您好,欢迎访问仪器信息网
注册
光焱科技股份有限公司

关注

已关注

金牌2年 金牌

已认证

粉丝量 0

400-860-5168转6033

仪器信息网认证电话,请放心拨打

当前位置: 光焱科技 > 解决方案 > 中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

2024/09/04 16:42

阅读:2

分享:
应用领域:
能源/新能源
发布时间:
2024/09/04
检测样品:
太阳能
检测项目:
光电效应​
浏览次数:
2
下载次数:
参考标准:
IEC60904-9​

方案摘要:

如何在不牺牲半透明特性的前提下,提高太阳能电池的效率和稳定性,一直是一项重要的挑战。传统的解决方案主要集中在通过添加功能性障碍层来改善钙钛矿晶界的稳定性,但这往往不足以解决所有问题。因此,探索新的策略来提升半透明太阳能电池的性能,推动钙钛矿光伏技术在降低建筑能耗方面的应用至关重要。 中国科学院宋延林研究员和郑州大学马俊杰教授、张懿强教授团队在Advanced Energy Materials(26th Aug. 2024_ DOI: 10.1002/aenm.202402595)期刊发表了一种通过应变工程稳定双面半透明钙钛矿太阳能电池(ST-PSCs)相位均匀性的方法。该方法利用压缩应变重建钙钛矿晶体结构,消除相分离并抑制光诱导的离子迁移,同时采用透明的光捕获结构提高光捕获效率。结果表明,双面ST-PSCs实现了13.97%的等效效率和41.58%的平均可见光透过率,光利用效率高达5.8%。该研究为开发高性能半透明钙钛矿太阳能电池提供了新的策略。

产品配置单:

分析仪器

光焱科技AAA级SS-X太阳光模拟器

型号: SS-X

产地: 上海

品牌: 光焱科技

面议

参考报价

联系电话

方案详情:

前言

如何在不牺牲半透明特性的前提下,提高太阳能电池的效率和稳定性,一直是一项重要的挑战。传统的解决方案主要集中在通过添加功能性障碍层来改善钙钛矿晶界的稳定性,但这往往不足以解决所有问题。因此,探索新的策略来提升半透明太阳能电池的性能,推动钙钛矿光伏技术在降低建筑能耗方面的应用至关重要。

中国科学院宋延林研究员和郑州大学马俊杰教授、张懿强教授团队在Advanced Energy Materials26th Aug. 2024_ DOI: 10.1002/aenm.202402595)期刊发表了一种通过应变工程稳定双面半透明钙钛矿太阳能电池(ST-PSCs)相位均匀性的方法。该方法利用压缩应变重建钙钛矿晶体结构,消除相分离并抑制光诱导的离子迁移,同时采用透明的光捕获结构提高光捕获效率。结果表明,双面ST-PSCs实现了13.97%的等效效率和41.58%的平均可见光透过率,光利用效率高达5.8%。该研究为开发高性能半透明钙钛矿太阳能电池提供了新的策略。

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq



导读目录

1.       前言

2.       研究目的

3.       研究方法

4.       器件与表征

5.       结论


研究目的

  1. 通过应变工程改善双面半透明钙钛矿太阳能电池(ST-PSCs)的相位均匀性,以提高其结构稳定性和光电性能。

  2. 开发一种新型的ST-PSCs,具有双面光捕获配置,能够从设备的两侧利用光线,从而提高光利用效率(LUE)。

  3. 利用在位重构策略(ISR)和酸阴离子主导的剂来引发压缩应变,从而强化钙钛矿晶格,抑制离子迁移,并改善相位稳定性。

  4. 通过实验验证和理论计算,揭示压缩应变在抑制相分离和提高光稳定性方面的作用机制。

  5. 实现高性能的ST-PSCs,具有优异的等效效率(neg)、平均可见光透射率(AVT)和LUE,以满足建筑物整合光伏(BIPV)和其他应用的需求。

  6. 研究未封装设备的长期运行稳定性,并展示其在持续光照条件下的性能保持能力。

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq


研究方法

重构策略(In Situ Reconstruction, ISR)是通过在钙钛矿薄膜表面锚定酸阴离子主导的剂来应用于双面半透明钙钛矿太阳能电池(ST-PSCs)的。这些酸阴离子主导的剂(如NO3^-, PO4^3-, CO3^2-)与钙钛矿框架之间的结合力产生了压缩应变,这对维持结构的刚性以抵抗光照刺激至关重要。


中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq


压缩应变通过硅酸盐的立体阻碍效应,导致局部晶格排列得更紧密,从而增加了离子迁移的能量障碍。这种方法不仅促进了薄膜的均匀性,还通过在位重构策略,利用酸阴离子主导的剂来改善相位稳定性,并抑制了光诱导的离子迁移。此外,研究还设计了一种新的ST-PSCs,具有双面光捕获配置,以提高功率生成。这种创新设计实现了高光利用效率(LUE)、等效效率(neg)和平均可见光透射率(AVT)。


器件与表征

1.       材料表征:使用光谱仪进行傅里叶变换红外光谱(FTIR)分析,使用X射线光电子能谱仪进行X射线光电子能谱(XPS)分析,使用扫描电子显微镜进行表面形态和能量色散X射线光谱(EDS)分析,以及使用紫外-可见-近红外分光亮度计进行紫外-可见-近红外吸收光谱分析。

2.       电性能测量:AM 1.5G, 1 sun模拟的照射条件下,使用EnlitechSS-X180R系统测量双面半透明钙钛矿太阳能电池(ST-PSCs)的电流密度-电压(J-V)特性。

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

S18:(a)雙面半透明鈣鈦礦太陽能電池(ST-PSCs)的設備結構;(b)經過微結構(MSs)處理和未經處理的設備的電流密度-電壓(J-V)特性曲線。

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

5d:展示了雙面光捕獲半透明鈣鈦礦太陽能電池(ST-PSCs)的J-V曲線,這些曲線是在玻璃基板和透明電極下的入射光條件下測量的。


中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq


EnlitechSS-X180R系统在测量双面半透明钙钛矿太阳能电池的J-V特性时,具体优势包括:

l  精确的太阳光模拟SS-X180R系统能够提供AM 1.5G, 1 sun的模拟太阳光照,即100 mW/cm2的照度,这是国际标准的测试条件,用于评估太阳能电池的性能。

l  双面测量能力:该系统适合测量双面半透明太阳能电池,能够分别测量前侧和后侧的J-V特性。

l  高灵敏度:系统设计用于捕捉电池在不同光照条件下的精细电性能变化,提供高精度的测量结果。

l  用户友好的操作界面:配有直观的软件界面,使得测量过程简单易行,并且能够快速分析和呈现数据。

l  全面的数据分析:除了基本的J-V曲线外,该系统还可测量Voc, Isc, FF, Imax, Vmax, Pmax, η, Rs, Rsh参数,帮助研究人员进一步理解太阳能电池的性能。

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

Enlitech太阳光模拟器SS-X实际装机示意图

3.       X射线衍射分析:使用多功能X射线衍射仪进行X射线衍射(XRD)分析,使用Cu Kα辐射(λ=1.54184 Å)。

4.       晶体结构分析:使用分光计进行掠入射广角X射线衍射(GIWAXS)分析,以及使用X射线衍射仪进行掠入射X射线衍射(GIXRD)分析,以测量表面晶格应力。

5.       空间电荷限制电流(SCLC)测量:用于研究电荷载流子迁移率和陷阱密度,并使用公式计算缺陷密度。

6.       光利用效率(LUE)评估:作为评估ST-PSCs性能的综合指标,结合了PCE(光电转换效率)和AVT(平均可见光透过率)。


结论

为了稳定双面半透明钙钛矿太阳能电池(ST-PSCs)的相位均匀性,研究团队提出了一种通过原位晶格重构初始化压缩应力的方法。使用酸阴离子主导的剂来锚定和重构钙钛矿晶格,从而形成了具有方向性的晶体结构和均匀分布的载流子空间分布。这种方法增强了结构抵抗光照刺激的刚性,抑制了离子迁移,并提高了相位稳定性。

此外,研究团队开发了一种用于ST-PSCs的双面光捕获配置,显着提高了光利用效率(LUE)。该配置实现了5.8%LUE13.97%的等效效率(neg)和41.58%的平均可见光透过率(AVT),在透明度和效率之间取得了良好的平衡,使其在实际应用中具有潜力。

研究发现,化学基团与溴离子和碘离子之间的结合能对产生压缩应变至关重要,其中CO薄膜表现出比NOPO薄膜更高的结合能。这种局部应变有助于通过锚定阳离子将不稳定的溴离子和碘离子固定在原地。

此外,未封装的器件在经过该方法处理后表现出优异的稳定性,在最大功率点(MPP)条件下连续光照500小时后仍保留了90.16%的初始效率,这表明通过应变补偿来减轻相位分离是可行的。


中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq

中科院宋延林团队:双面ST-PSCs相位均匀性达到了13.97%ηeq



文献参考自Advanced Energy Materials 26th Aug. 2024_ DOI: 10.1002/aenm.202402595

本文章为Enlitech光焱科技改写 用于科研学术分享 如有任何侵权  请来信告知


下载本篇解决方案:

资料文件名:
资料大小
下载
SS-X.pdf
767KB
相关方案

陷阱掺杂技术-有机半导体短波红外探测新方向

短波红外光(SWIR)光电探测器应用广泛,但有机半导体光电探测器(OPDs)的性能受限于陷阱态。AM.斯旺西大学Ardalan Armin团队在Advanced Materials发表的研究提出了一种名为“陷阱掺杂"的新技术,通过在有机半导体中引入少量客体分子,增强SWIR光响应,显着提升了OPDs的性能。实验结果表明,该技术可使器件在SWIR和可见光波段的比探测率(D)分别达到约10⁸ Jones和10¹² Jones,线性动态范围(LDR)分别超过110 dB和220 dB,展现了其在高性能宽带光电探测领域的巨大潜力。

能源/新能源

2024/09/02

港城市大Alex Jen示范让叠层电池寿命超过1千小时

随着能源需求的增长和对可再生能源的关注,太阳能电池技术的发展成为了研究的重点。传统的单结太阳能电池受制于肖克利-奎瑟极限,为了突破这一限制,香港城市大学Alex Jen团队研究人员开始探索叠层太阳能电池(TSC)的设计,将两个或多个具有不同带隙的亚细胞堆栈在一起,以捕获更广泛的光谱范围,从而提高整体的转换效率。 在众多的TSC设计中,钙钛矿/有机叠层太阳能电池(P/O TSC)由于其高效率和潜在的低成本,受到了广泛的关注。这些器件结合了无机钙钛矿材料的高吸收系数和有机材料的可调带隙,使得P/O TSCs能够在有限的空间内捕获更多的太阳光,从而提高功率转换效率(PCE)。 然而,钙钛矿/有机叠层太阳能电池P/O TSCs面临的主要挑战之一是长期稳定性,尤其是在实际运行条件下。光诱导的溴化物分离和热应力是导致这些器件性能衰退的主要原因。为了改善这一问题,本研究开发了两种多功能添加剂,基于9,10-蒽醌-2-磺酸(AQS),以调节全无机钙钛矿的结晶过程,并通过氧化还原穿梭效应抑制溴化物分离,从而提高相位稳定性。这些添加剂还能与具有特定功能基团和偶极矩的有机阳离子结合,有效降低缺陷密度并调整界面能阶排列。 本研究由香港城市大学Alex Jen团队发表于Angewandte Chemie International Edition 八月号 (DIO: 10.1002/anie.202412515),其研究目的是通过这些多功能添加剂的应用,实现高效率、高稳定性的倒置无机钙钛矿/有机叠层太阳能电池,以推动该技术向实际应用迈进。研究结果表明,使用这些添加剂的单结无机钙钛矿太阳能电池达到了18.59%的高PCE,开路电压接近1.3 V,并且由此制成的叠层太阳能电池在连续运作下展现了超过1000小时的T90寿命,显示了这些添加剂在提高器件稳定性和效率方面的潜力。

能源/新能源

2024/08/30

SWIR OPDs研究:新型非富勒烯受体Y-QC4F设计合成

在光电科技的世界中,有机光电探测器(OPDs)一直在挑战短波长红外(SWIR)范畴的极限。与目前市场主导的钼镓砷(InGaAs)无机光电探测器相比,OPDs在SWIR光谱的表现依然有所欠缺,这主要归因于缺乏能有效响应超过1.3微米波长的有机半导体材料。然而,传统的有机半导体在面对能隙定律的限制时,往往受限于非辐射跃迁的影响,导致其外部量子效率(EQE)无法达到理想值。 针对这一挑战,华南理工大学黄飞老师团队于 Advanced Materials八月号(DIO:10.1002/adma.20240695)发表了开发新型的非富勒烯受体(NFA)Y-QC4F的研究,成功突破了传统有机半导体的限制。研究团队通过引入二氟取代喹诺基末端基团(QC-2F),使Y-QC4F的带隙达到了极低的0.83电子伏特。这一微小的结构调整显着增强了分子间的堆积顺序和密度,使Y-QC4F薄膜的吸收光谱起始波长达到1.5微米,同时有效抑制了非辐射复合现象。

能源/新能源

2024/08/28

中科院士李永舫有机光伏巨分子受体(GMAs)与小分子受体结构

有机太阳能电池(OSCs)因其在柔性和可穿戴光伏设备制造中的低成本溶液加工方法而备受关注。特别是全聚合物太阳能电池(all-PSCs),由于其良好的柔性和形态稳定性,在柔性设备领域显示出巨大潜力。然而,早期用于all-PSCs的聚合物受体在近红外区域的吸收能力较弱,且分子堆积不理想,限制了其进一步发展。为了克服这些挑战,提高功率转换效率(PCE),研究人员提出了聚合小分子受体(PSMA)的概念,利用窄带隙小分子受体(SMAs)作为关键构建模块。PSMAs不仅具有低带隙和强吸收的优点,还具有适合的分子堆积和较小的激子结合能,这些特性促使all-PSCs的PCE超过了17%。尽管PSMAs在all-PSCs的发展中取得了显着成就,但其光伏性能受批次变化的影响较大。为了解决这一问题,并实现更低的扩散特性,需要开发具有精确定义结构和接近聚合物分子量的新材料。 在这样的背景下,中科院院士李永舫团队设计了一系列巨大分子受体(GMAs),包括DY、TY和QY,它们分别具有两个、三个和四个小分子受体亚基。这些GMAs通过逐步合成方法制备,并用于系统地研究亚基数量对受体结构和性能的影响。基于这些受体的器件中,TY基膜显示出适当的给体/受体相分离,更高的电荷转移态产率和更长的电荷转移态寿命。结合最高的电子迁移率、更高效的激子解离和更低的电荷载流子复合特性,基于TY的器件实现了16.32%的最高PCE。发表于Nature Communications的结果不仅表明GMAs中的亚基数量对其光伏性能有显着影响,而且还证明了通过GMAs的结构多样化,可以深入理解从SMAs到PSMAs的性能差异,这对于推动高效率和稳定的有机太阳能电池应用至关重要。

能源/新能源

2024/08/26

推荐产品
供应产品

光焱科技股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位

仪器信息网APP

展位手机站