然而具体应用的品种与项目还未被《中国药典》所收录。所以,一个分析方法要被国家药品标准——《中国药典》广泛采用的话,需要仪器的普及,要将热分析仪从大型仪器的角色转化为小型仪器的形象,这样才能被药企普遍接纳,大量采购。从另一方面来说,仪器的普及也可以促进药品质量控制水平的提升,促进国家药品标准的提升。

还有,我一直想了解一点,在热分析领域国产仪器是否能达到与进口仪器同等的精度,是否可以在检测领域占领一定份额的中低端市场。实验室的能力验证是仪器比对的一种形式,很期待在药品检验这个领域也有热分析相关的能力验证,这样可以给国产仪器一个展示性能的机会。

总结一下,我认为未来热分析技术的发展应该有两个方向:一是研究型,继续发展各种联用技术,尤其是原位联用技术,争取在更少的实验步骤中得到更多的信息;二是实用型,向仪器小型化、普及化方向发展。


李琴梅.jpg

北京市理化分析测试中心副研究员 李琴梅

  李琴梅,北京市理化分析测试中心,博士,副研究员,2013年博士毕业于中国科学院化学研究所高分子化学与物理专业。主要从事新材料制备与性能研究以及测试方法开发等研究工作,包括生物医用材料的制备及其应用研究、高分子材料以及复合材料检测方法研究等。主持参与国家重点研发计划1项,国家自然基金4项,省市级科研项目及财政专项13项,横向课题近30项。科研成果发表学术论文32篇,其中SCI收录8篇。

李琴梅:

经过多年发展,热分析仪器在微型化、自动化、灵敏度方面得到了很大提高。近年来,随着计算机技术和智能化数据处理技术的快速发展,热分析仪器通过结合先进技术实现了快速、准确、便捷地测量,热分析技术的应用领域也更加广泛。

随着热分析仪从单一功能、低精度、使用温度低逐渐发展到联用技术、高精度、高灵敏、使用温度达2800℃,热分析仪器的功能越来越强大。与此同时,科学技术的进步与应用领域的发展对热分析技术也提出了更高的要求。为了得到准确的分析结果,揭示热过程的本质,单靠一种或两种热分析技术已不能满足技术需求。热分析联用技术可以同时采用多种热分析技术或热分析与其它分析技术联用,测量物质物理和化学性质随温度变化的关系,能得到更为丰富的信息。作为现代高新技术的集成,联用技术的发展势在必行。


曾智强.jpg

德国耐驰仪器制造有限公司市场与应用总监 曾智强

  曾智强,博士毕业于清华大学材料科学与工程学院,获博士学位。此后赴新加坡南洋理工大学、英国 Surry 大学任研究员,从事陶瓷基复合薄膜方向的研发与应用研究,发表有二十多篇论文并获得3项发明专利。2003年曾智强博士加入德国耐驰,担任市场与应用总监,致力于拓展德国耐驰热分析、热物性测量系统的应用。



曾智强:

热分析是一种宏观的材料分析方法:通过施加“热扰动”,观测材料的“宏观”物化性能,从而分析材料的成分/结构变化或者反应。传统意义上的热分析往往用来发现变化,然后一般需要通过其它手段才能对变化本身进行研究。例如,DSC能够观测到相变反应并且测量到相变温度,但需要结合XRD等方法才能确认从某A物相转变到某B物相。个人浅见,热分析技术发展目标无外乎使得热分析方法在材料研究工作中更深入、更有效、更简便。

在硬件方面,热分析技术的一个重要发展方向应该是“耦合”。也就是说将更多的方法结合在一起,同步测量,同时从多个角度观测同一个样品,将得到更综合的信息,对材料的研究将更加透彻。同步热分析(TG-DSC)、逸出气分析(TG-FTIR\MS\GCMS)就是耦合,由此得到的数据,无论是丰富程度还是深入程度,远优于单独的热分析数据。我期待将来会出现更丰富、更“奇葩”的耦合技术,例如将热、声、光、电技术的充分结合…… 必将打破传统热分析的壁垒,让热分析为更多人服务。

在软件方面,发展的方向应该是如何更直接地解读热分析谱图,并将热分析图谱更直接地应用于实践。目前市场上已经出现了适用于热分析谱图的检索软件,这可以说是迈出了里程碑的一步。但是路还很长,因为热分析图谱有其特殊性,而且非常容易受到测量条件的影响,所以提高识别可靠性、普适性是不小的挑战。另外,尤其对于企业用户,如何通过适当的算法,把热分析谱图直接转化为工艺相关的数据,例如某成分的含量、用于QC的某个参数等等,这也是很有潜力以及挑战性的课题。


李照磊.jpg

江苏科技大学高分子材料系副系主任 李照磊

  李照磊,1984年1月生,理学博士,副教授。中国化学会会员,江苏省热分析专业委员会委员。2012年8月至2016年6月,南京大学化学化工学院攻读博士学位,导师为胡文兵教授。目前担任江苏科技大学高分子材料系副系主任,入选镇江市第二批“金山青年创新英才”。主要从事生物可降解高分子材料凝聚态结构转变的热分析研究。主持国家自然科学青年基金项目、江苏省高校自然科学基金面上项目,以及多项校企合作横向课题项目。在ACS Macro Letters、Electrochimica Acta、Journal of Polymer Science, Part B: Polymer Physics、Polymer、Thermochimica Acta、Polymer Testing、Polymer International、Journal of Thermal Analysis and Calorimetry等刊物上发表学术论文30余篇,获授权专利10项。

李照磊:

差式扫描量热技术是高分子物理尤其是高分子结晶学相关问题研究的重要实验手段。随着高分子结晶研究的进一步深入,差示扫描量热仪的扫描速率正面临越来越高的要求。首先,高分子熔体以不够快的冷却速率降温时,人们很难实现对高分子在较低温度区域成核行为的研究; 其次,常规仪器所能提供的降温速率很难模拟高分子材料在诸如注射、吹拉膜和纺丝等实际加工过程中的结晶行为;第三,半结晶高分子折叠链片晶处于亚稳状态,常规升温扫描过程中将不可避免地伴随高分子片晶由亚稳态向更稳定状态的转变,从而使研究人员难以获得最原始高分子样品的相关信息。经过近三十年的发展,超高速扫描量热技术逐渐成熟,并发展出了商业化的产品,已经能够很好地解决前述高分子结晶研究中面临的诸多问题。同时,超高速扫描量热技术不仅使得对一些非常重要但是热信号较为微弱的物理化学行为的研究变得可能,其微量样品的特点也使其在纳米材料领域具备了突出应用潜能。作为热分析技术发展的重要分支,高速扫描量热技术的发展与应用值得领域内研究人员重点关注。

苍飞飞.jpg

国家轮胎质量监督检验中心副总工程师 苍飞飞

  苍飞飞,副总工程师、技术负责人、高级工程师。目前就职于北京橡院橡胶轮胎检测技术服务有限公司(国家轮胎质量监督检验中心)、北京橡胶工业研究设计院有限公司。

  北京橡胶工业研究设计院试验检测中心从事橡胶检测工作20年,主持或参加纵向及横向项目30余项;完成学术论文30余篇,其中参加中国化工科学研究院第一届科技论坛论文“轮胎中各部位多环芳烃含量检测方法的研究”获得鼓励奖;参加国家制修订工作11项,其中“橡胶制品化学分析方法研究与制定”作为主要起草人获得中国石油和化学工业联合会科学进步二等奖;参加国际标准修订比对工作3项;“自主研发改造仪器项目”获得中国化工集团,中国化工“五小”活动获得二等奖;发明专利2项;实用新型专利3项。

苍飞飞:

热分析技术与橡胶行业性能测试息息相关,目前橡胶行业包括6个子行业:轮胎、橡胶板/橡胶管/橡胶带、橡胶零件、再生橡胶、日常及医用橡胶制品以及其他橡胶制品制造。热分析技术在橡胶行业中应该广泛,如热重、差热、动态粘弹谱等等,让我们从数据上了解不同配方、不同橡胶性能的差异,但热分析技术还需要根据橡胶的特点,设计不同的模具及参数,让配方工程师更全面、更深入的了解橡胶的特性。联用技术也是热分析发展的一个方向,单纯的热分析只能从单一(如:数值变化)角度了解橡胶样品的变化,没有直观的表征变化的化合物类别或种类,联用技术让我们的想象有了理论依据,通过合理的利用联用技术,可以使微量的样品带给我们巨大的资料,让我们从中解读更多的信息。希望热分析技术能够有更多的联用技术诞生,为测试工程师提供更多的帮助。


  综合以上观点,需求导向、拓展革新、人机结合是未来热分析仪器与技术的重要发展趋势,希望在热分析领域的工作者的共同努力下,能够更快地涌现满足日益增长的研究需求的新型热分析仪器与技术。


[来源:仪器信息网] 未经授权不得转载

用户头像

作者:管晨光

总阅读量 135w+ 查看ta的文章

网友评论  0
为您推荐 精选资讯 最新资讯 新闻专题 更多推荐

版权与免责声明:

① 凡本网注明"来源:仪器信息网"的所有作品,版权均属于仪器信息网,未经本网授权不得转载、摘编或利用其它方式使用。已获本网授权的作品,应在授权范围内使用,并注明"来源:仪器信息网"。违者本网将追究相关法律责任。

② 本网凡注明"来源:xxx(非本网)"的作品,均转载自其它媒体,转载目的在于传递更多信息,并不代表本网赞同其观点和对其真实性负责,且不承担此类作品侵权行为的直接责任及连带责任。如其他媒体、网站或个人从本网下载使用,必须保留本网注明的"稿件来源",并自负版权等法律责任。

③ 如涉及作品内容、版权等问题,请在作品发表之日起两周内与本网联系,否则视为默认仪器信息网有权转载。

使用积分打赏TA的文章

到积分加油站,赚取更多积分

谢谢您的赞赏,您的鼓励是我前进的动力~

打赏失败了~

评论成功+4积分

评论成功,积分获取达到限制

收藏成功
取消收藏成功
点赞成功
取消点赞成功

投票成功~

投票失败了~