您好,欢迎访问仪器信息网
注册
凯尔测控试验系统(天津)有限公司

关注

已关注

金牌4年 金牌

已认证

粉丝量 0

400-875-0887

仪器信息网认证电话,请放心拨打

当前位置: 凯尔测控 > 解决方案 > 北科大&香港大学&北京工业大学重磅Science!

北科大&香港大学&北京工业大学重磅Science!

2024/07/26 13:22

阅读:9

分享:
应用领域:
材料
发布时间:
2024/07/26
检测样品:
其它
检测项目:
浏览次数:
9
下载次数:
参考标准:
GB T 50152-2012

方案摘要:

继2022年3月17日,北京工业大学首次以第一单位在Science 发表研究论文以来,时隔两年,今日再发Science!

产品配置单:

分析仪器

电磁动态疲劳高频试验机 M-12000

型号: M-12000

产地: 天津

品牌: 凯尔测控

面议

参考报价

联系电话

方案详情:

2022317日,北京工业大学首次以第一单位在Science 发表研究论文以来,时隔两年,今日再发Science

图片
此外据悉,早在202413日,北京工业大学刚以第一完成单位在《Nature》发表首篇论文。
图片
陶瓷材料固有的脆性,主要由于刚性离子或共价键结构限制了原子的运动,是一个长期存在的挑战。
这一特性阻碍了陶瓷材料中位错的形核,从而阻碍了通过金属中常用的位错工程策略来提高其塑性。
寻找一种能够在陶瓷材料中持续生成位错的策略,可能会提高其塑性。
在此,来自香港大学的黄明欣、北京科技大学的陈克新以及北京工业大学的王金淑等研究者提出了一种“借用位错”策略,利用具有良好有序键的定制界面结构相关论文以题为“Borrowed dislocations for ductility in ceramics”20240725日发表在Science上。
图片
陶瓷材料,在许多应用领域中表现出优异的特性,包括高硬度、高强度、出色的耐腐蚀性和显著的耐高温性。这些特性使陶瓷在航空航天和汽车工程、能源储存、电子和半导体等多领域中具有广泛用途。
然而,由于强化学键的存在,陶瓷在常温下本质上是脆性的,这导致位错形核所需的阈值应力很高,并阻碍了位错的起始。在极端条件下预先引入大量的位错是可行的;这可以实现约1015 m-2的位错密度,从而有效提高陶瓷的韧性。
然而,一旦这些预先引入的位错耗尽,要在持续变形中形核新的位错变得困难,从而触发化学键的断裂并最终导致灾难性的失效。因此,陶瓷中位错形核的高阈值应力大大限制了通过位错工程策略来改善塑性的潜力。
因此,许多策略被用来通过替代机制实现陶瓷更好的塑性。例如,在研究者的前期工作中,研究者通过在相干界面上的键交换改善了氮化硅陶瓷的压缩塑性。
然而,在陶瓷中实现拉伸延展性仍然是一项更具挑战性的任务,主要是由于在拉伸载荷下位错形核的难度,即使是微小的缺陷也会在位错起始前引发过早的开裂
为了赋予陶瓷材料拉伸延展性,一种值得探索的途径是引发这些材料内连续的位错生成。为此,研究者提出了一种借用位错策略。该策略通过从金属中持续借用外部形核的位错并将其引入陶瓷,从而绕过直接在陶瓷中形核位错的困难。这样,借用位错所需的临界应力显著低于陶瓷中位错形核的理论阈值,从而为陶瓷中位错的连续传播和增殖提供了更为便捷的途径。
为了实施借用位错策略,需要建立一个专门的金属-陶瓷位错传输通道。一个化学上有序键合的金属-陶瓷界面(研究者称之为有序键合界面)是必需的,以承受借用位错所引起的巨大应力。
此外,确保金属与陶瓷之间晶面连续性和对齐,对最小化跨界面位错滑移的能垒至关重要。同时,这种对齐有助于减轻界面处位错积累引起的应力集中。
基于以上这两个标准,在此,研究者定制了有序键合界面,旨在构建金属与陶瓷之间的位错传输通道,强调不仅仅通过比较晶格对称性和参数来建立界面。研究者确定了氧化镧(La2O3)陶瓷作为一种能够与钼(Mo)金属形成这种有序键合界面的材料。
研究者进行了密度泛函理论(DFT)计算,以阐明该界面上的高相干性和强化学键。研究者的DFT结果显示,在La2O3陶瓷和Mo金属之间的有序键合界面上,粘附能(或分离能)显著增加,超过了无序键合界面的粘附能。
这种增强的粘附能有望提高借用位错的滑移传递过程,使La2O3-Mo体系成为验证研究者借用位错策略的有希望候选者。因此,研究者通过定制有序键合的La2O3-Mo异质界面结构,制备了借用位错的La2O3陶瓷(DB La2O3),以展示这一策略。
这种方法通过在界面处从金属借用大量位错并将其引入陶瓷,从而显著提高陶瓷的拉伸延展性,克服了陶瓷内部直接形核位错的难题。这一策略为增强陶瓷的拉伸延展性提供了一条可行途径。
图片
1 DB La2O3的微观结构和化学键合计算。
图片
透射电子显微镜(TEM)下的室温原位拉伸测试。
图片
陶瓷中的位错行为。
图片
在透射电子显微镜(TEM)下对DB La2O3样品进行原位拉伸和弯曲测试。
图片
研究者提出的位错机制。
综上所述,尽管La2O3作为一种具有六方晶体结构的陶瓷材料,传统上在室温下缺乏延展性,但借用位错策略使La2O3陶瓷能够通过借用大量金属辅助位错束来提高拉伸延展性。
此外,研究者已将这一策略扩展到其他陶瓷-金属体系,如CeO2-Mo。在具有萤石结构CeO2中,研究者也观察到大量位错,从而表现出良好的拉伸延展性。
【参考文献】
L. R. Dong et al. ,Borrowed dislocations for ductility in ceramics. Science 385,422-427(2024). DOI:10.1126/science.adp0559


下载本篇解决方案:

资料文件名:
资料大小
下载
解决方案.docx
79KB
相关方案

双轴原位试验机的实际应用及案例分享

目前研究材料变形主要采用单轴力学试验方法。单轴力学实验操作简单,容易得到较为可靠的试验数据,在工业应用和实验研究中被广泛利用。但是在实际服役过程中材料通常会受到多轴载荷的作用而发生断裂失效,这使得材料的力学响应、变形机理及失效机制较单轴而言要复杂的多。此外,在不同成型工艺的加工过程中材料也常处于多轴应力状态,在成型过程中出现的制耳现象,冲压件断裂位置和极限成型高度的改变等现象都与板材在成型过程中的多轴力学响应有关。

材料

2024/07/24

激光定向能沉积CrCoNi中熵合金循环深冷处理后的组织、耐蚀性和磨损性能

激光定向能沉积(LDED)加工的零件在反复加热和冷却的条件下具有相当大的残余应力,严重限制了工业应用。在这项工作中,采用循环深冷处理(CDCT)对设计制造的中熵合金(MEA)进行残余应力和微观组织的调整,目的是研究CDCT循环次数、残余应力和MEA微观结构之间的关系。本研究为提升LDED形成的中熵合金的应用提供了新的思路。

材料

2024/07/01

预测深矩形缺口试样低周疲劳寿命新方法

工程应用领域中含缺口部件已成为广受关注的重要构件类型。本文设计了一种新的具有深矩形缺口的圆棒试样,通过实验与数值模拟相结合的研究方法,探究了其低周疲劳行为,并构建了基于缺口形状的寿命预测新方法。

材料

2024/06/28

低温下相变引起的异常加工硬化行为研究

在许多合金中都会观察到相变诱导塑性(TRIP)效应,这种效应有助于在外部施加应力下显著提高延展性并产生相变,通过亚稳态母相中的马氏体相变变进行材料硬化。对于面心立方(FCC)结构的合金,可以通过调整层错能(SFE)来调节应变诱发马氏体的发生。SFE是一种成分和温度相关的特征,它决定了变形机制:在高SFE时发生位错滑移,在中间范围发生变形孪晶,在低SFE时则产生马氏体相变。为了增加应变诱导马氏体的数量,通过降低工作温度从而降低层错能被认为是产生TRIP效应的有效手段。 商用316L不锈钢在低温条件下仍能保持高的强度以及高的延展性,被认为是低温应用材料的优先选择。在本工作中,报道了316 L不锈钢在15K下的原位中子衍射研究,研究了低温下不锈钢材料的相变和加工硬化行为。研究结果表明,316L奥氏体不锈钢在不同变形阶段的应变诱发马氏体相变和多种变形机制的协同作用对加工硬化率的影响是显著的。

材料

2024/06/26

推荐产品
供应产品

凯尔测控试验系统(天津)有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 凯尔测控试验系统(天津)有限公司

公司地址: 天津市津南区双港丽港园28号 联系人: 周女士 邮编: 300300 联系电话: 400-875-0887

友情链接:

仪器信息网APP

展位手机站