您好,欢迎访问仪器信息网
注册
浙江祺跃科技有限公司

关注

已关注

银牌4年 银牌

已认证

粉丝量 0

科学仪器行业成长潜力企业

400-860-5168转4687

仪器信息网认证电话,请放心拨打

当前位置: 祺跃科技 > 最新动态 > 北工大张跃飞线上解读最新顶刊锂电性能衰退原位电镜研究成果

北工大张跃飞线上解读最新顶刊锂电性能衰退原位电镜研究成果

祺跃科技

2021/05/28 10:55

阅读:771

分享:

直播预告6月1日,北京工业大学材料与制造学部张跃飞研究员将会在仪器信息网举办的“第三届离子电池检测技术及应用网络会议上,在线为大家讲解其团队近期发表在国际顶级期刊ACS Energy LettersIF:19)上,关于离子电池材料表界面改性与性能衰退机制原位电子显微学研究成果。

直播时间:6月1日下午16:00-16:30

报告人:北京工业大学材料与制造学部研究员 张跃飞

报告题目:锂离子电池材料表界面改性与性能衰退机制原位电子显微学研究

免费报名链接:https://www.instrument.com.cn/webinar/meetings/ldc2021/

成果概述

为了探究循环过程中富镍二次颗粒内部体相微结构的演变过程,近日,北京工业大学材料与制造学部张跃飞研究员和吕俊霞副研究员等人通过构建扫描电镜-电化学工作站联合测试系统,以LiNi0.8Co0.1Mn0.1O2(NMC-811)正极为研究对象,开展了电池工况条件下的原位扫描电子显微学研究。在纳米级分辨水平实时观察到了富镍正极NMC-811二次颗粒在充放电循环过程中内部微裂纹形成与扩展的演变过程,表征了不同电压窗口下正极材料裂纹的产生过程,发现了高电压充放电裂纹更容易形成,初始裂纹均形核于颗粒内部,并沿着晶界向外扩展。直接的实验证据研究表明NMC-811二次颗粒内部裂纹形成后随充放电循环次数呈现“生长-暂停-生长”的周期性扩展规律。这些结果在纳米分辨水平展示了层状正极材料充放电早期裂纹产生的全景图像,对进一步提升NMC-811的循环寿命提供了直接实验依据。

博士研究生程晓鹏为本文第一作者,共同第一作者为李永合博士(德国卡尔斯鲁厄理工学院(KIT)洪堡博士后),其他主要参与作者曹天赐,吴睿,王明明均为北京工业大学在读博士生。


扫描电镜(SEM)-电化学工作站观察真实电池循环中单个富镍NMC-811正极颗粒内部变化的装置示意图。该原位电池结构和组成与真实扣式电池一致,包括锂负极,隔膜,和NMC正极。两侧的Cu和Al集流体通过特制接口连接到外部电化学工作站。为保持更加接近商业化电池的液态反应环境,采用饱和蒸汽压极低的离子液作为电解质,从而能够维持在电镜高真空环境中稳定传输锂离子。同时采用特制夹具固定电极施加压力,装置上方敞口,用于原位扫描观察形貌,颗粒截面通过聚焦离子束(FIB)技术切割制备得到。

如下视频显示,当截止电压从4.1 V增加到4.7 V时,NMC-811粒子内部出现裂纹。

如下视频显示,NMC-811粒子在截止电压4.7 V下的动态裂纹演化。

报告人简介

张跃飞-北京工业大学 研究员.jpg

张跃飞:男,博士,北京工业大学材料与制造学部研究员,北京市长城学者,博士生导师。北京工业大学凝聚态物理理学博士,师从中国科学院张泽院士。美国麻省理工学院核科学与工程系访问学者(2014-2015),香港城市大学高级研究员(2013)。长期从事原位电子显微学相关方法与仪器开发,并致力于原位微观力学性能表征方法、高温合金和能源材料的微观结构与性能关系等方面研究。发表论文150余篇,授权发明专利20余项。研究成果曾获国家自然科学二等奖、北京市科学技术奖一等奖、入选中国高等学校十大科技进展。

开发完成了自主知识产权的扫描电子显微镜原位高温力学性能测试仪器,拓展了扫描电子显微镜的原位分析测试能力,为先进材料的研发提供新设备、新技术、新手段。

报告摘要

电极材料的性能衰退机制普遍认为是一种电化学-力学耦合行为,研究人员已经认识到必须深入研究锂离子电池电极材料的动态微结构与性能的演变过程,深刻理解二者的关联机制,才能为锂离子电池的结构优化提供参考。原位电子显微学包括原位透射电子显微镜(TEM)和扫描电子显微镜(SEM),因其实时,动态观察的优势,可以作为理想手段在来精确表征电极材料实时的应力诱导微裂纹的演变过程、充放电机制,进而揭示性能优化的内在机理。 本报告将介绍利用原子层沉积(ALD)对锂离子电池正极材料表界面的改性和利用原位电子显微学揭示不同正负极材料在实际电化学循环过程中的微结构演变以及电化学-力学行为的研究结果。


推荐产品
供应产品

浙江祺跃科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:
友情链接:

仪器信息网APP

展位手机站