您好,欢迎访问仪器信息网
注册
北京博普特科技有限公司

关注

已关注

金牌5年 金牌

已认证

粉丝量 0

400-860-5168转4713

仪器信息网认证电话,请放心拨打

当前位置: 博普特 > 公司动态
公司动态

WIWAM高通量植物表型成像分析平台-拟南芥研究

不同的细胞策略决定了10种拟南芥天然种质对轻度干旱的敏感性拟南芥种质的全球分布施加了不同类型的进化压力,这有助于这些种质对环境胁迫的各种反应。干旱胁迫反应已经得到很好的研究,特别是在哥伦比亚的一种常见拟南芥种质。然而,对干旱胁迫的反应是复杂的,我们对这些反应中哪些有助于植物对轻度干旱的耐受性的理解是非常有限。本文研究了自然种质在早期叶片发育过程中在生理和分子水平上对轻度干旱的反应机制。记录了自然种质之间轻度耐旱性的差异,并使用干旱敏感种质ICE163和耐旱种质Yeg-1的转录组测序来深入了解这种耐受性的潜在机制。这表明ICE163优先诱导茉莉酸和花青素相关途径,这有利于生物胁迫防御,而Yeg-1更明显地激活脱落酸信号,即经典的非生物胁迫反应。还研究了相关的生理特征,包括脯氨酸、花青素和ROS的含量、气孔关闭和细胞叶参数,并将其与转录反应相关联。结论是这些过程中的大多数构成了一般干旱响应机制,在耐旱和敏感的种质中受到类似的调控。然而,在轻度干旱下关闭气孔和维持细胞扩张的能力似乎是在轻度干旱下促进叶片更好生长的主要因素。图1.不同拟南芥种质在轻度干旱下表现出不同的叶片生长减少为了探索拟南芥的遗传多样性如何影响对轻度干旱胁迫的反应,我们在自动称重、成像和浇水机(WIWAM)上筛选了来自不同来源的15份自然材料(图1A)。当第三片真叶(L3)开始出现时,在层积(DAS)后6天开始对一半植株进行轻度干旱(MD)处理。另一半的植物保持在充分浇水(WW)的条件下作为对照。在22 DAS收获植株,并测量成熟L3的面积。在WW条件下,各材料的平均叶面积(LA)已经有所不同(图1),但除EY15-2外,所有材料在MD条件下的LA相对显著减少(图1B)。值得注意的是,LA的减少程度因加入量的不同而有很大差异,从14%到61%不等(图1B,补充表S2)。在WW条件下,对MD的敏感性并不取决于叶片的大小,因为WW条件下的LA与MD的相对减少之间没有相关性。我们鉴定了干旱敏感材料,如Oy-0、Ler-0、ICE97和ICE163,以及更具耐旱性的材料,包括C24、Yeg-1、An-1、Sha和EY15-2。图2.轻度干旱胁迫下脯氨酸、花青素和活性氧的积累通过在WW和MD条件下进行3,3-二氨基联苯胺(DAB) 染色来检查H2O2的丰度。除了EY15-2和ICE163(图2A),在MD下的大多数种质的子叶中,H2O2水平(可视化为深棕色沉淀物)增加。然而没有观察到耐受和敏感种质之间一致的显著差异。为了保持 ROS 的稳态,植物进化出复杂的酶促和非酶促抗氧化系统,已知脯氨酸积累在非生物胁迫中发挥积极作用。除了脯氨酸外,在本文的GO分析中,花青素相关基因的比例过高。因为脯氨酸和花青素都能够清除ROS,我们在保水后五天测量了它们在幼苗中的丰度。除了Sha外,大多数种质在MD处理后积累的脯氨酸水平相似(图2B)。另一方面,花青素测量显示,积累较少H2O2的生态型,ICE163和EY15-2,在MD期间花青素含量显着增加(图2C)。这些结果表明,在我们的MD条件下,花青素可有效抵消ROS,而脯氨酸在敏感和耐受性种质中充当一般干旱响应因子。在保水后五天测量了干旱对耐受性和敏感种质气孔关闭的影响。在WW条件下,Oy-0和ICE163(干旱敏感种质)已经显示出比ICE97和三个耐受种质更高的开放气孔比率(图3,A和B)。在MD下,所有种质的气孔开放显着减少(图3,A和B),但我们发现耐受性种质的开放气孔少于敏感种质(图3B)。在MD条件下,具有较低气孔密度(SD,每平方毫米气孔数)的植物表现出较低的蒸腾作用和较高的水分利用效率。因此,在22DAS时分析了所有敏感和耐受种质的SD。值得注意的是,敏感种质ICE163和ICE97在MD处理期间显示出SD显着增加(图3D),而在耐受种质中SD未改变。并计算了22 DAS时的气孔指数(SI,每表皮细胞总数的气孔数)。在所有种质中,Sha在WW和MD条件下的SI最高(分别为32%和29%),而Oy-0的SI最低(分别为23%和22%)(图 3C)。然而,我们在所有六个种质中都没有观察到MD处理对SI的任何显着影响(图3C),这表明气孔的发育在干旱期间没有改变。图3.轻度干旱处理后的气孔开度、指数和密度本文发现大多数种质在干旱期间平均路面细胞数量显着减少,除了EY15-2(图4A),其中L3的最终区域不受干旱的显着影响(图1B)。在所有生态型中,细胞数量减少到相似的程度(图4A)。另一方面,敏感种质中的MD处理显着减少了平均路面细胞面积,而在耐受种质中没有观察到减少(图 4B)。更具体地说,敏感种质在MD处理期间显示出较小细胞比例增加或大路面细胞比例降低,但在耐受种质中未观察到显着差异(图4C)。这些数据表明,细胞扩增的减少是这些生态型中对MD的耐受性和敏感性之间的主要区别因素。图4.轻度干旱对敏感和耐受种质的路面细胞数量和面积的影响不同

应用实例

2021.12.14

WIWAM高通量植物表型成像分析平台-轻度干旱条件下生长反应研究

叶片生长对轻度干旱的反应:拟南芥的自然变异揭示了性状结构水分供应减少会对植物生长和作物产量产生负面影响。然而,对于在非致死性干旱条件下如何调节生长缺乏明确的理解。基因组学、表型组学和转录组学的最新进展允许深入分析自然变异。在这项研究中,我们在世界范围内收集的拟南芥材料中对轻度干旱的叶片生长反应进行了详细筛选。通过对不同的叶片生长表型进行全基因组关联作图和对发育中的幼叶转录组进行表征,研究了轻度干旱条件下生长反应的遗传结构。虽然没有发现与轻度干旱中的生长相关的主要效应位点,但转录组分析进一步深入了解了特定组织中对轻度干旱的转录反应的自然变异。共表达分析表明,在不同的遗传背景下,存在共同变化的基因簇,其中包括在渗透胁迫的生长反应中具有重要调节功能的基因簇。研究发现,基于283个基因的表达谱,可以高精度地推断出不同材料叶片中轻度干旱胁迫反应的发生。对表达数据的全基因组关联研究表明,在对环境干扰的转录反应中,反式调节似乎比顺式调节更重要。图1.98个拟南芥种质中叶片生长相关表型的分布使用自动表型分析平台WIWAMxy,通过测量预计的莲座面积 (PRA) 来确定总体生长反应。通过具体量化第三片出现的叶子的不同生长相关表型,可以获得关于生长反应的更详细视图(图1)。成熟时,在对照条件下莲座和第三叶面积在最小和最大种质之间显示出几乎4倍的差异(图1A和1B)。由轻度干旱胁迫引起的叶片和莲座面积的减少在不同种质之间存在很大差异(图1A 和1B)。成熟时的莲座和第三叶面积在对照和轻度干旱条件中相关性良好。平均而言在轻度干旱下种植的植物的莲座面积比在对照条件下种植的小62%;第三叶面积的平均减少量相似。轻度干旱胁迫下的相对减少与对照条件下的相应大小的相关性对于莲座面积不显著,但对于第三叶面积显著。这表明大型植物不一定对轻度干旱胁迫更敏感。一般来说,在控制条件下较大的材料在轻度干旱胁迫下仍然较大。花环面积之间的显著正相关表明了这一点和在对照和轻度干旱胁迫条件下成熟时第三叶面积之间。图2. 与成熟时第三叶面积相关的路面单元面积和路面单元数量为了量化98个种质中细胞参数与最终叶片大小之间的关系,计算了Pearson相关性。路面细胞面积和数量分别显示出与最终叶面积的中等但显著相关性。然而,将这两个细胞性状结合起来,解释了最终叶面积变异的72%。路面细胞面积与路面细胞数量之间存在负相关,这是中等但显著的(图 2)。在分析细胞数、细胞面积和最终叶面积之间的关系时,发现具有10%最大路面细胞的材料中,没有一个属于具有10%最高路面细胞数量的类别(图2)。在10%最大或大多数路面细胞类别的20份材料中,16份材料的叶大小大于平均值。其他叶片较大的材料具有中间的铺面细胞数量和面积。这表明,这些材料使用了所有三种可能的策略来生产大叶子:要么是多个细胞,要么是大细胞,要么是中等数量的中等大小的细胞。图3.eGWAS结果概述为了研究材料间和处理间表达差异的遗传基础,对转录组学数据应用了多序列混合模型。为了获得用于进一步分析的高置信度集,去除了检测到明显模型膨胀的基因。这一严格的统计选择产生了一组509个基因,其中SNPs被发现与不同材料的处理无关基因表达差异相关(图3A),以及一组158个基因,其中SNPs与轻度干旱时的差异表达相关(图3B)。由于与成千上万个基因的基因表达相关而产生的多重测试问题被忽略。取而代之的是,每个基因都使用了10-7的可接受显著性阈值,因为我们关注于每个基因的特定模式和关联峰值的比较。总的来说,509个基因有一个或多个SNP,与非治疗基因表达的变异相关(对照和轻度干旱合在一起)。清晰的对角线带可见(图3A),包含位于与其表达相关的基因附近的SNPs,表明顺式调节SNPs。从与非治疗性表达相关的SNPs的空间分布来看,我们观察到转录起始位点上游2 kb启动子区域的SNPs比例明显增加。相关SNPs的最大密度位于1-kb上游区域,之后SNPs的比例迅速下降(图4)。相关的SNPs也位于转录区。这些SNPs可能与上游致病性标记存在连锁不平衡,或者可能参与内含子介导的基因表达调控。或者,内含子序列的变化可能导致选择性剪接的差异。在转录区下游,调节表达的SNPs数量迅速下降。图4.与治疗无关表达相关的SNP位置直方图

应用实例

2021.12.10

WIWAM高通量植物表型成像研究—作物高光谱功能分析

基于SVM算法和超色调的高光谱图像中的绿色植物分割绿色植物分割在基于高光谱的植物表型分析中起着重要的作用,然而,这一主题并没有得到足够的重视。现有的图像分割方法依赖于数据类型、植物和背景,可能没有利用高光谱数据的能力。本文提出了一种单类支持向量机分类器,结合超色调预处理方法对高光谱图像中的绿色植物像素进行分割。实验结果表明,该方法能够以较小的误差从背景中分割出绿色植物,因此可以作为基于高光谱的绿色植物分割的通用方法。为了评估步骤4中超色调的贡献,应用了另一个使用类似训练过程而忽略步骤4的模型,在本文中被命名为REF。首先,使用验证数据对模型进行验证,误差列于表 1,其中 FP、FN 和 MIS 分别代表假阳性率、假阴性率和误分类率。表 1 表明,与 REF 方法相比,HH 方法可以将误差降低到较低阶的水平。超色调与饱和度和强度无关,因此受局部表面角度偏差和植物自身阴影不稳定照明的影响较小。此外,超色调可以增加类间距离。接下来,使用小麦、大麦、棉花、箭叶三叶草和澳大利亚金丝雀草的高光谱图像对模型进行了测试。对于每个物种,随机选择独立于训练和验证数据的高光谱图像进行测试。首先使用Photoshop软件对图像进行手动分割,然后与自动分割进行比较。在 VNIR 数据中,比较了几个广为接受的植被指数,包括 NDVI、GNDVI、EVI等,发现使用阈值为0.3的 EVI 的方法可以提供最佳分割。在VNIR数据中测试了EVI、REF和HH方法的性能,而在SWIR数据中仅测试了REF和HH方法的性能。误分类率绘制在图1和图2中,它们表明HH方法显著减少了误差。图3显示了REF和HH方法在SWIR数据中分割大麦的测试图像。表1.SVM 模型验证的误差率图1.VNIR 测试数据中的错误分类率图2.SWIR 测试数据中的错误分类率在测试数据中,错误率高于验证数据。有几个因素可能导致测试数据的错误率较高。首先,在人工分割中,叶子边缘的像素被分类为前景,而在自动分类中,这些像素可以被分类为背景,因为这些像素的光谱特征是背景和植物的混合。其次,手动分割可能会有错误,特别是对于小麦和大麦这种窄叶植物。分割后的图像将被进一步处理,以分析植物中的营养分布,包括氮、磷等。分割的精度可以满足这一要求。使用较大的训练数据来训练更复杂的模型,如人工神经网络(ANN)或深度ANN,将获得相同或更好的结果,但是,当考虑到劳动力和数据收集成本时,最好使用较小的数据集来训练具有可接受精度的模型。   图3.SWIR数据中大麦分割REF和HH方法的测试图像(红色标记为植物轮廓)

应用实例

2021.12.10

WIWAM高通量植物表型分析平台—中度干旱胁迫下生长反应

大面积的可耕地经常面临不规则降雨,导致部分生长季节的可用水量有限,这就需要对植物的耐旱性进行研究。在324份拟南芥自然材料中,观察了中度干旱胁迫下生物量积累的自然变异。干旱胁迫下的改良表现与早花和缺乏春化需求相关,表明开花时间和干旱反应的调控网络重叠,或这些性状对自然选择的相关反应。此外,植株大小与相对含水量(RWC)呈负相关,与绝对含水量(WC)无关,表明可溶性化合物的作用显著。控制和干旱条件下的生长随时间而确定,并通过指数函数建模。通过对植物大小时间数据和模型参数的全基因组关联(GWA)作图,检测到六个与干旱密切相关的时间依赖性数量性状位点(QTL)。如果在单个时间点确定植株大小,大多数QTL将无法识别。对早期报道的干旱时基因表达变化的分析使我们能够确定每个QTL最可能的候选基因。 图1. 莲座鲜重(FW)(a)、相对含水量(RWC)(b)和指数模型参数的频率分布中度干旱胁迫下的生长减少导致实验期间对照植物和干旱处理植物之间的植物大小差异增加。在干旱处理开始两天后(第16 天),与对照相比,干旱导致的生长减少导致植株明显变小。最后,在中等干旱胁迫下生物量平均减少 35%。然而,在对照和干旱条件下的种质中观察到植物大小的很大差异(图 1a)。这些差异在很大程度上是由基因型决定的,因为在两种条件下,花环的PLA和FW都具有中等至高度的遗传力。为了研究干旱条件下植物性能的自然变化是否与植物水分状况有关,在第24天测定每株植物最大叶片的RWC和WC。这两个参数代表水分状况的不同方面。 WC表示叶子中水的实际百分比,低 WC 表示叶子开始枯萎,代谢过程停止,从而阻止进一步的生长。另一方面,RWC 将实际 WC 与完全再水化叶子的 WC 进行比较。含有较少水或较多可溶性化合物或两者组合的叶子获得低 RWC。植物在可用水量有限的情况下保持高 WC 的策略之一是增加叶子内可溶性化合物的量,以改善流向叶子的水通量并限制蒸发。在应用的中度干旱条件下未观察到萎蔫,这对应于在干旱条件下观察到的所有植物的WC为75%或更高(图1b)。缺乏萎蔫证实达到了施加温和而不是严重干旱的目标。WC的变化是有限的;93% 的所有植物(包括对照和中度干旱处理的植物)的水平在88%和93%之间,表明RWC的差异在很大程度上是由于内部渗透势的变化。在对照和干旱条件下的种质之间观察到 RWC 的变化(图 1b)。图2.两个对干旱反应相反的材料在控制和干旱胁迫条件下的生长曲线种质之间的差异不仅在两种条件下观察到植物大小,还观察到干旱响应,从在对照和干旱条件下具有相似生长的种质(图 2a)到最终莲座大小减少超过 50%(图 2b)。此外,观察到干旱时生长减少开始时间的变化。为了比较植物大小差异很大的种质对干旱的生长响应,本文计算了对照和干旱条件下植物大小之间线性回归的残差。残差代表在控制条件下与植物大小无关的干旱响应。正残差表示增长下降幅度小于平均值,而负残差表示增长率下降幅度大于平均值。图3.在第28天抽薹和不抽薹的植株之间的比较早在第一个种质开始抽薹之前(从第11天开始),早抽薹个体和晚期抽薹个体之间的植物大小存在显著差异。在对照和干旱条件下,抽薹或开花植物在 28 天后具有比营养植物更大的莲座(图3a)。此外,以FW残差为代表的干旱响应在两个抽薹时间等级中是相反的(图3b)。早期抽薹种质在干旱时表现优于平均水平,而晚期抽薹型种质表现低于平均水平。当在冬季和夏季一年生植物之间进行相同的比较时,观察到类似的趋势。图4. Manhattan图表示单核苷酸多态性(SNP)标记与对照和干旱条件下的若干性状之间的关联,以及表示干旱响应的相应残差,与对照条件下的性状值无关6个QTL与控制条件下的模型参数相关(图 4a),3个QTL 与控制条件下的FW和PLA相关(图4d)。在干旱条件下,三个 QTL与FWand PLA 相关(图 4e),另外三个与相应的残差相关(图 4f)。对于干旱条件下的模型参数和相应的残差(图 4b、c)、对照或干旱条件下的RWC或相应的残差(图4g),没有发现强关联。每个SNP可以解释总表型变异的6%到9%。对于与对照和干旱条件下的性状相关的SNP,该百分比处于相同的范围内。这些百分比强调生物量积累是一个复杂的性状,在控制和干旱条件下,它受许多小效应基因的调控。

应用实例

2021.12.09

WIWAM高通量植物表型分析平台—F-Box蛋白FBX92对拟南芥叶片大小

F-Box蛋白FBX92对拟南芥叶片大小的影响F-box 蛋白是最大的调节蛋白家族之一,在蛋白质降解中起重要作用。在植物中,F 蛋白在功能上非常多样化,只有一小部分被详细表征。本文鉴定了一种新型 F-box 蛋白 FBX92 作为拟南芥叶片生长的抑制剂。AtFBX92 的过度表达导致植物的叶子比野生型小,而AtFBX92水平降低的植物则通过刺激细胞增殖而增加叶片生长。详细的细胞分析表明,AtFBX92 特别影响早期叶片发育过程中的细胞分裂速率。AtFBX92水平降低的植物中几个细胞周期基因表达水平的增加支持了这一点。而玉米同源基因 ZmFBX92 在玉米中的过表达对植物生长没有影响,而拟南芥中的异位表达增加了叶子的生长。截断形式的 AtFBX92 的表达表明,ZmFBX92和AtFBX92在拟南芥中功能增益的对比效应是由于ZmFBX92基因中缺少F-box相关结构域。我们的工作揭示了复杂网络中的另一个参与者,它决定了叶子的大小并为识别假定的底物奠定了基础。ZmFBX92OE和WT植物的表型分析显示,转基因植物的叶面积显著较大,其他表型正常(图1)。在标准和轻度渗透胁迫条件下体外生长的WT和ZmFBX92OE植株的预计花环面积(PRA)在分层后6天至21天(DAS)确定(图1A)。平均而言,胁迫在21 DAS 时使花环面积减少了约 60%。在两种条件下,ZmFBX92OE 植物与WT相比具有显著增加的花环面积(图1A)。ZmFBX92OE 对拟南芥叶片大小的积极影响通过确定22 DAS时的单个叶面积得到证实(图1B、C)。ZmFBX92OE 植物的成熟叶和幼叶都较大。为了检查细胞增殖和/或细胞扩增的差异在多大程度上导致叶片尺寸增加,在WT和ZmFBX92OE叶片中比较了背面表皮细胞的数量和尺寸。ZmFBX92OE 植物中完全成熟(22DAS)的第三片叶子由于细胞数量的高度增加(约70%)而增大了约30%,这部分被细胞大小减少约20%(图1D)所补偿。因此,ZmFBX92 在拟南芥中的异位表达导致叶片变大,主要是由于细胞数量增加。与异位表达ZmFBX92的植物所观察到的相反,与WT植物相比,AtFBX92OE 植物的花环面积减少(图 2A)。这种减少在轻度渗透胁迫下相当。在AtFBX92OE植物中没有观察到其他明显的表型。从6个DAS开始,在发育的早期就已经可以看到减小的花环大小(图 2A)。AtFBX92过表达对叶生长的负面影响通过测定体外生长的 22 天龄植物的单个叶面积得到证实。与WT相比,AtFBX92OE7植物的成熟叶面积显著较小,而对于AtFBX92OE2 植物,所有叶子都显著较小,包括幼叶(图2B、C)。为了探索叶片尺寸减小的细胞基础,在细胞水平上分析了体外生长的 AtFBX92OE 和WT植物的叶片发育。与ZmFBX92OE的情况类似,第三片叶子背面表皮的细胞数量和细胞大小在21 DAS时确定,此时这片叶子完全成熟(图2D)。AtFBX92OE2和AtFBX92OE7的成熟第三叶分别比WT小45%和16%,这是由于细胞数量大幅减少,部分补偿通过增加的单元尺寸。图1.(左图)ZmFBX92表达对拟南芥花环和叶片生长的影响以及叶片大小差异的细胞基础图2.(右图)在标准体外条件下AtFBX92异位表达对花环和叶片生长的影响以及叶片大小差异的细胞基础图3.(左图)体外标准条件下AtFBX92 下调对花环和叶片生长的影响以及叶片大小差异的细胞基础图4.(右图)体外标准条件下AtFBX92del 表达对花环和叶片生长的影响以及叶片大小差异的细胞基础与过度表达AtFBX92的植物平行,通过使用以下工具设计靶向AtFBX92的人microRNA(amiRNA),产生表达水平降低的转基因植物。对三个表达水平降低的纯合、独立、单基因座系的叶片表型进行了分析,由于它们非常相似,因此仅给出了amiFBX92-4(以下称为amiFBX92)的结果(图3。从DAS的第5天到第21天测定PRA,并显示amiFBX92中的PRA比分析第一天起的WT更大(图3A)。在轻度渗透胁迫下,PRA的增加具有可比性。接下来,在21 DAS测定单个叶面积。除amiFBX92的叶片3外,所有叶片均显著大于WT的叶片(图3B,C)。21 DAS时完全成熟的第一对叶的细胞分析表明,叶面积的(24%)是由于细胞数量增加(47%),部分由细胞大小减小(16%)补偿(图3D)。综上所述,我们的数据表明改变AtFBX92表达水平以相反的方式影响叶片大小,这主要是细胞数量差异的结果。PRA 随时间的定量图像分析,从 6 DAS 到 24 DAS,表明 AtFBX92del 植物比 WT 大(图 4A)。 此外,PRA 增加在发育过程中很早就开始(图 4A),类似于ZmFBX92OE 和 amiFBX92 品系中观察到的效果。与此一致,在 20 DAS 确定的单个叶面积显著大于 WT(图 4B、C)。 一致地,在 20 DAS 时第一对叶的大小增加(27%)是由于细胞数量增加(29%),而对细胞大小没有显著影响(图 4D)。图5. 在标准和干旱胁迫条件下,AtFBX92错误表达对土壤中生长的植物叶片大小的影响为了验证在体外观察到的AtFBX92表达水平改变的植物花环大小的差异,在自动成像平台 WIWAM 上的土壤中种植了AtFBX92OE、amiFBX92、AtFBX92del和相应的WT植物。分析了每个构建体的两条线。本文也可以证实,在土壤中AtFBX92OE植物比WT小,而amiFBX92和AtFBX92del植物更大,尽管对于AtFBX92del植物这只能在两条线之一中得到证实(图 5A)一般来说,土壤中的影响似乎不如体外显著,因为与WT的绝对百分比差异在体外总是大于在土壤中。通过向培养基中添加甘露醇,在渗透胁迫条件下生长的 AtFBX92OE和amiFBX92植物PRA减少与在这些条件下生长的WT植物的PRA减少没有显著差异。向生长培养基中添加甘露醇通常在实验室环境中用作渗透胁迫的代表。由于土壤种植植物的反应更接近自然条件,还评估了轻度干旱胁迫对AtFBX92水平改变的土壤种植植物和WT植物的影响(图 5B)。

应用实例

2021.12.09

在亲缘关系密切的十字花科植物中,抗旱性是由不同的策略介导的

干旱在世界范围内造成了严重的作物损失,预计气候变化将在未来增加其发生率。与许多作物的情况类似,参考植物拟南芥Arabidopsis thaliana (Ath)被认为对干旱敏感,而正如我们所证明的,其近亲拟南芥Arabidopsis lyrata (Aly)和 Eutrema salsugineum(Esa)具有抗旱性。为了了解这种可塑性的分子基础,我们使用发育匹配的植物进行了深入的表型、生化和转录组比较。证明 Aly 通过早期生长减少、代谢适应和信号网络重新布线对减少的可用水量做出最敏感的反应。相比之下,高基础脯氨酸水平、ABA 信号转录和晚期生长反应证明了 Esa 处于不断准备的模式。对压力敏感的 Ath 的反应晚于Aly,早于Esa,尽管它的反应往往更为极端。所有物种都以相似的敏感性检测缺水;响应差异编码在下游信号和响应网络中。此外,在 Aly和Esa中以较高基础水平表达的几种信号基因已被证明在 Ath 中过度表达时可提高水分利用效率和抗旱性。我们的数据展示了密切相关的十字花科实现抗旱的对比策略。图1. 拟南芥(Ath)、拟南芥(Aly)和Eutrema salsugineum (Esa) 的生长阶段进展和抗旱性作为了解十字花科干旱胁迫反应的重要第一步,对干旱敏感的Ath及其据报道更具抗性的近亲Aly和Esa进行了对照比较研究。比较干旱研究的关键是需水量对发育参数的依赖性。由于物种之间的发育时间不同,首先定义了土壤生长的Ath、Aly和Esa植物的发育进程。在WW条件下,Ath遵循先前描述的时间线,而Aly和Esa的叶子出现较慢(图1a)。这种差异从发芽到第三片叶子的出现(阶段1.03)最为明显,随后更加同步(图 1a)。对于生理和发育的可比性,使用1.06阶段的植物作为起点,Ath在14DAS时达到,Aly在22 DAS时达到,Esa在 22 DAS 时达到。对于每个物种,使用WIWAMxy 表型平台种植、浇水和成像 128 株植物。在发育阶段 1.06 (T0),WD 子集连续 15 天 (T0-T14) 停止浇水。在 T14 WD 植物出现萎蔫的视觉迹象并重新浇水以确定存活率作为抗旱性的量度。几乎所有Aly和Esa个体都康复了,分别对应于 96% 和 98% 的存活率;只有 76% 的 Ath 植物在严重干旱期间存活(图 1b)。图2.充分浇水(WW) 和缺水(WD) 条件下的玫瑰花结生长动态根据预测玫瑰花结面积(PRA)确定了随时间的增长。尽管这三个物种都对水资源利用率的降低做出了反应,花环生长也减少了,但它们的动态却有很大的不同。Aly在T3时首先对缺水作出反应,而Ath和Esa仅在T5和T6时表现出显著的生长减少(图2a-c)。而在治疗的第一天(T0),Aly PRA(211 mm2)明显大于Esa(94 mm2)和Ath(100 mm2)。然而,较大的Aly花环在停止浇水后并没有导致较高的耗水量(图2d),这可能是生长减少较快的原因。生长减少时测得的土壤含水量分别为1.76(Aly)、1.66(Ath)和1.50(Esa)(图2d)。因此,尽管预期这三个物种都会因水分利用率的降低而出现生长减少的反应,但与敏感的Ath相比,这两个抗性物种明显表现出相反的反应动力学。这种不同的反应可能表明,尽管Aly和Esa在进化上很接近,但它们在抗应激方面进化出了不同的策略。为了更好地了解生长减少的基础,我们更详细地分析了叶片大小。在WD条件下,除子叶和晚出叶外,所有物种(L1-L11)的叶面积均显着减少(图3a-c)。这种增长减少在 Aly 中最为显著(60%),而在 Ath 和 Esa 中分别减少了 42% 和 44%。值得注意的是 Aly 叶子的快速强响应,例如 Aly L1 的表面积减少了 42%,而 Esa 和 Ath 中 L1 的表面积分别减少了 13% 和 23%。成熟 L6 的细胞分析表明,细胞大小和细胞数量在 Ath 中减少到相似的程度。在Aly中,细胞数量(即增殖)的减少最为显著,而在 Esa 中,细胞大小(即生长)受到的影响最为显著(图 3d、e)。细胞面积和数量的减少导致所有物种的细胞密度更高(图 3f),而气孔指数仅因干旱而略微降低。所有三个物种的气孔面积在干旱时同样减少,而气孔密度的增加在 Aly 植物中更为显著。这些观察结果进一步证明了 Aly 和 Esa 表现出不同的干旱响应现象。图3.充分浇水(WW) 和缺水(WD) 植物的叶和细胞参数在有针对性的分析之后,我们的目标是采用无偏见的系统方法来使用 WGCNA 分析分子干旱响应。将基因集与高度相关的特征基因(Pearson 相关系数 > 0.9)合并后,定义了 28 个网络模块并进行了颜色标记。八个模块的表达模式与干旱处理显著相关,因此可能代表胁迫反应的不同特征(图4a-c)。在这八个模块中,只有一个与两种抗性物种相关(图 7b),但与 Aly 负相关,与Esa正相关。图4.表达互正交(EMOs)的聚类分析

应用实例

2021.12.07

不同的细胞策略决定了10种拟南芥天然种质对轻度干旱的敏感性

不同的细胞策略决定了10种拟南芥天然种质对轻度干旱的敏感性拟南芥种质的全球分布施加了不同类型的进化压力,这有助于这些种质对环境胁迫的各种反应。干旱胁迫反应已经得到很好的研究,特别是在哥伦比亚的一种常见拟南芥种质。然而,对干旱胁迫的反应是复杂的,我们对这些反应中哪些有助于植物对轻度干旱的耐受性的理解是非常有限。本文研究了自然种质在早期叶片发育过程中在生理和分子水平上对轻度干旱的反应机制。记录了自然种质之间轻度耐旱性的差异,并使用干旱敏感种质ICE163和耐旱种质Yeg-1的转录组测序来深入了解这种耐受性的潜在机制。这表明ICE163优先诱导茉莉酸和花青素相关途径,这有利于生物胁迫防御,而Yeg-1更明显地激活脱落酸信号,即经典的非生物胁迫反应。还研究了相关的生理特征,包括脯氨酸、花青素和ROS的含量、气孔关闭和细胞叶参数,并将其与转录反应相关联。结论是这些过程中的大多数构成了一般干旱响应机制,在耐旱和敏感的种质中受到类似的调控。然而,在轻度干旱下关闭气孔和维持细胞扩张的能力似乎是在轻度干旱下促进叶片更好生长的主要因素。图1.不同拟南芥种质在轻度干旱下表现出不同的叶片生长减少为了探索拟南芥的遗传多样性如何影响对轻度干旱胁迫的反应,我们在自动称重、成像和浇水机(WIWAM)上筛选了来自不同来源的15份自然材料(图1A)。当第三片真叶(L3)开始出现时,在层积(DAS)后6天开始对一半植株进行轻度干旱(MD)处理。另一半的植物保持在充分浇水(WW)的条件下作为对照。在22 DAS收获植株,并测量成熟L3的面积。在WW条件下,各材料的平均叶面积(LA)已经有所不同(图1),但除EY15-2外,所有材料在MD条件下的LA相对显著减少(图1B)。值得注意的是,LA的减少程度因加入量的不同而有很大差异,从14%到61%不等(图1B,补充表S2)。在WW条件下,对MD的敏感性并不取决于叶片的大小,因为WW条件下的LA与MD的相对减少之间没有相关性。我们鉴定了干旱敏感材料,如Oy-0、Ler-0、ICE97和ICE163,以及更具耐旱性的材料,包括C24、Yeg-1、An-1、Sha和EY15-2。图2.轻度干旱胁迫下脯氨酸、花青素和活性氧的积累通过在WW和MD条件下进行3,3-二氨基联苯胺(DAB) 染色来检查H2O2的丰度。除了EY15-2和ICE163(图2A),在MD下的大多数种质的子叶中,H2O2水平(可视化为深棕色沉淀物)增加。然而没有观察到耐受和敏感种质之间一致的显著差异。为了保持 ROS 的稳态,植物进化出复杂的酶促和非酶促抗氧化系统,已知脯氨酸积累在非生物胁迫中发挥积极作用。除了脯氨酸外,在本文的GO分析中,花青素相关基因的比例过高。因为脯氨酸和花青素都能够清除ROS,我们在保水后五天测量了它们在幼苗中的丰度。除了Sha外,大多数种质在MD处理后积累的脯氨酸水平相似(图2B)。另一方面,花青素测量显示,积累较少H2O2的生态型,ICE163和EY15-2,在MD期间花青素含量显着增加(图2C)。这些结果表明,在我们的MD条件下,花青素可有效抵消ROS,而脯氨酸在敏感和耐受性种质中充当一般干旱响应因子。在保水后五天测量了干旱对耐受性和敏感种质气孔关闭的影响。在WW条件下,Oy-0和ICE163(干旱敏感种质)已经显示出比ICE97和三个耐受种质更高的开放气孔比率(图3,A和B)。在MD下,所有种质的气孔开放显着减少(图3,A和B),但我们发现耐受性种质的开放气孔少于敏感种质(图3B)。在MD条件下,具有较低气孔密度(SD,每平方毫米气孔数)的植物表现出较低的蒸腾作用和较高的水分利用效率。因此,在22DAS时分析了所有敏感和耐受种质的SD。值得注意的是,敏感种质ICE163和ICE97在MD处理期间显示出SD显着增加(图3D),而在耐受种质中SD未改变。并计算了22 DAS时的气孔指数(SI,每表皮细胞总数的气孔数)。在所有种质中,Sha在WW和MD条件下的SI最高(分别为32%和29%),而Oy-0的SI最低(分别为23%和22%)(图 3C)。然而,我们在所有六个种质中都没有观察到MD处理对SI的任何显着影响(图3C),这表明气孔的发育在干旱期间没有改变。图3.轻度干旱处理后的气孔开度、指数和密度本文发现大多数种质在干旱期间平均路面细胞数量显着减少,除了EY15-2(图4A),其中L3的最终区域不受干旱的显着影响(图1B)。在所有生态型中,细胞数量减少到相似的程度(图4A)。另一方面,敏感种质中的MD处理显着减少了平均路面细胞面积,而在耐受种质中没有观察到减少(图 4B)。更具体地说,敏感种质在MD处理期间显示出较小细胞比例增加或大路面细胞比例降低,但在耐受种质中未观察到显着差异(图4C)。这些数据表明,细胞扩增的减少是这些生态型中对MD的耐受性和敏感性之间的主要区别因素。图4.轻度干旱对敏感和耐受种质的路面细胞数量和面积的影响不同

应用实例

2021.12.07

对镰刀菌枯萎病复合体弱致病成员作用的新见解

对镰刀菌枯萎病复合体弱致病成员作用的新见解植物病害通常是由一组病原体相互竞争以在感染生态位中站稳脚跟引起的。然而之前的研究通常仅限于其宿主上的单一病原体。在欧洲小麦赤霉病(FHB)是由多种镰刀菌属物种引起的,包括禾谷镰刀菌和梨孢镰刀菌。本文结合接种的时间序列,通过多光谱成像、转录和真菌毒素分析进行监测,以研究物种和小麦之间的时间相互作用。结果表明,与禾谷镰刀菌单次接种相比,禾谷镰刀菌和梨孢镰刀菌的共接种抑制了症状的发展,但没有改变真菌毒素的积累。相比之下,梨孢镰刀菌的预接种减少了 FHB 症状和霉菌毒素与单一禾谷镰刀菌感染相比的水平。有趣的是,梨孢镰刀菌在双重感染中表现出增加的增长,表明这种弱病原体利用了它与禾谷镰刀菌的共存。定量逆转录 PCR 显示梨孢镰刀菌诱导小麦中的 LOX 和 ICS 基因表达。我们假设梨孢镰刀菌对水杨酸和茉莉酸相关防御的早期诱导阻碍了随后的禾谷镰刀菌感染。这项研究首次报道了植物的防御机制,涉及两种疾病复合体与其宿主之间的三方相互作用。图1.田间样品中同一小穗上单独存在或与其他镰刀菌种组合存在的梨孢镰刀菌通过分析散布在比利时佛兰德斯七个地点17 年的调查数据,本文评估了梨孢镰刀菌和禾谷镰刀菌的共存情况。总共评估了7000多个小麦穗和40多个栽培品种是否存在FHB成员。该分析表明只存在梨孢镰刀菌症状的仅有30.0%的案例,梨孢镰刀菌伴有禾谷镰刀菌的案例占比31.2%,伴有禾谷镰刀菌、黄色镰刀菌的梨孢镰刀菌案例占比15.4%(图1a,b)。这项多年的多地点分析表明,在田间条件下禾谷镰刀菌、黄色镰刀菌的梨孢镰刀菌的显著共存。由于燕麦镰刀菌的发生率较低,没有进一步关注与该物种的相互作用。图2.梨孢镰刀菌2,516在离体叶片试验中对禾谷镰刀菌PH-1感染的影响梨孢镰刀菌预接种的 FV/FM 值显著高于单一禾谷镰刀菌接种(图2a、b)。此外,缺乏症状与校正的(c) GFP信号降低一致,反映了禾谷镰刀菌的存在减少(图2a、c)和禾谷镰刀菌生物量的显著减少(图2d)。 最后,由于禾本科镰刀菌感染期间产生的红镰孢菌素导致的典型微红色在分离的叶子中预接种梨孢镰刀菌时也消失了。在同时接种禾谷镰刀菌和梨孢镰刀菌的双重接种中,与单一禾谷镰刀菌感染相比,症状明显较轻。这些结果通过评估由cGFP信号可视化的禾谷镰刀菌的存在和活性以及通过定量逆转录 PCR (RT-qPCR) 评估的生物量得到证实。与禾谷镰刀菌的单一感染相比,这两个参数在第3天分别显示出显著和轻微降低(图2c、d)。图3.在离体叶片试验中,禾谷镰刀菌PH-1接种对梨孢镰刀菌2,516 感染的影响为了了解禾谷镰刀菌PH-1 对梨孢镰刀菌2,516存在的影响,我们使用了带有GFP标记的梨孢镰刀菌2,516分离株与野生型禾谷镰刀菌PH-1并评估了后者的影响。通过用无菌手术刀在0.1、1和2厘米的长度上刮擦表皮层而在机械损伤的叶子上接种了带有GFP标记的梨孢镰刀菌,以检查梨孢镰刀菌是否受益于禾谷镰刀菌感染引起的叶片损伤。梨孢镰刀菌在较大的伤口中显示出明显更大的生长。图4.梨孢镰刀菌2,516接种对小麦穗上禾谷镰刀菌PH-1感染的影响为了验证在小麦穗(FHB 病原体的主要生态位)中的观察,本文评估了梨孢镰刀菌的预接种是否也减少了穗上禾谷镰刀菌的感染。因此在用梨孢镰刀菌接种相同的小穗前1或2天接种了禾谷镰刀菌分生孢子悬浮液。感染7天后,在禾谷镰刀菌前1或2天用梨孢镰刀菌预接种小穗导致FHB症状减少的趋势没有统计学意义,如通过红-绿-蓝 (RGB)图像测量,较高的FV/FM值(图 4a、b和S9)、低评分症状的百分比(图4d)、禾谷镰刀菌的cGFP信号降低(图4a、c和S9)以及禾谷镰刀菌的减少,通过RT-qPCR获得的生物量(图4e和S9)与禾谷镰刀菌的单一接种或禾谷镰刀菌和梨孢镰刀菌的共接种相比,证实了从离体叶测定中的发现。图5.梨孢镰刀菌2,516对禾谷镰刀菌PH-1产生的真菌毒素的影响本文分析了禾谷镰刀菌中TRI5基因的转录本,这是DON生物合成中的一个关键基因。在小麦叶测定和小麦穗测定中,在接种梨孢镰刀菌前1或2天预接种禾谷镰刀菌导致与早期感染时间点的单一禾谷镰刀菌接种相比显著降低的 TRI5 基因表达水平(第1 天和第2天;图5a、c)。在较晚的时间点(叶子测定的第3天,穗测定的第4天和第7天),处理之间TRI5基因相对表达的差异不太明显,除了在接种梨孢镰刀菌前2天接种梨孢镰刀菌的相互作用禾谷镰刀菌和在叶片测定中同时接种这两个物种的相互作用。对于禾本科TRI5基因的表达,禾本科的生物量非常低,TRI5的表达低于检测水平。

应用实例

2021.12.06

在高通量表型平台中分析用于检测玉米植株干旱胁迫和恢复的高光谱图像

在高通量表型平台中分析用于检测玉米植株干旱胁迫和恢复的高光谱图像研究作物缺水条件下的生理过程对于耐旱基因型的选择和相关基因的功能分析至关重要。近距离高光谱成像(HSI)是一种很有前途的非侵入性植物性状分析技术,它在早期检测植物对水分胁迫的反应方面具有巨大潜力。在这项工作中描述了一种数据分析方法,与植被指数不同,本方法在具有高分辨信息的选定波段上应用光谱相似性,同时需要仔细处理非信息性照明效应。后一个问题是通过标准正态变量 (SNV) 归一化来解决的,该归一化消除了线性效应,以及一种监督聚类方法来消除表现出非线性多重散射效应的像素。在剩余的像素上,与胁迫相关的动态通过光谱分析程序量化,该程序涉及受监督的波段选择程序和针对浇水良好的对照植物的光谱相似性度量。通过在高通量植物表型平台中对玉米植物的水分胁迫和恢复进行大规模研究,验证了所提出的方法。结果表明,该分析方法可以早期检测干旱胁迫反应,并在重新浇水后不久恢复检测效果。图1.应用于玉米植株的六种不同灌溉策略,显示了整个营养发育期在不同V阶段的土壤含水量水平,表明了植物叶片发育的数量和达到特定V阶段的天数所有图像均通过减去暗框进行辐射校准,并计算相对于白板的反射率。图2显示了来自植物像素的反射光谱的集合。使用广义交叉验证(GCV)评分对光谱中存在的高斯噪声水平进行量化。由于500nm以下和850nm以上的高噪声水平,图像被限制在500-850nm范围内的111个光谱带,以便进行进一步的数据处理。然后利用归一化差异植被指数(NDVI)从背景中分割出植物像素。图3显示了NDVI若干阈值的分段植物。选择了0.3的阈值。图2.植物像素集合的反射光谱,覆盖400nm至1000nm的光谱区域 图3.基于NDVI阈值的植物像素分割图4表示获得的簇映射示例,其中根据像素的簇编号使用假彩色表示来映射像素。基于这些聚类图,对信息量较小的聚类进行注释,并丢弃这些聚类中的像素。最后,通过平均属于保留簇的所有像素的归一化光谱获得一个SNV光谱来表征每个植物。然后将每种植物的整个发育期表示为一个光谱时间序列。图4.V13生长阶段玉米植株的 RGB 图像和聚类图用充分浇水控制和缺水胁迫处理来监测来自六个不同浇水处理组的植物的生长动态,并分析对干旱的响应和再浇水后的恢复。在整个实验过程中(53 天)浇水充足的组作为对照组。图5显示了五个不同胁迫程度组的图,每次都与WW对照组的图进行比较。每个数据点是该组所有植物的平均值;也给出了标准偏差。图5(a) 显示了 PD-RW1组与WW对照组的结果,在整个胁迫浇水恢复期间,与对照组的差异从逐渐增加到浇水后逐渐减小再到增加的过程;图5(b) 显示了 PD-RW2 组与对照组的结果,与PD-RW1的过程近似,从第 40 天开始观察到与 PD-RW1 组的显著差异,似乎PD-RW2 组已从干旱胁迫中完全恢复;图 5(c) 显示了 SD 组与对照组的结果。SD从观察的第一天起就可以看到干旱胁迫的影响。直到第10天干旱植物正在适应水分胁迫环境。植物在第35天之前似乎表现得像 WW 对照植物,之后植物开始重新经历干旱胁迫。SD组的植物发育受到非常严重的损害;对于SD-RW1 和 SD-RW2,目标是评估植物在重新浇水时从严重干旱胁迫中恢复的能力的程度。 SD-RW1 组在严重干旱诱导后在早期营养状态 (V7) 中完全重新浇水,而 SD-RW2 在发育后期 (V12) 时完全重新浇水。图 5(d)和(e) 显示了这些组与对照组的结果,对于SD-RW1组,在重新浇水后不久(在T4点)植物健康状况稳定,并且在营养发育阶段结束之前与对照组保持不变。这表明这些植物能够完全恢复并恢复其最佳生长和功能模式。然而,这不是SD-RW2组实现的,它在后期再浇水期(T5)后偏离了对照组。这表明在后期发育阶段再浇水不允许植物从严重的干旱胁迫中完全恢复。图5.六个不同浇水处理组的植物的生长动态

应用实例

2021.12.06

野生小麦导入通过植物-大气相互关系促进干旱胁迫下的时间水分通量动态

野生小麦导入通过植物-大气相互关系促进干旱胁迫下的时间水分通量动态植物所经历的水分胁迫强度取决于土壤水分状况以及大气变量,例如温度、辐射和空气蒸汽压差(VPD)。尽管对这些土壤和大气因素的枝条结构的作用进行了充分研究,但鲜为人知的是,作为连续统的枝条和根系动态相互作用受基因型变异控制的程度。在这里,我们使用野生二粒种子基因渗入系 (IL20) 靶向这些相互作用,该系具有明显的干旱诱导的芽根比变化及其对干旱敏感的轮回亲本Svevo。使用重力平台,我们表明IL20在终端干旱下保持较高的根部水分流入和气体交换,从而支持更大的生长。有趣的是,IL20在根内流入和蒸腾方面的优势在较低VPD下的每日昼夜循环中较早表达,因此支持更高的蒸腾效率。结构方程模型的应用表明,在水分胁迫下,VPD和辐射对蒸腾速率具有拮抗作用,而根部水分流入作为对叶片较高大气响应性的反馈。总的来说,这些结果表明干旱引起的根茎比的变化可以在由水和大气参数决定的较短的优选时间窗口内提高植物的吸水潜力。图1.对照水处理下的纵向增重及其分布本文已经确定了一个野生二粒种子基因渗入系(IL20),它具有独特的适应性特征,即在营养期水分胁迫下干旱诱导的根茎比改变。在这项研究中,我们使用高通量重力蒸渗仪系统进一步表征了终末干旱(TD)下的IL20,在从营养阶段到生殖阶段的发育过渡期间开始。12日龄的植物在充分浇水(WW)处理下生长25天。TD处理中的可用水量的减少每天单独应用于每个单盆,以使其的水分压力正常化,如体积含水量 (VWC) 所示(图1A)。总的来说,与Svevo相比,WW处理下IL20的计算增重更高,尽管不显著(P≤每天(补充表S1)0.05)。在开始水分胁迫处理后,随着胁迫强度的增加,IL20保持其生长速率(图1B)。计算体重增加的主要差异开始于30天后的茎伸长阶段(P=0.019;图1B;补充表S1)。IL20保持较低且稳定的生长模式(30-34天),而Svevo在水分胁迫下生长迅速下降。移植后35天,Svevo表现出强烈的叶片卷曲和叶片衰老的视觉症状,而IL20表现出较轻的症状(图1C)。收获植物并分析芽和根干重(DW)。 与Svevo相比,IL20在WW处理下(分别为P=0.029和P=0.032)和在TD下(分别为P=0.0005和P=0.0002)表现出显着更高的分蘖数和枝条DW(图1D,E)。与Svevo相比,IL20的根DW在WW下相似,在TD下高两倍(P≤1×10-4)(图1F)。因此,在TD下IL20表现出显着更高的根茎比(P=1×10-3;图1G;)。图2. Svevo(Sv)和IL20(IL) 在充足浇水 (WW) 和极端干旱(TD) 处理下的蒸腾动力学在WW条件下,生物量积累与较高的气体交换率(即同化率、蒸腾速率和气孔导度)有关。然而,在极端干旱条件下,相对较高的气体交换率可能不会直接转化为生物量积累的增加。利用重力蒸渗仪系统,我们能够通过测量每日蒸腾和生长曲线来追踪对TD的基因型反应。与Svevo相比,IL20表现出显著更高的日冠层蒸腾作用,因为基因型之间的蒸腾作用差异随着水分胁迫强度的增加而增加(图2A)。值得注意的是,TD下的每日蒸腾动力学表现出与计算体重增加相似的模式(图1B和2A)。由于树冠越大,蒸腾作用越大,我们将蒸腾作用标准化为植株重量(E;g水/g装置)。我们测试了水分处理之间每个基因型的每日E模式,并观察到在TD下随着水分胁迫的加剧,IL20能够保持比Svevo更高的E。Svevo在过去五天严重水分胁迫期间表现出下降趋势。值得注意的是,在WW处理下,两种基因型的E模式在实验窗口中具有可比性(图2B,C)。为了更好地理解与Svevo相比,IL-20 TD下更高E值的原因,我们对两种水分处理下的旗叶气孔密度进行了表征。假设较高的气孔密度可以与较高的 E 直接相关。相反,结果表明基因型在两种水处理下具有相似的气孔密度,并且水分胁迫没有任何影响。鉴于气孔密度没有差异,我们假设气孔导度对大气参数(辐射和 VPD)的响应可能存在差异,这可能会增加 IL20 的蒸腾利用效率。为了验证这一假设,我们专注于白天每小时的整个冠层电导率 (gsc)。我们的结果表明,在TD下,两种基因型的 gsc 在最大辐射之前达到峰值,与 Svevo 相比,IL20 表现出显着更高的 gsc 以及水分胁迫强度的增加(图3A)。此外,随着水分胁迫强度的增加,IL20 gsc 与 Svevo 之间的差距变得更大。例如,第29天,gsc基因型差异发生在10:00-12:00之间,而第34天,分化最早从07:00开始,一直持续到14:00。为了进一步探索每小时gsc动态,我们专注于实验的最后五天(第29-34天),此时水分压力最严重,并计算了每天的每小时最大gsc。该分析产生了TD下昼夜gsc的基因型差异。虽然在WW处理下,基因型之间没有差异,但在TD下 IL20 在上午8:00-09:00之间表现出比Svevo高约50%的gsc容量。此外,基因型之间的大部分gsc差异发生在早上(07:00-10:00 AM),此时VPD较低。(图 3B-C)。图3. Svevo (Sv)和IL20 (IL) 在充分浇水(WW)和极端干旱(TD)处理下的整个冠层电导(gsc)的昼夜动态为了更好地了解TD下的gsc昼夜动态,我们测试了叶片气体交换率并提取了叶片水分利用效率(A/E;WUE)两种基因型。我们假设IL20在水分胁迫下表现出较高的WUE。在两种水处理下,与Svevo(孕穗期)相比,IL20气体交换在显著性范围P=0.03-0.06(图4A-F,补充表S4)内更高,并且表现出对TD的更高WUEl(P≤1×10-4)(图3G,H);在两种水分处理下,对水蒸气的总电导(gtw)均高于Svevo(图4E,F)图4. Svevo(Sv)和IL20(IL)在充分浇水(WW)和极端干旱(TD)处理下的叶片气体交换和水分利用效率本文假设IL20在TD下维持较高气体交换的能力,连同其较高的根茎比,可能表明从土壤中提取更好的水分。为了验证这一假设,我们分析了两种基因型的每日和每小时纵向根流入量。一般来说,在两种水处理下,IL20 与 Svevo 相比具有更高的根流入量,尽管在TD 下,IL20 保持其根流入率,因为 Svevo 根流入量随着水分胁迫的加剧而减少(图 5A)。为了捕捉水分胁迫最严重阶段的每小时差异,我们对过去五天中每个基因型每小时的每日最大流入量进行了平均。在WW下,在基因型之间观察到类似的每日模式,其中IL20全天保持较高的根流入(图5B)。在TD下,IL20与Svevo相比表现出更高的根流入,主要是在VPD 相对较低的早晨(07:00-12:00)(图5C)。这种现象可以支持TD下单位碳同化的较低水损失,这是由于在 VPD 较低的清晨时间最大化根流入和gsc的组合。图5.Svevo (Sv)和IL20(IL) 在充分浇水(WW)和极端干旱(TD)处理下的根系流入动态

应用实例

2021.12.06

Plantarray植物逆境生物学生理研究平台研究

目前随着世界人口的不断增长以及气候变化对作物产量的影响,全球粮食的需求日益增加,尽管每年世界各地都有不断打破现有产量和质量记录的新品种出现,但生产力的进步还是显得较为缓慢,无法满足未来全球粮食增长的需求。基于亲本杂交和后代表型选择的传统植物育种已有数千年的历史,虽然这些杂交种子对农业生产力产生了巨大的影响力,但相对缓慢的育种过程(一年生作物的平均育种计划需要10-12年)在当今粮食需求快速增长的背景下体现了其不足,尤其面对日益严峻的气候环境变化,保持目前的产量提高速度本身就是很大的挑战。许多新品种是在非生物胁迫条件下培育出来的,但这些品种在非生物胁迫条件下有明显的产量损失,非生物胁迫条件下的育种是一项极具挑战性的工作。目前胁迫育种面临诸多的困难,包括植物在非生物胁迫下耐受性的复杂程度,环境条件的不稳定,缺乏明确定义的胁迫场景以及耐受性标记、预期性状不明确等。以上因素导致在非胁迫条件下培育新品种的数量少并且存在较长的育种周期。植物表型分析是对植物复杂性状的综合评估,传统的育种者根据个人经验对品系进行主观的视觉表型分析。尽管获得了一些成果,但在植物生理性状和难以用肉眼观察的性状方面就显得力所不及了,尤其在抗逆性育种巨大的工作量面前,低通量,人工的方法无法达到评估的要求。目前胁迫育种研究面临的主要瓶颈之一是缺少一种简单快速,可以选择所需生理性状,并且可以对生长环境中的全部植物同时进行测定的功能筛选方法。胁迫条件下的作物育种应关注生产力而非生存力,而与植物水分相关的生理性状是直接影响植物产量的关键因素。鉴于植物水分平衡调节机制对植物的胁迫反应、生产力和恢复力有着巨大的影响,这些生理性状应被整合到非生物胁迫育种计划中。目前主要用于评估植物水分状况的方法有叶片气体交换、冠层温度测定、光谱反射率测定等,但由于植物对周围环境非常敏感,难以利用这些技术收集植物与环境的动态相互作用以及植物对水分胁迫动态响应的有关信息。生理表型系统是以植物生理学为基础,采用高通量、非侵入式、非破坏性的表型技术,可以对植物及其生长环境进行连续测定的一种新型功能系统。系统使用拟合模型描述植物对胁迫条件的反应,并与对照植物进行比较,可用于特定条件下最佳性能表现植株的筛选以及了解控制其反应的生物学机制。平台的高准确度可以检测出植株与环境变化相关的特定生理性状的微小变化,并在统计分析的基础上选择所需植株。具备对特定环境和不同胁迫条件下同时对数百种基因型植株进行全株分析测定的能力。生理表型系统也可以为植物生理学、植物营养研究以及农艺管理等领域提供独特、富有价值的科学依据。Plantarray高通量植物生物学监测系统是以植物生物学为基础的一套高精度表型系统,可以完成整个植物生长周期中不同环境下的SPAC因子的测量。系统可以连续不间断的获取阵列内所有植物的监测数据,实时监控和及时调整每个培养容器中的土壤条件,包含土壤水分、盐分,是非破坏性进行植物生物学研究的理想实验平台。本论文摘要集主要介绍应用Plantarray高通量植物生物学监测系统对蔬菜、作物、乔木在胁迫反应、育种、生物刺激素等方面的研究,并对相关综述文章进行了归纳概述。旨在为逆境生物学、植物生理学、种质资源等领域的国内科研工作者提供科学依据。拟南芥赤霉素甲基转移酶1抑制了转基因番茄的赤霉素活性,降低了全株的蒸腾作用并提高其抗旱性摘要:之前的研究表明降低赤霉素 (GA) 的水平或信号能够促进植物对环境胁迫(包括干旱)的耐受性,但潜在机制尚未明确。在本文中研究了活性 GAs 水平降低对番茄 (Solanum lycopersicum) 植株耐旱性的影响以及造成这些影响的机制。为了降低活性 GAs 水平,我们培育了过度表达拟南芥GA甲基转移酶1(AtGAMT1)基因的转基因番茄。 AtGAMT1 编码的一种酶,可催化活性 GA 的甲基化以生成无活性的 GA 甲酯。过度表达 AtGAMT1 的番茄植株表现出典型的 GA 缺乏表型特征以及对干旱胁迫的耐受性增加。 GA应用于转基因植物恢复了正常生长和对干旱的敏感性。在干旱条件下,转基因植株由于全株蒸腾作用的减少而保持了较高的叶片水分状态,气孔导度的降低造成了蒸腾作用的降低。 GAMT1的过度表达抑制了叶表皮细胞的增殖,导致气孔减少而形成更小的气孔毛孔。在干旱条件下,GA活性降低、蒸腾作用减少的植物可能较少遭受叶片干旱,从而保持较高的能力和恢复率。关键词:干旱胁迫;GAMT1;番茄;蒸腾 图1. 在灌溉和干旱胁迫下,AtGAMT1过度表达降低了整个植株的蒸腾作用图1表明与对照植物相比,蒸腾作用降低的转基因植株可以更缓慢地利用土壤中的水分,因此持续的时间更长。通过实验确定蒸腾作用的降低以及土壤中水分利用率的增加是 GAMT1 过表达植株对干旱耐受性增加的唯一原因。图2. AtGAMT1过度表达减少了叶片大小,增加了气孔密度叶面积减少(图2)可能是转基因植物整株蒸腾量降低的主要原因。尽管 AtGAMT1 的过表达对叶片数量没有影响,但它减缓了小叶叶片的生长,所有转基因品系的整株叶面积都小于对照植物的叶面积(图2)。用显微镜分析了叶背面的表皮组织,该分析显示所有转基因品系中的气孔密度高于对照叶片中的气孔密度。转基因株系的气孔面积与其表型严重程度和全株蒸腾速率密切相关。以上结果表明转基因植株中蒸腾速率的降低是由于气孔导度的降低造成的。 

应用实例

2021.11.23

Plantarray高通量植物生理表型平台—盐胁迫下烟草水通道蛋白研究

盐胁迫下烟草水通道蛋白在提高水分利用效率、导水率和产量方面的作用摘要:烟草(Nicotiana tabacum; C3)在非生物胁迫下提高了水分利用效率(WUE),并在茎、叶柄和传输道细胞中显示出C4植株的光合作用特征。烟草胁迫诱导的水通道蛋白(NtAQP1) 既是水分通道又是CO2 通道。在烟草植株中,NtAQP1 的过表达增加了叶片的净光合作用 (AN)、叶肉 CO2 传导率和气孔导度,而其沉寂会降低根系水力传导率 (Lp)。然而,在正常和胁迫条件下,NtAQP1叶片和根系活动之间的相互作用及其对植物水分利用效率和生产力影响的研究尚未被提及。因此,本研究的目的是提出NtAQP1在植物水分利用效率、抗逆性和生产力中的作用。在所有试验条件下,在番茄 (Solanum lycopersicum) 植株(TOM-NtAQP1) 中表达 NtAQP1 会产生更高的气孔导度、整株植物蒸腾作用和 AN。与对照相比,盐胁迫下的L p 减少了3倍多,TOM-NtAQP1 植株与玉米(Zea mays;C4)相似,Lp并没有显著降低(仅降低约40%)。相互嫁接为 NtAQP1 在防止水力破坏和维持全株蒸腾速率方面的作用提供了新的证据。本研究结果揭示了在根和叶中独立但密切相关的 NtAQP1 活性。这种双重活性增加了植物在最佳和胁迫条件下的用水量和AN,从而提高了WUE。因此,正如在组成型表达 NtAQP1 的番茄和拟南芥 (Arabidopsis thaliana) 中所示,它在所有测试条件下都有助于植物在产量方面的抗逆性。本文还讨论了NtAQP1参与烟草类C4光合作用特性的可能性。关键词:烟草(Nicotiana tabacum);NtAQP1;水分利用效率(WUE);抗逆性图1. 在受控温室中,正常灌溉和盐胁迫下生长的TOM-NtAQP1和对照植物的全株日蒸腾速率和相对蒸腾速率使用将VPD和植物叶面积测定统一化的多重蒸渗仪系统同时测量了所有TOM-NtAQP1和对照植物的每日蒸腾速率。在正常生长条件下,前者的日蒸腾速率高于对照植物(图2A),以致全天的相对蒸腾水平显著升高(图2A)。总日蒸腾量由日蒸腾速率曲线下的面积确定。在盐胁迫处理期间(图2、B和C)以及随后从盐胁迫恢复期间(图2D),TOM-NtAQP1和对照植物之间的蒸腾作用差异显著。2. 在正常和100 mM NaCl 灌溉下嫁接植物的每日蒸腾速率、gs和ANNtAQP1在防止根茎水力衰竭和提高全株抗逆性方面的作用:一方面增加gs和蒸腾作用,同时在渗透胁迫条件下维持正常的根系Lp;另一方面,表明NtAQP1通道在全植物水力控制中具有双重独立的作用。为了估计NtAQP1的这些活性与每个在整个植物对胁迫响应中的相对重要性之间的关系,进行了相互嫁接实验。同时测量所有嫁接植物的全株蒸腾速率和相对日蒸腾量,在正常和盐处理下转基因植物的蒸腾速率和相对日蒸腾量更高(图2,A和B)。从中午开始,T/C 嫁接植物的全株每日蒸腾速率显着降低,T/C 植物蒸腾速率的这种“午休”(在正常和盐胁迫条件下均清楚可见)可能是由于气孔关闭导致的。另外一种解释可能是由于较高的gs和较低的Lp导致Lp失效。为了估测在盐胁迫下根水力信号对相互嫁接植株地上部分gs 和AN的相对影响,对嫁接植株的这二者进行了测量。测量分两个时间段进行:上午(8:00–11:00 AM)和中午(11:00 AM–2:00 PM)。在上午时间段嫁接植物中检测到的整株蒸腾速率(图2B)或gs或AN没有变化(图2,C和E)。然而在中午期间,除了T/T植物外,所有植物存在蒸腾速率的中断(图2B)。虽然 C/C和C/T植物的气孔关闭可以解释整株蒸腾速率的降低,但这并不能解释T/C植物的高gs和AN值,它们仍然高于对照并与T/T 植物类似(图2、D和F):与C/C或C/T植物相比,T/T和T/C植物保持相似且明显更高的gs和A值。

应用实例

2021.11.23

Plantarray高通量植物生理表型平台应用—DELLA对植物水分状况的影响

Plantarray高通量植物生理表型平台和植物逆境生物学生理研究平台--番茄研究The Tomato DELLA Protein PROCERA Acts in Guard Cells to Promote Stomatal Closure番茄DELLA蛋白PROCERA在保卫细胞中促进气孔关闭摘要:植物采用气孔关闭和减少生长以避免缺水的损害。生长促进激素赤霉素(GA)的水平降低导致对水分亏缺的耐受性增加,但其基本机制尚不清楚。研究表明,番茄DELLA蛋白质PROCERA(PRO),是GA信号传导的负调节因子,在保卫细胞中通过增加对脱落酸(ABA)的敏感性来促进气孔关闭并减少水分亏缺。pro功能丧失的突变体在缺水胁迫下表现出增加的气孔导度和快速萎蔫。过表达植株组成型的激活稳定的DELLA蛋白(S-della),并表现出相反的表型。S-della对气孔开度和水分流失的影响在ABA缺失突变体sitiens(sit)中被强烈抑制,表明S-della的这些作用是ABA依赖性的。尽管DELLA对ABA水平没有影响,但与野生型相比,S-della中的保卫细胞ABA反应性增加,而pro植物中的保卫细胞ABA反应性降低。在保卫细胞特异性启动子的控制下表达S-della足以增加气孔对ABA的敏感性并在缺水胁迫下减少水分损失,但对叶片大小没有影响。这一结果表明DELLA促进气孔关闭独立于其对生长的影响。关键词:气孔调节;DELLA蛋白;保卫细胞;ABA1. 番茄DELLA pro功能丧失的突变体在缺水条件下表现出快速失水为了研究DELLA对植物水分状况的影响,本文测试了DELLA功能丧失的番茄突变体pro(Bassel etal.2008)对缺水胁迫的反应。在缺水处理开始之前,将所有植物灌溉至饱和。4d后,未灌溉的pro植株开始萎蔫,而对照植株生长正常(图1A)。干旱处理开始后第4天,pro的叶片相对含水量(RWC)降低了30%;而M82降低了10%(图 1B)。上午10点在pro植株中测得的气孔导度比M82的值高50%(图 1C)。使用称重传感器(蒸渗仪)监测温室中灌溉植株的全株蒸腾作用,同时记录每株植物的每日称重变化情况。Pro植株的每日蒸腾速率显著高于M82植株的测量值(图1D)。对取自灌溉中的pro和M82植株背面叶表皮的印记进行显微镜分析显示,pro(72 μm2) 植株的气孔面积远大于M82植株(37μm2;图1E)。 pro气孔略大于M82,二者密度相近(补充图1)。这些结果表明,在pro中观察到的快速失水是由于气孔孔隙面积增加,进而导致气孔导度和蒸腾作用增加。图2. DELLA 活性促进保卫细胞对 ABA 的反应在灌溉与缺水条件下M82、pro和proΔ17叶片中的ABA含量没有显着差异(图 5A),表明DELLA不会促进番茄叶片中ABA的积累。用不同浓度的ABA处理M82、pro和rgaΔ17叶片的去皮远轴表皮条,发现三种植株的气孔孔径均有不同程度的减小,这些结果表明DELLA活性影响保卫细胞对ABA的反应。除了对气孔关闭的影响外,ABA 还促进基因表达,P5CS1和RAB18两种基因在proΔ17保卫细胞中的表达显著高于M82(图 5D 和 5E),表明S-della组成性地促进保卫细胞中的 ABA反应。在H2O2积累的检测中,proΔ17保卫细胞对ABA的反应明显强于M82。在所有的M82、pro 和 proΔ17检查品系中山梨糖醇造成的气孔关闭程度相近(图5F),结果表明DELLA活性不参与ABA独立的气孔关闭。

应用实例

2021.11.22

博普特合作伙伴—Videometer公司网站全新改版和升级

Videometer公司总部位于丹麦,是一家专注于光谱成像、自动视觉测量和质量监控的高科技公司,为多个工业领域开发高性能视觉系统,产品应用于植物表型研究、种子表型组学研究、生态学研究以及食品监测如肉类、海鲜、蔬菜、水果、酸奶的商检、科研等领域。光谱成像技术、设备广泛用于质构、颜色、形态、光泽、形状以及表面化学精确测量等。目前公司多光谱表型成像产品有VideometerLab 4台式多光谱成像平台、便携式多光谱成像系统Videometer Minilab、VideometerMic显微多光谱成像平台、VideometerMR根系多光谱成像系统、VideometerLiq固、液两用多光谱成像分析平台(多光谱液体稳定性分析仪)、Videometer Lab UV紫外多光谱成像系统、VideometerLab XY高通量颗粒多光谱成像系统等。 目前利用其设备进行研究的文章发表在Nature等各个领域期刊上,目前科研人员已经利用Videometer设备发表了超过300篇左右文章。主打产品Videometer Lab是一款多功能多光谱成像设备,可进行多备选升级,广泛应用于在植物学、种质资源库建设、种子学、食品等各个领域。九月末Videometer公司市场部门对其网站进行了全新改版和升级,以适应植物表型组学、种子表型组学、根系生理生态研究、多光谱成像技术以及其它领域客户研究和应用的需求。Videometer中国合作伙伴北京博普特科技有限公司负责其全系列产品在中国市场的推广和销售。科技感十足的主页面新闻资讯丰富的产品线海量应用场景和案例

企业动态

2021.11.22

Videometer发布大成像面积多光谱植物表型成像平台

VideometerLab 500是一款大成像面积多光谱成像系统,用于快速、有效测定表面颜色、质构、化学组分,成像面积可达0.5X0.25米,主要针对要求单次成像面积大的应用领域,是VideometerLab 4的大成像面积升级版,可处理更大的样品,波段数量为14个,涵盖波长405-970nm,可广泛应用于植物病害成像、植物种质资源和表型研究,如叶片、种子表型和果实表型研究等,也用于食品、中草药、烟草、茶叶等研究。成像柜前视图VideometerLab 500采用了LED技术,组合测量可达多达14个不同波长并集成到1张高分辨光谱图像中,实现图谱合一测量。图像的每一个像素为反射光谱。该系统为一款先进的多光谱颜色、质构、成分综合分析仪,集成了可见光高清成像,紫外成像以及部分近红外成像等强大功能。此设备还可选配荧光测量模块,用于植物等荧光研究。此设备易于使用,该设备简单易用,集成了照明,相机以及计算机技术,具有强劲数字图像分析以及数据统计能力。该技术对于于对样品或表面的化学和可视特性定性测量特别有用,目前利用该技术发表文章超过300篇。技术参数1. 成像系统带扫描系统 、PC和选通控制器.2. 载物台、蓝带背景3. 存储箱带校准目标4.相机12.3M像素5、LED照明: 4 x LED板-14波长: 405, 430, 450, 470, 490, 515, 590,630, 660, 780, 850, 880, 940, 970 nm,集成RGB、紫外、部分近红外波段6、光源寿命长、可达10万小时7. 成像尺寸:4096 x 2048像素8. 视野:496 x 248mm分辨率0.121 mm/像素)9. 图像获取时间:1秒10. 尺寸:68(W)x 68(D)x82(H)11. 重量:65 kg12.电源: 100-240 VAC(PC和选通控制器)13. 环境条件14.VideometerLab-500 设备用于在以下环境条件下运行:环境温度: 10-30 °C湿度:20-80%湿度环境照明: 该设备适合室内多种照明条件,但不得暴露在直射阳光下震动:系统要取得最佳运行效果,需置于温度表面、远离持续震动 保护级: IP2014.软件:图像处理工具箱(IPT)、光谱成像工具箱(MSI)、斑点工具箱等。15.采用锥形体设计,提供均匀和弥散光线照明16.卓越的彩色测量功能,符合CIE标准17.备选滤波轮模块:长波滤光片设备一览:前门打开,插入装载台。锥形体照明舱配有LED板以及散射板,确保产品上散射、平稳光分布LL条件下大豆叶绿素a(a)和b(b)含量分布的可视化图。平行颜色条表示图像中的叶绿素含量。除DD(b)外,LL条件(a)下不同时间的大豆叶片在记录期间反射差分图像(彩色)在780nm处显示出不均匀性的节奏 。从大麦品种Guld、Scarlett、MS Bladplet、Rolfi获得的接种网斑病发展进程。(A)用于在2、4和9天检测接种网斑病的大麦植株的疾病症状的伪RGB图。(B)接种后2、4和9天,Guld, MS Bladplet, Scarlett与Rolfi疾病严重度以占叶面积(%)表示。通过VideometerLab软件估计发病面积,每个像素值被分类为有症状或健康。(C)在接种Guld、MS Bladplet、Scarlett和Rolfi品种8、24、48和120小时后,使用qRT PCR分析,根据DNA含量比较感染程度。将相对数量标准化用于样本模拟。以log2值和条形图代表的标准误差来自27个生物重复样本数据(p番茄单成熟突变体的果实性状。(A)与等基因突变体Cnr、nor和rin相比,野生型番茄(WT)、c.v.“Ailsa Craig”成熟进程经历了四个发育阶段:成熟绿[MG,花后37天(dpa)]、转绿(T,45 dpa)、红熟(RR,50 dpa)和过熟(或57 dpa)整体显示在左侧,纵向显示在右侧。图像由VideometerLab仪器采集和处理。条形图对应于2 cm。(B)测定了MG、RR和OR每个阶段的水果硬度(n=28-44)、总可溶性固形物(TSS)(n=5-12)和可滴定酸度(TA)(n=5-12)的测量值。误差条代表每个样本的生物复制品之间的标准误差。字母表示ANOVA和Tukey HSD计算的基因型和阶段之间存在显著差异(P≤ (C)在RR(n=22-34)和OR阶段(n=28-40),根据每个基因型的L*a*b*色标测量的外部颜色的主成分分析。重心由一个三角形表示,周围的椭圆表示95%的置信区间。接种禾谷镰刀菌)的普通小麦叶片的光谱特征以及相应的RGB图在多光谱图像上应用支持向量机方法(SVM)自动检测白粉病(PM)和HR。在(A,B)中,显示了多光谱图像的代表性区域。健康组织以绿色像素表示,PM疾病组织以蓝色像素表示(A)。红色像素表示正在经历HR(B)的组织。PM和HR像素按其与健康像素的比率(C)进行量化。定量分析显示,5天中的大量PM病变像素表明近等基因系WT易感病。Mla近等基因系可以通过大量的HR像素来识别。对于mlo近等基因系,两种模型的像素比率均较低。大豆未老化种子和老化种子类别12、24和48小时原始RGB图像以及在365/400 nm激发-发射组合下捕获的相应自体荧光图像(灰度和nCDA),显示种皮存在(a)和不存在(b)时的自体荧光模式。使用nCDA图像中具有不同自发荧光模式的种子在播种后8天进行发芽试验(c)。在nCDA图像中,基于10%修剪平均值计算像素值(自发荧光强度),以提供更真实的图像。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割蔓越莓果实硬度可视化研究

新品

2021.11.22

Plantarray高通量植物逆境生理研究平台-拟南芥研究1

Multiple Gibberellin Receptors Contribute to Phenotypic Stability under Changing Environments多种赤霉素受体有助于环境变化下的表型稳定性摘要:植物赤霉素GA响应的多效性和复杂性多依赖于由受GA激活的GID1受体所介导的DELLA蛋白的靶向蛋白酶解。番茄基因组编码一个DELLA蛋白PRO和三个受体GID1a、GID1b1和GID1b2,这些可能参与了特异性的GA响应。在本文中,作者利用CRISPR-Cas9系统构建了一个gid1突变体,并且研究了该突变体在GA响应方面的影响。gid1三突植株十分矮小,并且对于GA完全不敏感。在最优生长条件下,这三个受体功能存在冗余,而且gid1单突植株的表型改变并不明显。在这三个受体中,GID1a对于萌发和生长的作用最为强烈。酵母双杂试验显示GID1a与PRO具有最高的亲和力。对于只有一个激活受体的株系的分析显示GID1a具有延长GA响应的独特作用,并且该功能只有在高剂量的时候达到饱和。当gid1突变体生长在环境不稳定的大田条件下,这些突变体植株的表型也不是很稳定,不同GID1蛋白的冗余性消失,同时gid1a突变体的矮化程度要比gid1b更加严重。本文的研究结果显示番茄中存在多个GA受体作用于极端环境条件下的表型稳定。图1.番茄的GID1s为确认发挥GA受体的作用,将GID1a,GID1b1,GID1b2这三个基因分别转化进入拟南芥的gid1agid1c中,发现所有的基因都能回补拟南芥GID1缺失的半矮化表型。生化试验发现,三个GID1与PRO(DELLA蛋白)都有稳定的互作,表明这三个基因确实为GA受体基因。在番茄M82(野生型)中通过CRISPR-Cas9系统分别产生了GID1a,GID1b1和GID1b2突变体。然而,单个突变体并没有明显的表型,通过杂交获得了GID1的三突gid1TRI,该突变体显示出明显的矮化,生长缓慢,育性降低,并且纯合不萌发的表型。而PRO的功能获得型过表达材料也表现出矮化的表型,并且对外源施加GA不敏感。图2. 环境生长条件下GA 传感的冗余损失图3. GIDs在不同的环境条件下作用不同为更深入的研究GIDs的功能,研究人员将不同的突变体材料置于不同的生长环境条件下。在正常的生长条件下,一些gid1agid1b2展示出明显的矮化表型,通过对一系列生长参数的测定,发现GID1a在表型的稳定性方面有重要的作用。而在不利的生长条件下,gid1agid1b2展示出稳定的表型,表明GID1b1在不利的生长条件下有重要的功能。这些结果说明,在不利的环境条件下,番茄的三个GID1基因功能不存在冗余,对维持表型都发挥着重要作用。

应用实例

2021.08.27

Plantarray高通量植物逆境生理研究平台--拟南芥研究2

Relationship between Hexokinase and the Aquaporin PIP1 in the Regulation of Photosynthesis and Plant Growth己糖激酶和水通道蛋白PIP1在光合作用和植物生长调控中的关系摘要:水通道蛋白NtAQP1是一种已知的CO2和水的质膜通道,其表达增加可以增加光合作用和蒸腾作用的速率。而拟南芥己糖激酶1(AtHXK1)是一种调节糖传感的双功能酶,其表达增加会降低光合基因的表达和蒸腾速率并抑制生长。本研究表明AtHXK1 还降低了根和茎的水力传导率以及叶肉的CO2传导率 (gm)。由于NtAQP1和AtHXK1对植物发育和生理产生相反的影响,我们利用同时表达这两个基因的转基因番茄植株,在全植株水平上研究了它们之间的关系。NtAQP1显著促进了表达AtHXK1植物的生长并提高了蒸腾速率。相互嫁接实验表明,当两种基因在枝条中同时表达时,就会发生这种互补。然而NtAQP1对双转基因植物的水力传导率只有边际影响,表明NtAQP1的互补作用与枝条水分运输无关。相反,NtAQP1显著增加了叶肉的CO2传导性并提高了光合作用的速率,表明NtAQP1通过增强CO2的叶肉传导性促进了双转基因植物的生长。图1. AtHXK1 降低根部和茎的水力传导率  图2. NtAQP1补充AtHXK1介导的生长抑制对表达AtHXK1水平升高番茄品系的根际传导率和茎水力传导率进行了测定(图1)。 HK37、HK4和HK38品系的HXK活性分别比WT 植物高约2、5和6倍。具有AtHXK1高表达的HK4和HK38品系的根际水力传导率(Lr)和木质部茎水力传导率(Ksx)显著低于WT植物(图1A和1B)。以上表明AtHXK1降低了根部水力传导率和茎水力传导率。同时表达AtHXK1和NtAQP1的双转基因AQP1 x HK4植株的株高、叶面积均高于亲本HK4(图2),这表明NtAQP1补充了AtHXK1的生长抑制作用。为了验证这种互补效应不是AtHXK1表达降低引起的,检查了HXK的活性以及糖感应效应。双转基因植株中的HXK活性与HK4亲本相似,比对照WT和AQP1(纯合子)亲本植株的活性高约7倍(图2D)。本文还研究了HXK对成熟的糖传感光合作用标记基因CAB1表达的影响,已知该基因 由AtHXK1抑制。AQP1 x HK4中的CAB1表达被抑制,水平与HK4植株相似(图2E),表明AtHXK1介导了双转基因植株的糖感应效应。这些结果表明NtAQP1的生长互补效应并非源于HXK活性的抑制,而可能是由于NtAQP1的上位生理效应。图2. 相互嫁接和整株植物相对每日蒸腾作用为了研究AtHXK1引起的蒸腾作用和生长减少以及NtAQP1对其的补充作用是否对根或茎产生明显的影响,本试验将WT、AQP1和HK4茎接到WT、AQP1和HK4的根上,共九种的组合型植株。研究发现AtHXK1仅在茎中表达时才抑制生长,与根基因型无关(图 5A)。同理,嫁接植物的累积全株相对日蒸腾量表明,AtHXK1仅在茎中表达时,蒸腾量降低了约 50%,与根基因型无关(图5B)。这些结果表明NtAQP1和AtHXK1在根或枝条中的单独表达不足以实现NtAQP1对AtHXK1表型的互补,并且只有两个基因在枝条中同时表达时,NtAQP1对AtHXK1效应的互补才会发生。

应用实例

2021.08.27

Videometer植物显微表型在植物病理学研究中的应用

植物病理学是研究植物病害的病原、发生、发展以及防治的一门应用学科。它以植物病害为研究对象,探讨发病的原因,或在解剖学、生理学或生物化学上,探讨感染和症状出现的过程。为了确立防病和治病的方法,还研究形成病原的环境条件、病原体传染途径以及病害的诊断法等,另外还研究防病的药剂对病原体或植物体的药理作用,以及包括所有与植物病害有关的广阔领域。多光谱成像系统是近年来出现的技术,可广泛应用于植物病理学研究,利用丹麦Videometer公司生产的VideometerLab多光谱成像系统发表的文章多达数百篇,VideometerLab含19个多光谱波段以及可见光波段,同时实现光谱以及图像成像。植物病害当一株健全的植物受到干扰,导致器官和组织的生理机制局部的或系统的反常植物自身表现了病状(symptom),并能从患病部位提取出的物质具有相应病原物的病征(sigh),就是发生了植物病害。干扰植物正常生理机制的因素,主要是外来的,内在的因子导致遗传性病害;外来的因子有的是非生物性的,有的是生物性的。因此,根据诱发病害因子的本质,植物病害可分为非侵染性病害和侵染性病害两大类。非侵染病害植物在长期的进化历程中,逐渐适应了各种不断变化的环境,产生了较强的适应能力。但对各类环境因素的适应能力有一定限度,如果植物所处的环境中某些物理如光照、水分、温度或化学因素如营养元素失调再货生存环境发生恶化,连续不断影响植物,其强度又较过植物忍耐限度,就会对植物的生长发育产生不利影响,扰乱正常生理和代谢活动,甚至对植物造成严重伤害,使植物在生理和外观上表现异常,产生病变。侵染病害侵染性病害是植物病原物在外界条件影响下相互斗争并导致植物生病的病害具有感染性。常见的植物病原体有真菌如黑粉病、锈病、白粉病等;卵菌如腐霉、霜霉等;原核生物以细菌为主如土壤杆菌、支原体、衣原体等;病毒如马铃薯Y病毒、黄征病毒、烟草花叶病毒等;高等植物如菟丝子、列当独脚金等;原生动物如线虫。其中以细菌、真菌、病毒、支原体和线虫诱发的病害较普遍和严重,尤以真菌性病害为较,如水稻的瘟病、小麦锈病、棉花的萎蔫病等。各种病原体的生理、生态、增殖方法和生活史以及侵染寄主的方式、途径和时期各不相同。 多光谱显微表型成像系统是一套能够实现微米级物体多光谱图像采集的仪器,它不仅保持了显微镜对微小区域实时成像的特点,具备了采集该区域物体280~1050nm波段内光谱以及RGB融合图像的能力,可普遍应用于微纳光学、材料学、生物技术等领域。下图为显微光谱测量系统整机图。显微光谱测量系统可分为三个模块:照明模块、光谱接收模块以及成像模块。照明模块为10个-20个LED高功率光源组成,物体可获得明亮且均匀的全场照明。光谱接收模块以及成像模块为CCD相机,在测量光谱的同时,可以实现物体图像实时采集。特点操作简便:多光谱显微表型成像系统同时具备多光谱测量和RGB测量功能模块;该系统可实现对微小物体的区域选择及定位(标配成像面积为3cmX3cm),分辨率可达1um/像素;测量能力强:具备传统显微镜所不具备的显微多光谱测量功能,传统显微镜只能提供图像的获取,从而对物体进行形貌分析,该系统额外具备目前先进的表型成像技术,可对形态、尺寸等进行有效测量,获得物体的显微多光谱信息。多光谱显微表型成像系统,在保有物体图像采集的功能外,还可对物体进行不同区域光谱的采集与分析,较进一步的了解物体的纹理、结构与特性;扩展功能多:包含显微尺度的透反射、荧光等显微光谱测量,较大限度满足各类的科研需求。成像特点快速、无损检测包括处理在内每样品处理仅需10-20秒与其它破坏性技术组合高灵活性测量主要专注:可重复洗、可追溯性、耐用性、可传递性显微荧光标记检测VideometerMic多光谱显微表型成像系统是一套突破性的多光谱成像系统。采用了少有的光谱成像检测技术。在提高信噪比和多靶点标记的检测方面,完全克服了传统成像技术的限制。可应用于植物、细胞、基因或蛋白芯片等研究领域,是一套功能强大的成像系统。该基础模块包括10个-20个散射波段,波长范围为280-1050nm,摄像头可固定或移动,集成的多光谱传感器安装在XYZ平台上,实现30cmX30cm的样品自聚焦和扫描,可测量较小的样品,可用于拟南芥种子、细菌、真菌、虫卵、细胞等成像。 VideometerMic多光谱显微表型成像系统将传统多光谱成像系统升级为多光谱成像系统。该系统具有强大荧光标记的检测、分离和分析功能。在明场或暗场的应用方面同样具有其它系统所无法比拟的功能,在分析过程中,通过系统设置的激发光源组和内置在10-20位滤波轮中的一系列滤波器激发植物样品中各种发色团的动态荧光。样品激发出的荧光经显微镜放大后进行荧光光谱分析和成像分。VideometerMic多光谱显微表型成像系统是目前功能强大、全面的多光谱显微表型成像系统,可以进行微藻、单个细胞、单个叶绿体甚至基粒-基质类囊体片段进行图像荧光分析;还能通过激发光源组进行进行任意荧光激发和荧光释放波段的测量,从而进行GFP、DAPI等荧光蛋白、荧光素以及藻青蛋白、藻红蛋白、藻胆素等藻类特有荧光色素的成像分析;较可以利用光谱仪对各种荧光进行光谱分析,区分各发色团。VideometerMic多光谱显微表型成像系统是一款跨越微观与宏观表型研究的系统,结合了显微镜和多光谱表型成像特征,使科研工作者在细胞和亚细胞层次深入理解植物生理表型,VideometerLab 4的所有表型工具均适用于该系统。利用Videometer多光谱成像技术研究小麦根部病害小麦是全世界最重要的作物之一,对全球食品安全至关重要。“Take-all ”根病害是由子囊菌真菌Gaeumannomyces tritici(Gt)致病,可穿透根并毁坏维管系统。形成的黑色坏死斑破坏了养分和水吸收,导致减产达60%。其它密切相关子囊菌真菌品种,例如G. hyphopodioides(Gh),却是对抗“take-all”病的生物控制剂。G.hyphopodioides可侵染外皮质根层,但与“Take-all”不同,其不会侵入到中间部位,特征是在菌表面和亚皮下囊泡形成灰色菌丝。来自英国的科学家研究重点是对高级成像技术进行评估,以对根定植进行真菌检测和精确定量,通过测量光合参数评估对地上部健康的影响。研究中使用了VideometerLab 多光谱成像系统。图中显示“Take-all”感染小麦幼苗。左侧是原始图像,有红色箭头标示“take-all ”损失,用手工评分;右图是相同图像经‘VideometerLab’分析,将根组织分类为感病(蓝色)和健康(桔色/黄色)。具体实验步骤:A 5-week time-course seedling pot bioassay was set up using 250g of soil from Webb’s Field on the Rothamsted Farm, UK.An artificial inoculum layer derived from PDA plates contained Gt, Gh or an uncolonised control. The pots were baited with 10 seeds of the wheat cultivar‘Hereward’, and kept in a controlled environment room. Each week, the pots were visually assessed for the presence of necrotic lesions, greying and vesicles. The level of infection was recorded as the proportion of roots showing at least one area of fungal colonisation, making this a semi-quantitative method of assessment. Potentially, imaging could provide a more efficient method to assess root colonisation, allowing the affected root area to be accurately quantified and also removing the subjectivity that can be associated with manual scoring. Consequently, a key question was: can multispectral imaging be used to quantitatively assess and distinguish between Gt and Gh seedling root colonisation?Multispectral imaging was accomplished using a ‘VideometerLab’ imager, a system that uses 19 different wavelengths ranging from UV to the NIR. Training images were taken of healthy roots, and those colonised with Gt or Gh. These training images were used to build statistical transformations, which were subsequently used to score pixels as corresponding to healthy or colonised root tissue. The threshold pixel score chosen ensured that, in the case of Take-all, only the dark black lesions were scored. The ‘VideometerLab’ and visual assessments of Take-all colonised roots showed a significant correlation (Spearman’s Rank, Rs = 0.670, p = Prior to harvesting the roots for the imaging described above, a LemnaTec ‘PhenoCenter’ was used to evaluate the impact of fungal root colonisation on above ground plant health. Specifically, a PAM fluorescence camera was used to evaluate photosynthetic efficiency in the foliage. This technique is based on the observation that light energy absorbed by photosystem II can be dissipated via three routes: photochemical reactions, dissipated heat or as fluorescence – it’s the competition between these processes which is exploited to quantify photosynthetic parameters. While a small reduction in photosynthetic efficiency was observed for the Take-all infected plants, no significant difference was observed between the Gh and control pots. These are encouraging results as it would be undesirable for Gh to impact photosynthetic efficiency if used as a biocontrol agent.利用Videometer多光谱成像系统对藜麦霜霉病成像藜麦(Chenopodium quinoa)是一种作物,营养丰富,在多个国家广有种植。真菌病如霜霉病限制了谷物产量,培育抗性品系,如抗霜霉病品系是藜麦育种的中心目标。利用常规RGB成像来测量藜麦对霜霉病的表型反应(Peronospora variabilis ) 测量比较困难,原因在于来自不同藜麦基因型在叶片上有不同绿色和红色斑点进行干扰,参见图1和图2。 开发图像分析规程来区分健康藜麦叶片组织以及感染霜霉病的藜麦叶片组织。研究利用Videometer多光谱成像系统对严重度程度表型和孢子形成进行研究。严重程度是叶片正面损伤的面积占整个叶片面积的百分比。依基因型不同,颜色可为桔色、黄色或红色。孢子形成是损伤部上方孢子量,以百分比测量,通过测量叶片正面进行评估。  图1 叶片正面严重度症状图2 叶片正面孢子形成多光谱图像分析研究人员利用VideometerLab 4多光谱成像系统进行多光谱成像,积分球确保对样品的均一照明(图3)。每个获取的图像层由19个不同图像波段组成,波长涵盖365nm(UVA)到970nm(NIR)。图像的每个像素分辨率为~41 µm。每个图像层的分辨率为2192X2192像素。图像分析严重度模型从G9基因型叶片正面(图4)清楚看到了黄化现象(A),拍摄了RGB图像(常规相机,人眼可见光波段。(B)和(C)显示了多光谱图层中的2个波段,蓝光490nm(B)和黄光570nm(C)。对健康植物组织和黄化界定进行了初始标记,首次转换建立了模型(D),通过nCDA(归一化典型判别分析将19个波段信息(图像中多个图层),转换为了整个图层的代表像素范围值。之后切割(E和F),可用于所有图像-所有品系和基因型,获取有黄化组织(E黄色)百分比定量分析,该特定叶片比例为68.0%,或者包括红色覆盖孢子区(F),比例为18,9%,黄化(黄色)比例68%,孢子和黄化区综合面积占比75.8%。 图像分析孢子形成在叶片正面(底部),RGB图像中的G9基因型清晰可见到孢子形成图像(下底部A和B放大)。尽管在可见光波段很难检测到单个波段,这里特别标出了蓝光波段(490nm)(C)。进入NIR(780nm)波段(下左部的D和E放大),清晰看见了孢子。使用该信息(仅标识黑灰色孢子)可帮助我们区分切割孢子像素(F),并将该面积定量,该叶片孢子比例为12.5% (黄色显示),不包括黄化部分面积。另外,此处的孢子标识与正面图像分析而言更加保守。 覆盖的非黑灰区的像素部分 (像素比单个孢子要大)估计,孢子比例为~23%(此处未予以显示)。图4(A) sRGB图像。(B),490nm(蓝光),(C),570nm(黄色),(D) 转换,(E)和(F),2种类型定量分割。图5(A) sRGB 图像,(B)490nm(蓝光),(C) 570nm(黄色),(D)转换,(E)定量分割。结果图6:133个基因型的平均严重程度(%)分布表1手工以及基于多光谱表型成像的藜麦霜霉病互作研究对相关的132个藜麦基因型对霜霉病的表型反应进行了研究。设置了3个实验,每个有4个区块,配有复制控制样品以及非复制基因型样品。找到了对P. variablilis 反应变异大的藜麦基因型,发现了基因型对互作有着显著影响 (p-value = 1.18 x 10-18) 图6。研究人员对图像表型研究结果进行了比较,研究人员正在开发适合覆盖整个反应的算法。该综述中,研究者展示了与G9基因型相对应的叶片图像。结果总结在表1中,来不同区块和试验的分属不同植株的10片叶子取了平均值。结论多光谱成像如严格按照规程使用、记录完善的话,是非常强劲的表型工具。对图像定量基于算法应用,这需融合对疾病反应的经验和知识。对孢子形成,菌丝萌发,渗透,侵染面积以及健康组织识别可提供更加近似的像素标识。目前研究人员已经开发出了可应用于藜麦霜霉病互作的应用于损伤组织算法。 利用Videometer多光谱成像系统研究镰刀菌抗性 科学家开发了一种多光谱成像算法来评估小麦对镰刀菌(F. graminearum and F. culmorum)的抗性。获取结果与VDA方法视觉疾病评估)和qPCR方法进行了比较。研究目标是选择新型、快速的表型方法来替换现有评价的VDA抗性评估方法。视觉疾病评估方法与Videometer在不同生理阶段对麦穗和群体的相关性(360-1050nm)比RGB成像区分效果要好传送带上获取图像 VideometerLab® 以及传送带2056x2056 像素/波段1000粒种子扫描仅需5-10 min镰刀菌感染区域鉴别感染镰刀菌小麦粒                   CDA图像基于典型判别分析(CDA)分析感染麦粒(黄/红),未感染 (蓝色) 镰刀菌损害麦粒定量(FDK)-分类像素的阈值化-Excel 结果输出材料和方法实验设计:- 喷洒接种:F.graminearum & F.  culmorum- 冬小麦: 5栽培种  (抗性控制)- 25 麦穗(2个重复)(使用 VDA和 Videometer)田间视觉评分:  360°C dpi : % 结痂小穗 ; % FDK成熟 : % FDKVideometer : % FDK培养皿-单穗:第1次重复25穗/cv-散装:≈从第2个重复的25个穗中收集1000粒/cv传送带‒散装≈从第二次重复的25个穗中收集1000粒/cvqPCR-5个品种≈第二次复制的1000粒/cv-研磨每个品种的所有果仁,并从50 mg面粉中提取DNA-具有特定TaqMan的qPCR® F.graminearum的探针结果在不同生理期的不同个体麦穗和群体相关性总结% 结痂麦穗s & % FDK 单个麦穗 &群体‒ Videometer: 培养皿 & 传送带‒ 360°C dpi评分 & 成熟 VDA (360°C麦穗和麦粒成熟) 与Videometer在麦粒成熟度上有很强相关性,以下模块:‒单独麦穗& 群体‒ Videometer带培养皿和传送带在其它试验中,用F. graminearum接种,观察到了Microdochium spp自然侵染的微弱相关性。2.qPCR, VideometerLab® 和VDA的疾病评估相关性。在qPCR 于带传送带的Videometer 评估群体采集麦粒之间有高度相关性(R=0.91),qPCR与 VDA 在 360°Cdpi也有高度相关性(R=0.95),验证了VideometerLab® 在成熟阶段麦粒精确评估、快速定量镰刀菌的能力,这与抗性分类相一致。结论与展望使用VideometerLab®集合开发算法,在评价感染镰刀菌(Fusarium graminearum)和culmorum 的抗性时取得了很好的结果。更多时间将在更多品系小麦以及谷物上进行。针对该应用还可开发更多的算法。

应用实例

2021.07.29

丹麦Videometer固/液体稳定性分析仪测定仪

Videometer Liq是一款易于使用的多光谱成像系统,用于快速、精确测定固/液体产品的稳定性和不稳定性。系统为全配系统,集成了频闪LED、相机以及计算机技术,具有强劲的数字图像分析和处理功能。主要应用于乳液、酸奶、饮料、果汁、油漆、化妆品、沥青,纳米材料,研磨材料等。Liq可用于配方研究及液体稳定性控制分析,凭借全新的多光谱测量原理以及方便的操作,目前已成为胶体实验室在进行分散体系稳定性实验并进行机理研究的优选仪器。能在不稳定现象所发生的初期的定性定量地分析出现象的机理和速度,不仅为我们判断配方的可行性及产品的质量稳定性提供有效准确的数据,而且大副度缩短我们的实验时间。光谱工具技术参数光源:19个散射前照高能LED光源,波长范围365nm-970nm。1个NIR亮视野背光灯图像尺寸:2192X2192像素(备选3000X3000像素)分辨率:-41μm / 像素(备选-30 μm /像素)动态范围:根据应用优化,使用自动光设置校准:2个反射校准靶和1个几何校准靶进行绝对反射校准。简单向导程序,仅需3分钟样品尺寸:检测直径开口110mm耗材:50ml可弃置细胞培养瓶,带阀门。备选灭菌。瓶最大填充高62mm全套分析:每个样品5-10秒设备尺寸:480mm(高)X585mm(宽)X590mm(长)便携箱尺寸:570mm(高)X500mm(宽)X710mm(长)重量:21kg(净重),33.5kg(毛重)电源:100-240VAC,50/60 Hz环境温度:操作:5-40℃,储存:-5-50℃环境湿度:20-90%RH,非冷凝PC要求:最低配置:Intel i7或更佳,16GB RAM,USB2端口,USB3超速端口软件:Microsoft Windows 7/8.1/10 Professional 64 bit,Windows全更新版硬件备选:滤色镜转换器(荧光)软件备选:图像处理工具盒(IPT)、光谱成像工具盒(MSI)、斑点工具盒(Blob)主要特点直接对样品整体做稳定性评估。提供直接而快速可靠的分析方法,评估分散体系或其分离行为(沉降、悬浮、澄清,纳微米粒径及分布)。可同时测量多个样品。可进行低浓度至高浓度的样品分析如悬浮液、乳化液、泥浆、沉淀物、凝胶等等。操作简便,不需稀释样品或对样品特别处理。应用领域适用于食品和饮料,药品,化妆品,乳液,悬浮液,生物溶液,香精香料,废水处理(沉降剂),浆料,原油,沥青,纳米材料,研磨材料,油漆涂料,染料,燃料电池等各种液体,半固体样品的研究开发和质量控制。应用案例巧克力牛奶稳定性监控

新品

2021.06.02

Plant Phenomics | 无人机高光谱影像在玉米自交系作物性状估算中的应用

传统的作物表型分析费时费力,效率较低,不能满足作物育种高通量筛选的需要。近年来,无人机及传感器的快速发展为作物育种提供了新方法。在作物育种中,品种间的表型性状差异较小,数码和多光谱图像不足以反映材料间的差异。无人机高光谱图像在捕捉细微特征信息方面具有独特的优势,有望准确估计育种材料间的相似性状。目前,将无人机高光谱图像应用于数百种育种材料的报道很少。近日,Plant Phenomics在线发表了中国农业大学数字农业研究团队题为The Application of UAV-Based Hyperspectral Imaging to Estimate Crop Traits in Maize Inbred Lines的研究论文。本研究利用连续投影(SPA)和竞争性自适应重加权(CARS)2种变量筛选方法和偏最小二乘(PLS)和随机森林(RF)2种回归模型,分析无人机高光谱图像在小区水平上高通量的估计玉米自交系表型性状的潜力。研究表明,采用无人机高光谱图像估算玉米地上部生物量(AGB)、叶面积总量(TLA)、SPAD值和千粒重(TWK)具有可行性,并确定了各自的最优估算模型。对于 AGB、TLA 和SPAD, 最优组合是CARS-PLS,而TWK的最优组合是CARS-RF。研究结果对采用无人机高光谱图像在小区水平上估算玉米自交系主要性状具有指导意义和应用价值。图2 无人机高光谱成像系统Figure 2: UAV-based hyperspectral imaging system.图4 各参数与高光谱的相关性(a)及各参数之间的相关性(b)Figure 4: Correlation diagram between the traits and the hyperspectrum (a) and the correlation diagram among traits (b).图5 基于不同波段组合的地上部生物量反演比较Figure 5: Aboveground biomass (AGB) prediction using different band combinations and the PLS or RF model.图6 基于不同波段组合的叶面积总量反演比较Figure 6: Total leaf area (TLA) prediction using different band combinations and the PLS or RF model.图7 基于不同波段组合的SPAD反演比较Figure 7: SPAD value prediction using different band combinations and the PLS or RF model.图8 基于不同波段组合的产量反演比较Figure 8: TWK prediction using different band combinations and the PLS or RF model.图9 基于CARS-RF组合的玉米TWK预测结果。不同材料基因型的箱线图(a)和产量水平百分比图(b)Figure 9: Prediction results of maize TWK based on the optimal combination of the CARS-RF method. Boxplot (a) and percentage chart of the yield levels (b) of different genotypes of materials.论文第一作者为中国农业大学土地科学与技术学院博士研究生束美艳,论文通讯作者为马韫韬教授,合作者包括中国农业大学的李保国教授、杨小红教授,河南农业大学的汤继华教授,内蒙古生物技术研究院的王瑞利研究员。该研究得到国家重点研发计划项目(2016YFD0300202)、内蒙古科技重大(2019ZD024)、成果转化(2019CG093)和科技厅项目(2020GG00038)的支持。团队简介中国农业大学数字农业研究团队主要研究方向为多源尺度的植物功能-结构-环境互作的基因型/表型研究。包括植物根/冠生长与环境交互的模型研究、植物三维表型与基因型关联分析、基于无人机和多源传感器融合的植物生长监测。论文链接https://spj.sciencemag.org/journals/plantphenomics/2021/9890745/——推荐阅读——Classification of Rice Yield Using UAV-Based Hyperspectral Imagery and Lodging Featurehttps://spj.sciencemag.org/journals/plantphenomics/2021/9765952/Plant Phenomics | 结合无人机高光谱图像和倒伏特征构建水稻产量类别检测模型Repeated Multiview Imaging for Estimating Seedling Tiller Counts of Wheat Genotypes Using Droneshttps://spj.sciencemag.org/journals/plantphenomics/2020/3729715/Plant Phenomics | 使用无人机多视角成像技术估算小麦幼苗分蘖数About Plant Phenomics《植物表型组学》(Plant Phenomics)是由南京农业大学和美国科学促进会(AAAS)合作创办的英文学术期刊,于2019年1月正式上线发行,是Science合作出版的第二本期刊。采用开放获取形式,刊载植物表型组学交叉学科热点领域具有突破性科研进展的原创性研究论文、综述、数据集和观点。具体范围涵盖高通量表型分析的最新技术,基于图像分析和机器学习的表型分析研究,提取表型信息的新算法,作物栽培、植物育种和农业实践中的表型组学新应用,与植物表型相结合的分子生物学、植物生理学、统计学、作物模型和其他组学研究,表型组学相关的植物生物学等。期刊已被CABI、CNKI、DOAJ、PMC和Scopus数据库收录。说明:本文由《植物表型组学》编辑部负责组稿。中文内容仅供参考,一切内容以英文原版为准。编辑:周灿彧(实习)、鞠笑、孔敏审核:尹欢

应用实例

2021.04.27

利用Videometer多光谱技术以及磁共振成像进行种子病害分析

近期,科学家利用Videometer多光谱技术以及磁共振成像对麻风树种子病害进行了分析,发表了题为“A novel approach for Jatropha curcas seed health analysis based on multispectral and resonance imaging techniques”的文章,文章发表在Industrial Crops and Products Volume 161, March 2021, 113186上。摘要:基于强大的光谱空间传感器,已经在现代种业领域开发出了革新性的先进的技术。本研究中,我们提出了一种基于多光谱成像和机器视觉算法结合来鉴定麻风树种子健康的一种新方法。另外,我们首次介绍了一种基于MRI(核磁共振成像)的新方法来鉴别感染了不同致病真菌的麻风树种子的解剖学变化。首先,首先将种子人工接种龙眼焦腐病菌(Lasiodiplodia theobromae), Colletotrichum siamense(炭疽病菌)以及Colletotrichum truncatum(大豆炭疽病,在接种 24, 48, 72, 96, 120, 144和168 h后拍摄多光谱照片。研究使用了MRI方法,种子接种了168h。研究结果表明多光谱成像技术结合统计模型可在接种48h后,区分麻风树种子感染的不同真菌,精度高 (>80 %)。推荐的MRI方法可鉴别出感染了L. theobromae, C. siamense 和 C. truncatum 的内胚组织的不同损伤模式。由此推断,多光谱成像和MRI技术是快速、精确检测麻风树种子不同真菌类型的有用工具。A novel approach for Jatropha curcas seed health analysis based on multispectral and resonance imaging techniquesInnovative methods have been developed in the state-of-the-art technologies based on robust spectral-spatial sensors for modern seed industry.In this study we proposed a novel approach based on multispectral imaging combined with machine learning algorithm to classify Jatropha curcas seed health. Furthermore, we present for the first time a methodology based on magnetic resonance imaging (MRI) to identify anatomical changes in J. curcas seeds infected with different pathogenic fungi. First, seeds were artificially inoculated with Lasiodiplodia theobromae, Colletotrichum siamense and Colletotrichum truncatum, and multispectral images were acquired after 24, 48, 72, 96, 120, 144 and 168 h of incubation. The MRI method was applied using incubated seeds for 168 h. Our results showed that the multispectral imaging technique combined with statistical models has the potential to distinguish different fungal species in J. curcas seeds after 48 h of incubation, with high accuracy (>80 %). The proposed MRI methodology allowed the identification of different damage patterns in the endosperm tissues infected with L. theobromae, C. siamense and C. truncatum. Therefore, multispectral imaging and MRI can be useful tools for rapid and accurate detection of different fungal species in J. curcas seeds.KeywordsOptical sensors,Machine learning,Seed health,Lasiodiplodia ,heobromae,Colletotrichum siamense,Colletotrichum truncatum

应用实例

2021.04.07

Videometer多光谱分析系统如何提升水稻种质资源利用效率

多光谱成像,是快速、强劲的管理基因库品系的方法,比较典型的是Videometer多光谱成像系统。该无损技术可测量不同种子表型,例如在数秒内完成种子尺寸、形状和颜的测量(图1a)。该设备还可进行种子净度测量,例如可比较繁殖种子与原种子进行对比。在基因库网站分享基础种子表型信息将对种子使用者基于目标选择正确品系有很大帮助。多光谱成像,例如Videometer拍摄的多光谱图像,在作物健康研究中非常有用。种子红色、紫色或其它任何颜色种皮可能含有提升健康的酚类化合物。与传统操作昂贵、人员成本高、需破坏种子的生物化学分析相比,多光谱成像分析可提供基于颜色性状的、成本低的可靠数据分析。 Multispectral imaging, through the use of an instrument such as the Videometer, is a fast and robust approach helpful for managing genebank accessions. This non-destructive technique can measure various seed phenotypes, e.g., seed size, shape, and color within a few seconds (Figure 1a). It can also perform seed purity tests to compare regenerated seeds with the original seeds. Sharing basic information of seed phenotypes through the genebank website would be helpful for seed users to choose the right accessions based on their purposes. Multispectral imaging, such as that obtained by the Videometer, is very useful in healthier crops research programs too. Red, purple or any other colored pericarps in seed contain health promoting phenolic compounds . Comparing with conventional biochemical assays that require expensive operational and labor costs as well as destruction of many seeds, multispectral imaging analysis can provide reliable data of color -based traits with minimal cost. 33. Hansen, M.A.E.; Hay, F.R.; Carstensen, J.M. A virtual seed fifile: The use of multispectral image analysis in the management of genebank seed accessions. Plant Genet. Resour. 2016, 14, 238–241.34. Boelt, B.; Shrestha, S.; Salimi, Z. ; Jørgensen, J.R.; Nicolaisen, M.; Carstensen, J.M. Multispectral imaging —A new tool in seed quality assessment? Seed Sci. Res. 2018, 28, 222–228.37. Mbanjo, E.G.N.; Jones, H.; Caguiat, X.G.I.; Carandang, S.; Ignacio, J.C.; Ferrer, M.C.; Boyd, L.A.; Kretzschmar, T. Exploring the genetic diversity within traditional Philippine pigmented Rice. Rice 2019, 12, 27.

应用实例

2021.04.07

德国推出新品Comb 5000土壤八参数测量仪

德国STEPS公司在二月底新推出了COMBI 5000土壤八参数综合测量仪即在原有的五参数测量仪(土壤ph、盐度、电导率、含水率、温度)的基础上新增加了空气湿度、温度和压力传感器。对重要植物的营养状态参数进行专业、快速测量,COMBI 5000土壤八参数综合测量仪采用了先进的微处理器技术,可自动识别传感器。连上传感器后,测量单位自动改变为相应的测量模式。校准时,自动缓冲液识别功能可确保操作的高舒适性。此手持防水分析仪配有德语和英文菜单 (备选: 法语、意大利语、西班牙语、俄语)。Combi单台仪器可选择多种单传感器,详细配置如下。新增空气温度、湿度和气压传感器HPT订购时刻同时订购集成数据采集器,可将所有数据记录下来。使用USB电缆,所有数据都可存储与设备中并转移到计算中。使用COMBI 5000 App可将所有Combi 5000测量值进行数字化。通过APP评估可确保来自不同培养土壤所有测量值的存储和解读。单台设备实现植物营养5参数测量:pH 测量EC 测量活度测量 土壤湿度 温度Combi 5000土壤五参数综合测量仪pH + EC + 活力 + 湿度+ 温度-COMBI 5000可以自由搭配pH 测量仪-pH5000应用:土壤、基质、溶液pH测量,例如灌溉水OMBI pH 5000 主机,pH插入电较, pH 4 和 pH 7缓冲液 (各100 ml ),探针存储液 (3 mol KCL, 100 ml),打孔棒,说明书(较佳pH值参考值), 铝制运输和存储箱。货号10390:pH 5000全配EC测量仪-EC5000应用:液体和溶液盐电导测量。量程可达200 mS,可有效测量肥料溶液。COMBI EC 5000 主机: EC 探针(铂传感器,标准溶液111.8 mS 和1.4 mS(每种50 ml ),100 ml,量杯,说明书(带较佳值),铝制运输存储箱。 货号10290:EC 5000全配活力测量仪-AM 5000应用:直接测量土壤盐度(考虑到相关土壤性质,如土壤湿度、温度和土壤紧实度COMBI AM 5000 主机, AM不锈钢探针(25 cm),说明书(较佳值),铝制运输存储箱。货号10190 AM 5000全配 湿度测量仪-MST 5000应用:在土壤和基质中直接测量土壤湿度和温度COMBI MST 5000 主机,土壤湿度探针、说明书、铝制运输和存储箱。货号10850:MST 5000全配COMBI 5000交货范围:COMBI 5000 主机pH 插入探针pH 4缓冲液(100 ml)pH 7缓冲液(100 ml)EC探针,铂电较1.4 mS标准溶液(50ml)111.8 mS标准溶液(50ml)多功能电较250mm打孔棒250ml喷瓶100ml量杯说明书(较佳值)铝制运输和存储箱北京博普特科技有限公司是德国STEPS公司中国区总代理,全面负责其系列产品在中国的推广、销售和售后服务。

新品

2021.04.07

北京博普特科技有限公司诚招区域销售经理

北京博普特科技有限公司成立于2008年,坐落于中国农业大学国际创业园,是一家专注于研发、生产、系统集成、销售技术服务一体化的高科技公司,公司主要高管毕业于中国农业大学、中国农业科学院等先进研究机构并与国内外生命科学、植物相关科研机构建立起了密切合作关系,国外科研伙伴包括根特大学VIB所、法国农业科学院、德国Frauhofer研究院等。公司主要为生物、植物、食品、生态行业提供高端科研仪器以及系统解决方案,公司运营团队拥有丰富仪器行业经验,尤其具有丰富的光谱学设备经验,技术和销售团队由专业博士和硕士组成,工程师团队拥有多年售后维修经验。 公司近年来多次参展世界顶级相关会议,如国际植物学大会以及植物学科年会,得到了广大业内客户的高度认可。  招聘职位:区域销售经理(5人)  北京  武汉  广州  石家庄 岗位职责: 1、植物、农业(包括遗传育种)、林业、生态、资环、以及植物表型设备等科学仪器的销售以及推广; 2、负责开拓新市场,发展新客户,增加产品销售范围;3、负责市场推广活动,开发新市场; 4、负责辖区市场信息的收集及竞争对手的分析; 5、负责销售区域内销售活动的策划和执行,完成销售任务; 6、负责管理、协调大区内代理商。 招聘要求: 1、农学、园艺、植保、遗传育种、植物生理生化、生态、林业、栽培、草学等本科、硕士学历 2、优秀的沟通能力和总结能力,会使用现代化的办公工具; 3、有作为产品发言人参加研讨会或发表过技术论文的优先; 4、优秀的常规技术故障排除能力; 5、有项目管理经验的优先; 6、具有强的执行力并适应工作压力,胜任频繁出差工作(大区内); 7、有驾照优先。 公司福利: 1、公司福利待遇优厚,良好的发展前景,欢迎想成就事业的有志人士加入我们的团队; 2、五险一金、绩效奖金、交通补助、餐补、通讯补贴、带薪年假、团建旅游、节日福利等福利; 联系人:刘女士地址:北京市海淀区天秀路10号中国农大国际创业园3号楼6040

企业动态

2021.03.08

德国STEPS土壤盐度计、酸度计、土壤多参数测定仪年末促销活动

PNT3000土壤原位盐度计功能参数便携式土壤盐分测试仪PNT 3000(植物营养检测仪)用于测量土壤或基质的盐碱度,测量中要考虑相关土壤的性质,如土壤湿度、温度和紧实度(硬度)。盐碱度是通过总溶解盐的浓度来进行测定的。这些盐在水中或悬浮液中呈自由态,可以通过测定电导率(EC)来测量。但在土壤,腐殖土和其它大棚介质中,盐可能并未完全溶解。探针由不锈钢制成,配有3种不同长度。无需特殊的储存条件和维护。随同PNT 3000活度计,还配有植物应用指导手册(较佳参数参考),以及简易操作手册,图文并茂,即学即用。外壳:坚固防水尺寸:180x85x50mm电源:9-Volt-battery,>4000次测量插座:5-pin plug重量:280g活度测量:0~10 activity in g/L分辨率:0.01 activity in g/L校准:出厂校准,无须再次进行校准探针:具有特殊2-针传感器的不锈钢探针长:250、500和750 mm使用范围推荐使用便携式PNT 3000实施现场土壤盐碱度的检测,无需进行土壤采样和土壤制备过程,适合于:处于各种生长时期,如繁育期和成熟期的盆栽植物苗圃:尤其是采用缓释施肥的盆栽植物景观: 高尔夫球场绿地,运动场地等需要在生产过程中进行即时检测的腐殖土制备过程堆肥厂:避免堆肥中盐分过高社区、地方政府:过冬后土壤中氯离子浓度的测定顾问、咨询员、销售员使用等大学、学院、园艺/农业教育机构PH3000土壤原位酸度计功能参数pH3000是一款先进的可满足土壤或水分pH测量的仪器。该仪器专为土壤和其它生长介质的pH测量而设计。外壳坚固,适合野外作业,防尘、抗湿。较新研发的充胶插入式探针不易损坏。它有3个陶瓷隔断(通常只有一个用于标准电较),因此可实现快速反应,持久耐用。较新设计:探针内配有KCl储液池,该设计可以防止电解液稀释,以免其失去H+的导电能力。内置的KCl溶液无需频繁较换。将电较浸入缓冲液内即可实现校准。只需按下对应缓冲液对应按键即可实现自动校准。集成的稳定指示器显示何时校准程序结束。pH 3000还备有可替换的mV测量方式,可用来检测传感器质量并有低电量指示功能。外壳:坚固防水尺寸:180 x 85 x 50 mm电源:9V电池 > 4000次测量插座:BNC 插座重量:280 gpH 测量量程:0 ~ 14 pH分辨率:0.01 pH精度:0.02 pH (测量值)校准:自动2点校准探针特设插入式玻璃探针(3隔)PNT 3000COMBI+土壤盐度电导率仪功能参数PNT 3000 COMBI +具备两种重要测量功能:土壤和基质(活度)盐碱度直接测量以及溶液与悬浊液电导率测量。PNT 3000 COMBI+是一款整合了PNT 3000 和EC 3000功能的较新仪器。新的COMBI+ 提供了扩展的电导率量程:0~20 mS ;0~200 mS 。该设计使堆肥有效测量成为可能,以前只有EC 3000有此功能。外壳 坚固、防水设计 尺寸 180 x 85 x 50 mm 电源 9伏电源, > 4000 次测量 插座 5针插头 重量 280 g EC 测量 量程 2 量程 0~20 mS, 0~200 mS 分辨率 0.1 mS 精度 ± 2%测量值 探针 玻璃探针,配2环铂传感器 温度 0~ 60°C自动盐度测量外壳 坚固防水尺寸 180 x 85 x 50 mm电源 9-Volt-battery, > 4000次测量插座 5-pin plug重量 280 g活度测量量程 0~10 activity in g/L分辨率 0.01 activity in g/L 校准 出厂校准,无须再次进行校准 探针 具有特殊2-针传感器的不锈钢 探针长 250mm(标配)、500和750 mm(选配)COMBI 5000土壤多参数测定仪功能参数COMBI 5000分析仪可对较重要植物的营养状态参数进行专业、快速测量,主要测量指标有ph、盐度、电导率、含水率、温度。COMBI 5000 采用了较先进的微处理器技术,可自动识别传感器。连上传感器后,测量单位自动改变为相应的测量模式。校准时,自动缓冲液识别功能可确保操作的高舒适性。此手持防水分析仪配有德语和英文菜单 (备选: 法语、意大利语、西班牙语、俄语)。外壳:防水、坚固 连接器:BNC和8-针插头电源:9V电池>4000  测量                          尺寸:180 x 85 x 50 mm 重量:280 g土壤水分及温度测量水分/温度量程:0 - 100 %  -20 - 80°C精度:± 2 %  ± 0,8 °C分辨率:0,10 %  0,1 °C输出:数字 RS 485,配T-Bus总线协议或模拟 0 - 10 V电压:数字:4 - 24 VDC和 模拟: 12 - 24 VDC尺寸:182 x 30 x 12 mm应用:土壤或基质的水分和温度直接测量pH 测量量程:0 - 14 рН 分辨率:0.01 pH 精度:0.02 pH 测量值校准:3-点校准自动识别 pH 4、 7 和10缓冲液探针                                 专门设计插入式玻璃探针,带 3 陶瓷隔膜EC 测量量程:0 - 200 mS    分辨率:0.001 - 0.01 mS(依据量程)精度:± 2 % (测量值)校准:校准值: 0.084 / 1.41 /5.0 / 12.88 / 111.8 mS/cm温度补偿:自动温度补偿探针:EC-探针,铂传感器应用:液体和溶液电导测量(盐度测量)盐度测量量程:0 - 10( g/L) 分辨率:0.01( g/L )校准:出厂已校准,无需再校准探针:不锈钢,配特殊2针传感器探针长:250, 500或 750 mm应用:土壤和基质中直接盐度测量产品详细资料:便携式土壤盐分测试仪-土壤盐度计PNT3000便携式高精度土壤原位PH计PH3000技术参数/图片土壤电导率、盐度一体测定仪土壤五参数测试仪促销活动详情:促销时间:1月25日—2月28日促销方式:降价15%联系方式:010-82794912   18310840911小韩

企业动态

2021.01.25

博普特将参展中国作物学会2020学术年会

第十九届中国作物学会学术年会将于2020年11月8日-11日在湖北武汉召开,会议地点在武汉欧亚会展国际酒店,此次大会由中国作物学会主办,华中农业大学承办,中国水稻研究所水稻生物学国家重点实验室、湖北省农业科学院、长江大学、湖北省作物学会协办。。大会以“粮食安全与绿色发展”为主题,以大会报告、分会场报告、研究生论坛、墙报及论文交流等形式开展学术交流。涉及作物基因挖掘与分子育种、作物种质资源与遗传改良、绿色丰产高效栽培与乡村振兴以及作物信息与智慧农业等交流内容。大会将邀请我国作物科学领域学者做大会学术报告,并为广大青年学者搭建不同形式、不同层次的学术交流平台。作物学会学术年会是每年一度的作物科学学术交流盛宴。大会主题:粮食安全与绿色发展会议网址:http://meet.chinacrops.org会议时间:2020年11月8日-11日会议地址:武汉欧亚会展国际酒店主办单位:中国作物学会承办单位:华中农业大学协办单位:中国水稻研究所水稻生物学国家重点实验室、湖北省农业科学院、长江大学、湖北省作物学会自2017年起,北京博普特科技有限公司就持续参展作物学会学术年会,今年我们将继续参展该学术盛宴,博普特公司展位号为1号,欢迎广大客户和经销商莅临我司展位。会上,我们将在展位展示植物表型组学以及植物生理生态产品和解决方案,博普特植物表型组学产品和解决方案简介如下。一.室内植物表型成像系统WIWAM温室植物表型成像系统温室多光谱激光表型成像系统室内自动表型成像机器人 二.田间表型成像系统Phenomobile田间高通量表型系统  Airphen LITERAL田间便携式多光谱表型成像系统 三.种子表型成像系统台式多光谱种子表型成像系统 Videometer对种子病害的研究 四.根系表型成像系统VideometerMR根系多光谱成像系统 Frauhofer植物根系计算机CT断层扫描系统除了以上产品,VideometerLiq液体稳定多光谱成像系统、VideometerMic显微多光谱成像系统、STEPS植物生理生态监测系统、土壤养分测量系统、植物养分测量系统、土壤5合1多参数测量仪、土壤直测PH计、盐度/活度检测仪;Pessl植物生态环境智能传感器平台、植物物候远程监测系统、Inno-concept植物活力胁迫测量系统、植物抗逆研究测量系统;Aquation水陆两用叶绿素荧光检测系统、经典和手持叶绿素荧光仪、Aquation水下光合呼吸测量系统;SeQso高通量种子表型成像系统、精准播种系统以及自动种子分拣系统(X光、多光谱、高光谱、叶绿素荧光);EMS便携式物联网乙烯气体分析仪;Cleangrow多参数离子测定仪、植物工厂自动8离子测定仪均为我司代理产品。 北京博普特科技有限公司拥有全面植物表型成像和植物生理产品和系统解决方案,致力于为植物科学和植物表型组学发展提供产品和解决方案。

企业动态

2020.08.31

< 1 2 3 > 前往 GO

北京博普特科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位