您好,欢迎访问仪器信息网
注册
深圳摩方新材科技有限公司

关注

已关注

银牌5年 银牌

已认证

粉丝量 0

400-860-5168转4666

仪器信息网认证电话,请放心拨打

当前位置: 摩方精密 > 公司动态
公司动态

中国材料盛宴 | 摩方精密赋能多领域的创新之光!

2023年7月10日,为期三天的“中国材料大会2022-2023”圆满落幕,全国1.9万余名材料科技工作者、1500余位杰青长江学者、50余位两院院士齐聚一堂,共同探讨学术发展前沿,碰撞智慧火花。本届大会是立足于国家全面推进高水平科技自立自强的大背景下举办的一次跨学科、跨领域、跨行业的学术交流大会,是中国新材料界学术水平最高、涉及领域最广、前沿动态最新的超万人国家级品牌大会。在本次盛会中,重庆摩方精密科技股份有限公司(以下简称:摩方精密)隆重亮相17号馆,展示了多样化的自主研发材料及超高精密3D打印解决方案,以满足不同领域的应用需求。多年来,摩方精密自主研发了多种具有不同性能的超高精密成型材料,包括高强度、高硬度、耐高温、韧性和生物相容性等材料。此次展出的材料样件是通过摩方精密的微纳3D打印设备制备而成,吸引了众多专家学者和各行业企业家前来参观,并受到了广泛关注和好评。摩方精密的超高精密3D打印解决方案为各行业提供了定制化的制造工艺,通过3D打印技术,可实现复杂结构和超高精密部件的快速制造,减少了传统制造工艺过程中的材料浪费和加工时间。同时,还可实现产品设计的灵活性和创新性,在科研、工业制造、航空航天、医疗等领域具有广泛的应用前景。例如,在科研领域,可用于制造具有复杂结构的材料样品,用于研究、培训和医疗实践等,提高实验的效率和准确性;在工业制造领域,可用于制造高强度和高硬度的零部件,提高产品的质量和可靠性;在航空航天领域,可制造轻量化的零件,降低飞行器的重量和燃料消耗;在医疗领域,可用于制造生物相容性好的医疗器械和植入物,提高治疗效果和患者的生活质量。摩方精密的技术和产品为不同行业的发展提供了新的机遇和可能性,并有望推动科学研究、工业制造等多领域创新的进一步发展。microArch® S230为了满足客户在精密样件加工尺寸、加工效率和加工材料等方面的需求,第二代摩方精密2μm精度3D打印系统microArch® S230具备了更大的打印体积(50mm×50mm×50mm),最高可提升5倍的打印速度,并且可以兼容树脂和陶瓷材料。通过配置激光测距系统,实现了打印平台和离型膜的调平。同时,配备滚刀涂层系统后,能够加快液面流平时间,扩大对各种树脂种类的支持范围,例如耐候性工程光敏树脂、韧性树脂、生物兼容性树脂和陶瓷浆料(如氧化铝、钛酸镁)等功能性复合材料。此外,材料的多元化也拓展了新的应用领域,例如毫米级微波应用(如5G天线、波导、太赫兹、雷达等电子元器件)、新能源器件和精密零件等。这不仅满足了工业领域对终端产品功能性和耐用性的需求,而且为科研领域开发新型功能性复合材料提供了支持。microArch® S240备受瞩目的microArch® S240设备荣获全球光电科技领域最高奖——"棱镜奖(Prism Award)"。该产品继承了第一代S140打印机在高精密度方面的特点,具备10µm的打印精度和±25µm的加工公差。为了更好地满足客户在精密结构件加工尺寸、加工效率和加工材料等方面的需求,S240拥有更大的打印体积(100mm×100mm×75mm),最高可提升10倍以上的打印速度,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大地满足了工业领域对产品耐用性的需求,同时也为科研领域开发新型功能性复合材料提供了有力支持。7月9日上午,在D18-仿生材料分论坛上,摩方精密产品应用部经理彭瑛博士作了《PμSL微尺度3D打印技术及其在仿生领域的应用》的主题报告。她精彩地分享了摩方精密PμSL技术在仿生领域的应用案例,包括仿南洋杉的3D锯齿结构(液体择向输运)、仿弹尾虫表皮结构(可控亲疏水性)、仿松针结构(液滴定向输运)、仿树蛙脚掌多级微纳结构(界面湿增摩效应)和多孔模结构(水下单向流)等。她指出:“摩方精密的专利技术——面投影微立体光刻技术(PµSL)是一种微米级精度的3D光刻技术。这一技术利用液态树脂在UV光照下的光聚合作用,借助滚刀快速涂层技术大大缩短了每层打印的时间,并通过打印平台的三维移动逐层累积成型,制作出复杂的三维器件。因此,PµSL技术成为仿生领域原型器件开发验证和终端零部件小批量制备的最佳选择。”报告结束后,彭博士受到了热烈的掌声。同时现场观众对公司产品表达了浓厚的兴趣,并向彭博士提出了关于产品性能、制造工艺和应用领域等方面的问题。彭博士以丰富的知识储备和经验,清晰地回答了观众们的疑问,详细介绍了公司产品的特点和优势。这使得观众们对公司产品有了更深入的了解,现场的热烈反应进一步验证了摩方精密在技术与研发上的实力与前景。新材料是战略性新兴产业发展的基石。我国新材料产业已经进入了一个快速发展的阶段,技术创新不断推动着产业的发展,应用领域不断拓展,成为支撑新一代信息技术、节能环保、高端装备制造等重要产业的关键材料。作为增材制造行业发展的先行者,摩方精密在“创新之都”深圳,与众多专家学者、企业家、行业同仁齐聚一堂,共同推动增材制造行业的创新与发展。未来,摩方精密将充分利用材料行业的资源禀赋,不断加强研发投入,探索新材料、新工艺的应用,从而提升整个材料产业链的附加值。我们相信,通过持续不断地努力和创新,摩方精密将引领材料发展的潮流,在众多领域提供颠覆性的生产制造方案!

企业动态

2023.07.12

香港中文大学:基于屈曲不稳定性编码的非均质磁化实现软材料结构动态形貌的调控

拥有主动变形能力的三维可变形结构在自然界中广泛存在,可有效提高生物对复杂环境的适应性。受这一特性启发,研究人员已开发了多种基于水凝胶、液晶高分子、硅胶弹性体等的软材料体系,在外界不同条件的刺激下(如化学溶剂、温度、酸碱度、光等),实现了各式三维结构的可控形貌变换(Nature 2021, 592, 386;Nature 2019, 573, 205;Nature 2017 , 546, 632)。 但是,目前已有的方案主要基于软材料形貌的准静态调制,如何实现多种尺度下多模态各向异性形貌与结构的动态调控,非常具有挑战性。近期,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授,联合香港城市大学张甲晨教授、中国科学技术大学王柳教授,提出了一种新型的软材料结构动态形貌调控方法。该团队结合硬磁性颗粒与弹性体制备得到磁性弹性体,并使其在一端受限的条件下溶胀产生可控的屈曲结构,接着加以磁化形成各向异性的三维磁畴分布。得到的磁性弹性体在外界可编程磁场的驱动下,能够实现多模态三维形貌的动态可控变换,在微流体操纵、软体机器人等领域中具有广阔的应用前景。相关研究成果以 “Dynamic morphological transformations in soft architected materials via buckling instability encoded heterogeneous magnetization” 为题发表在国际著名期刊《Nature Communications》。 图 1. 条带形与晶格状磁性弹性体的动态形貌调控示意图。如图1所示,该研究首先将未充磁的钕铁硼微颗粒掺入硅胶弹性体前驱体中,在亲水修饰的玻璃基底上固化形成一端固定的条形或晶格结构。接着将其置于与硅胶极性相似的有机溶剂中(如甲苯、正己烷等),由于溶剂分子被弹性体吸收并扩散至高分子网络中,引发磁性弹性体的溶胀行为。但是,由于一端受到基板约束,磁性弹性体溶胀形成的轴向压缩力只能使其非均质变形,最终产生屈曲结构。屈曲结构的具体三维形貌可通过弹性体的三维尺寸、人造缺陷乃至晶格连接方式进行精准调控。此后,将屈曲变形的磁性弹性体置于强脉冲磁场下(约2.5T)磁化,再浸泡于不相溶的溶剂中(如乙醇)收缩至原始的条形或晶格结构,能够得到一定程度上“记忆”屈曲变形形貌的三维磁畴分布。此时,施加不同强度、方向或梯度的外加驱动磁场,磁性弹性体基于内部磁畴与外加磁场的磁偶极相互作用,便可产生如波浪、褶皱等的多模态动态三维变形。这种基于不稳定性屈曲变形设计并排布软材料内部磁畴取向(即“磁编程”)的方法,无需额外的模板设计与辅助,便可快速实现各向异性的非均匀磁化分布的。结合外加可调制磁场的精准驱动,能够产生自由度远超准静态形貌调制的多模态动态形貌变换。此外,如图2所示,为了阐明磁性弹性体的调控机制,该研究团队开发了一套分析模型与有限元计算方法,在条形和晶格结构屈曲变形、充磁乃至磁控变形的过程中,可有效反映并预测各参数对动态形貌的影响行为,可为今后磁性软体材料的设计和开发提供一定参考。 图 2. 屈曲变形编码的磁性弹性体的理论分析模型。(a-b)条带形与晶格状磁性弹性体的屈曲变形模型。(c-d)条带形磁性弹性体的理论与实际屈曲变形行为。(e)条带形磁性弹性体的磁化与磁驱动变形模型。(f-g)条带形磁性弹性体在不同几何尺寸与连接条件下的理论与实际屈曲变形行为。(h-i)条带形磁性弹性体的理论与实际磁畴取向分布。(j)条带形磁性弹性体的理论与实际磁驱动变形行为。最后,通过利用各式屈曲变形产生的不同微流体行为(如定向流体、混合流体、涡流),该研究结合高精度3D打印技术(nanoArch S130,摩方精密)制备的微型模板、微流控芯片和尺寸定制的微颗粒,成功将磁性弹性体用于液滴的可控融合与精准操控(图3),颗粒的尺寸筛选,微液滴的富集检测,微流控的混合增强,以及软体机器人的可控驱动(图4)。总之,香港中文大学张立教授团队与哈尔滨工业大学(深圳)金东东副教授提出了一种利用屈曲不稳定现象编码的新型磁编程方式,用以实现软材料结构形貌的动态调控,为今后磁性软材料跨尺度的多模态变形行为提供了一种研究手段,有助于今后更好地理解自然界中复杂形貌变换的潜在机制,拓展可变形结构在格式工程领域的应用价值。 图 3. 屈曲变形编码的条形磁性弹性体在外加驱动磁场下的动态行为。a-c. 不同磁场参数下产生的不同微流体分布。d-e. 在液滴融合与可控运输中的应用。 图 4. 屈曲变形编码的磁性弹性体在微颗粒尺寸筛选(a),微液滴富集检测(b),微流控辅助混合(c),软体机器人运动控制(d)中的应用示例。原文链接:https://doi.org/10.1038/s41467-022-35212-6

应用实例

2023.07.11

受蓝环章鱼启发的仿生微针贴片,用于组织内局部按需给药

组织内局部用药具有起效快、药物生物利用度高和侵入性小(微创)等优点,可以在抑制肿瘤生长、减少器官疾病或加速创伤愈合等方面提供快速、有效的治疗手段。然而,这种给药方法的全面应用仍有许多问题有待解决。例如,当应用于口服或腹腔给药时,与给药到干燥并且坚硬的组织表面相比,药物载体对被体液或渗出液润湿的软组织表面的粘附更具有挑战性,从而增加药物损失的可能性。与此同时,如何将药物穿透粘液或渗出液等障碍输送到目标给药区域也是值得考虑的问题。此外,在很多情境下,例如抗炎、抗心绞痛以及抗肿瘤治疗等,也需要对药物释放的浓度进行控制,从而实现药物的快速起效,并维持长期治疗效果。目前,相关研究虽然已经开发出一些具有穿刺能力并实现药物在组织中受控释放的给药平台,以及其它可以粘附在组织表面的表面给药湿粘附平台,但是仍然很少有配方能表现出足够优异的性能,以满足组织内局部用药的所有临床需求。蓝环章鱼以其精致的外观和致命的毒性而闻名,它可以在潮湿的环境中牢牢抓住猎物,将其送到嘴里,咬穿猎物的外壳并喷出毒液杀死猎物。据麦姆斯咨询报道,受蓝环章鱼捕食行为的启发,来自浙江大学和四川大学华西口腔医院口腔疾病国家重点实验室的研究人员开发了一种具有可控药物输送能力的湿粘附微针贴片——丝素蛋白(SF)-普朗尼克F127(F127)-聚(N-异丙基丙烯酰胺)(PNIPAm)微针(SFp MNs)贴片,以实现组织表面粘附和有效的局部用药。该微针贴片是利用摩方精密的 nanoArch S140 3D打印设备加工模具经翻模制备而成。相关研究成果以“Blue-ringed octopus-inspired microneedle patch for robust tissue surface adhesion and active injection drug delivery”为题发表在Science Advances期刊上。图1 受蓝环章鱼启发的药物输送微针贴片具体而言,研究人员采用间接3D打印技术制备了完整的SFp微针贴片。简单来说,研究人员模仿蓝环章鱼的触手,设计了具有吸盘的SFp贴片系统的基底层,然后将仿生微针集成到该SFp贴片系统的中心(图2A)。其中,SFp微针贴片的高度和尺寸的设计主要是为了能够同时保证基于微针的药物输送以及吸盘与组织粘附的顺利达成。图2 完整的SFp微针贴片及其粘附能力考虑到微针在生物电传感中的潜在优势,研究人员在完整的SFp微针贴片和没有吸盘结构的SFp平面微针贴片上分别涂覆了纳米银层,以构建智能可穿戴设备(图3A),并对其感知能力进行了评估。为了评估该可穿戴设备对重量的感知能力,研究人员将水凝胶鱼(重量为15 mg)分别放置在完整的SFp微针贴片和没有吸盘结构的SFp平面微针贴片上,研究结果发现,完整的SFp微针贴片对水凝胶鱼的放置足够敏感,而没有吸盘结构的SFp平面微针贴片对水凝胶鱼的放置几乎没有感知(图3B)。随后,为了评估SFp微针贴片的生物安全性,研究人员将不同的无毒SFp微针贴片植入大鼠背部。研究结果表明,与手术对照组相似,植入SFp微针贴片组的大鼠的生长没有受到任何负面影响,并且两个组别中大鼠的体重增长趋势一致(图3E)。此外,SFp微针贴片植入部位的周围组织在3周后仍保持良好的健康状态(图3F)。同时,在长时间观察中,大鼠各主要脏器未见病理损伤(图3G)。并且,在血红蛋白和红细胞、白细胞、血小板计数方面,SFp微针贴片组与对照组没有显著差异。此外,在SFp微针贴片组与对照组中,用于表示大鼠不同器官状况的众多指标水平均在正常范围内。图3 SFp微针贴片感知灵敏度试验及生物相容性评价最后,该研究对SFp微针贴片的疾病治疗能力进行了评估。研究结果显示,基于所装载的抗炎药物地塞米松磷酸钠(DEX)或经典抗癌药物5-氟尿嘧啶(5-FU),SFp微针贴片可以用于治疗口腔溃疡或早期体表肿瘤。具体而言,SFp微针贴片可以穿透组织表面的粘液层或软屏障,然后依次激活快速起效和长期维持治疗两种给药模式。简而言之,由于其高纵横比结构和可靠的强度,SFp微针贴片被观察到可以在体内刺入溃疡或肿瘤。随后,在进入目标组织后,收缩的SFp微针贴片可以注射部分药物溶液,这是因为PNIPAm在加热到相变温度以上时会由亲水状态转变为疏水状态。因此,SFp微针贴片可以在治疗早期(图4 丝素蛋白-普朗尼克F127(SFp)-聚(N-异丙基丙烯酰胺)微针(SFp MNs)贴片,用于口腔溃疡治疗图5 丝素蛋白-普朗尼克F127(SFp)-聚(N-异丙基丙烯酰胺)微针(SFp MNs)贴片,用于治疗早期黑色素瘤综上所述,为了实现有效的组织内给药,该研究以蓝环章鱼的牙齿和毒液分泌为灵感制备了主动注射微针贴片。该微针贴片具有温度敏感的疏水和收缩变异性所诱导的按需释药功能,可以在疾病治疗早期实现足量的药物输送,并随后实现药物的长期释放。同时,该研究开发了仿生吸盘,以帮助微针贴片在潮湿环境中可以牢固粘附在所处位置上(>10 kPa)。总体而言,该研究开发的微针贴片具有湿粘附能力和多种药物输送方式,在加快溃疡愈合速度或阻滞早期肿瘤进展等方面取得了令人满意的效果。摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。原文链接:https://doi.org/10.1126/sciadv.adh2213来源:微流控

应用实例

2023.07.10

武汉大学黎威教授课题组:缓释微针贴片用于脱发长效治疗

由于某些生理性或病理性因素,脱发已经逐渐成为困扰成年人乃至青少年人群的健康问题,由脱发引起的身体与形象的变化,已经严重影响到了患者的心理健康和生活质量。然而,传统采用的植发技术、外用米诺地尔酊剂、口服非那雄安片由于价格昂贵、药物利用率低和用药依从性差等问题导致治疗效果不尽人意。针对这一挑战,武汉大学药学院黎威教授课题组将具有载药缓释功能的PLGA微球与微针(MN)技术相结合,开发了一种具有药物缓释功能的水溶性微针用于长效治疗雄激素性脱发。该微针贴片是利用摩方精密的 nanoArch S140 3D打印设备加工模具后经PDMS翻模制备而成,可通过提高药物生物利用度以及降低给药频率,改善患者用药安全性和提高患者依从性,在脱发的临床治疗中将具有重要的应用潜力。相关研究成果以题为“Dissolving Microneedle Patch Integrated with Microspheres for Long-Acting Hair Regrowth Therapy”的文章发表在《ACS Applied Materials and Interfaces》。武汉大学硕士研究生尹美容、刘汉卿以及博士研究生曾勇年为共同第一作者,武汉大学药学院黎威教授和武汉大学人民医院陈创教授为共同通讯作者。首先,研究者采用单乳法制备了包裹治疗药物米诺地尔(MDX)的PLGA缓释微球,采用真空浇注法和离心填充法将载药微球装填至水溶性微针的尖端。载药微球表面光滑、无孔,粒径主要分布在15.3 ± 2.2 μm,载药微球呈密集状态填充在水溶性微针尖端且药物米诺地尔在微球和微针中呈现持续性释放,释放时间超过2周,所有药物在一个月内释放完全(如图1)。以荧光染料尼罗红为模拟药物进行可视化分析,载药微球微针在离体皮肤上显示出较高的穿透和药物传递效率。在离体皮肤组织切片中,由微针递送的载药微球稳定留在皮下组织中,继而在后期长期释放药物(如图2)。负载微球的微针在活体大鼠皮肤上同样显示出很好的穿透效率,荧光图像清晰地显示了随着时间的延长,荧光强度逐渐变暗,25天后,大部分的荧光基本消失,表明微球中的药物在皮下呈逐渐缓慢释放的特点(如图3)。研究者在构建雄激素性脱发模型后,随机将小鼠分为未治疗组、每月一次空白微针组、每日一次5%米诺地尔溶液组、每月一次载药微针组和每周一次载药微针组。治疗结果显示,每月应用载药微针组在小鼠中诱导了明显的毛发再生,并且在再生毛发覆盖面积、毛发密度和毛发直径方面表现出与每天局部应用米诺地尔溶液相似的效果,值得注意的是,与每日局部应用米诺地尔溶液相比,每周应用载药微针在上述参数上显示出了更加优越的治疗效果(如图4)。同时也可以看到,未经治疗组的小鼠毛囊萎缩,虽然每月应用载药微针组和每日局部应用米诺地尔溶液组在毛囊长度和真皮层厚度方面的结果相似,但每周应用载药微针组中这两个参数显著增加,显示其具有更好的促进毛发生长效率。最后,进一步研究了细胞增殖的标记物Ki-67的表达,每周应用载药微针组在毛囊中Ki-67的表达最高,表明载药微针在促进毛囊生长期可诱导相关细胞增殖(如图5)。结论:该研究的最大意义在于设计了一种新型的水溶性微针,将其与生物可降解的微球结合,实现治疗药物米诺地尔的持续释放。与传统治疗方式相比,实现了在减少给药频率的情况下达到了相似或更显著的治疗效果,从而为临床上的长效脱发治疗提供一种有前途的治疗策略。图1 负载载药微球的微针的表征。a. 载MXD微球的扫描电子显微镜照片。比例尺,10 μm。b. MXD MN贴片的扫描电子显微镜照片,微针尺寸:高850 μm,尖端直径10 μm,底座直径400 μm 。比例尺,100 μm。c. MXD MN贴片的侧视图(上)和俯视图(下),显示MN中装载的包裹MXD的微球。比例尺,50μm。d. MXD MN贴片或PLGA微球在37℃含0.1%十二烷基硫酸钠的PBS溶液中累积释放MXD (n=3个独立重复实验)。 图2  MN贴片在离体大鼠皮肤中的应用。a. 将MN贴片应用于皮肤之前的明场(上)和荧光(下)显微镜图像。比例尺,500 μm。b. 在体外应用MN贴片后的大鼠皮肤的明场(左)和荧光显微镜图像。比例尺,500μm。c. MN贴片背衬应用于大鼠体外皮肤后的明场(上)和荧光(下)显微镜图像。比例尺,500 μm。d. MN贴片溶解和尼罗红微球递送后,大鼠皮肤组织切片的亮场(上)、荧光(中)和合并(下)显微镜图像。比例尺,250 μm。图3 MN贴片递送的微球在雄性SD大鼠体内的染料释放。a. 大鼠背部涂抹含有尼罗红微球的MN贴片后的代表性照片(左)。黄色虚圆表示MN的插入位置。MN贴片在体外皮肤应用后大鼠皮肤的典型明场(右上)和荧光(右下)显微图像。比例尺,1 mm。b. 通过水溶性微针在体内植入含有尼罗红微球在第1、4、7、10、14、17、25、30和35天大鼠皮肤的典型荧光显微镜图像。比例尺,1 mm。c. 使用ImageJ对第1天至第35天皮肤的荧光强度进行量化。数据归一化为第1天。条形表示平均值 ± 标准差(n=5)。图4  AGA小鼠模型中毛发再生的评价。a. 每日外用睾酮溶液在42天所建立的AGA小鼠模型示意图以及AGA治疗的治疗策略。b. AGA小鼠毛发再生的代表性照片,包括对照组(即不治疗)、空白MN贴片组(每月一次)、5%MXD溶液组(每日一次)、MXD MN贴片组(每月一次)和MXD MN贴片组(每周一次)。c. 脱毛42天后不同组再生毛发的典型扫描电子显微镜图像。比例尺,10μm。d. 42天各组AGA小鼠毛发再生面积的定量。e. 对每组AGA小鼠第42天的再生毛发密度进行量化。f. 第42天各组AGA小鼠再生毛发直径。条形代表平均值±标准差(n=5)。***P 图5  MXD MN贴片用于毛囊再生的体内评价。a. 治疗后第42天,观察治疗部位皮肤组织苏木精-伊红染色。黄色箭头表示皮肤下再生的毛囊。标尺,50 μm。b. 测量第42天各组毛囊长度。c. 第42天各组毛囊中Ki-67的代表性荧光显微镜图像。标尺,50 μm。d. 第42天各组真皮厚度的量化。(n=5)。***P原文链接:https://doi.org/10.1021/acsami.2c22814

应用实例

2023.07.07

国际知名企业家-千本倖生博士加入重庆摩方精密

近日,国际知名企业家--千本倖生博士正式宣布加入重庆摩方精密,任日本摩方董事长。千本倖生,1966年毕业于京都大学工学部电子学科,毕业后就职于日本最大的通讯运营商NTT,后在稻盛和夫的邀请下加入京瓷;42岁与稻盛和夫共同创办第二电电(现日本第二大通讯运营商KDDI);54岁任庆应义塾大学经营研究生院教授;57岁创办eAccess;63岁创办EMOBILE,任会长兼CEO;历经固定电话业务、固定网络业务和移动宽带业务,几乎涵盖了通信行业迅速发展的40年历程。千本倖生博士三次成功创立日本上市公司,是日本杰出的企业家;同时,在全球企业界也有着强大的人脉网络和巨大的影响力。千本倖生博士的加入,将有力推动摩方精密的技术在各领域的业务拓展。

企业动态

2023.07.06

「倒计时三天」摩方精密邀您相约中国材料大会!

2023年7月8-10日,“中国材料大会2022-2023(CMC)”将在深圳国际会展中心(宝安)召开。本次会议由中国材料研究学会发起并主办,是面向国家重大需求、推动新材料前沿重大突破的高水平品牌大会。为聚焦国家发展战略需求、新材料行业前沿热点、助力青年科技人才全面发展,本届中国材料大会将开设 64 个分会主题,涵盖能源材料、环境材料、先进结构材料、功能材料、材料设计制备与评价等 5 大类主题;同时开设一批特色论坛,包括 6 个前沿热点青年论坛、3 个大湾区特色新材料论坛、2023 广东省新材料创新发展论坛、 国际新材料科研仪器与设备展览会、全国新材料人才招聘会等。摩方精密展位作为微纳增材制造领域的领军企业,重庆摩方精密科技股份有限公司将携多样化自主研发材料制备的超高精密3D打印样件及解决方案,重磅亮相深圳国际会展中心17号馆1C07展位。同时现场准备了丰富的神秘大礼等候大家领取,诚邀您莅临展位参观,共享盛会!摩方精密展位号:17号馆 1C07摩方精密自主研发材料制备的超高精密样件展会信息展出时间:2023年7月8日 (星期六) 09:00-17:002023年7月9日 (星期日) 09:00-17:002023年7月10日(星期一) 09:00-14:00(2023年7月7日(星期五)为报到日)展馆地址:深圳国际会展中心17号馆(宝安新馆)交通信息:地铁 20 号线(会展城方向)国展北→出站直达展馆

企业动态

2023.07.05

中南大学陈翔/赵爽/陈泽宇《Small》:微流控混合器件实现一步式构建靶向脂质体

脂质体是一种由磷脂分子在水相中自组装形成的球状泡囊体。脂质体具有良好的生物兼容性和低免疫原性,能够保护药物不被降解,是一种极具前景的药物递送载体。近年来,脂质体已经被广泛应用于肿瘤免疫治疗、基因治疗、多模态分子影像等领域。相比于常规的脂质体,靶向脂质体能够有效地改善药物的细胞摄取以及靶向富集能力,能够显著地提升药物递送效率。但是,常用的制备靶向脂质体的方法正面临着一些挑战,例如,操作复杂、耗时久、批次差异性大等问题。近期,中南大学湘雅医院皮肤科、中南大学机电工程学院等研究团队在《Small》(IF=15.153)期刊上在线发表题为 “ One-Step Formation of Targeted Liposomes in a Versatile Microfluidic Mixing Device ” 的原创性论著。该研究提出了一种基于微流控混合器件的靶向脂质体的一步式合成方法,成功实现了多种靶向脂质体的高通量、高可控性制备。使用微流控混合器件制备的靶向脂质体,在光声成像、小动物活体成像、光热治疗等研究中都表现出了优异的靶向性能。据悉,这项研究的第一作者和第一通讯作者单位均为中南大学。20级博士研究生单晗和20级硕士研究生孙鑫为该论文共同第一作者;中南大学湘雅医院皮肤科陈翔教授、赵爽副研究员和中南大学机电工程学院陈泽宇教授为共同通讯作者。 首先,作者基于靶向脂质体的制备流程筛选了微流控混合器的组合方案,提出了微流控混合器件实现靶向脂质体的一步式合成策略。然后,作者使用高精度3D打印技术(nanoArch S140,摩方精密)制作了微流控混合器件(MMD)。 图1 微流控混合器件(MMD)制备靶向脂质体策略图2 微流控混合器件(MMD)制造随后,作者对脂质体的组分、反应机理进行了设计,选择了吲哚菁绿(ICG)作为模型药物以及靶向PD-L1的适配体作为靶向基团,在MMD内发生混合后,巯基修饰的适配体和功能辅料DSPE-PEG-Mal发生共价结合,最终将适配体修饰到脂质体的表面(Apt-ICG@Lip)。 图3 一步式合成靶向脂质体Apt-ICG@Lip反应机理接下来,作者对靶向脂质体Apt-ICG@Lip的性质进行了测试,包括脂质体的粒径分布、重复性、稳定性、包封率、形貌、细胞毒性、适配体结合效率等。结果显示,使用微流控混合器件(MMD)制备的靶向脂质体Apt-ICG@Lip具有粒径小、批次重复性好、稳定性好、包封率高、低细胞毒性、适配体结合效率高等优点,适用于生物医学应用。图4 靶向脂质体Apt-ICG@Lip性质测试接着,为了验证靶向脂质体Apt-ICG@Lip的靶向性能,作者进行了光声成像(PACT)和小动物活体荧光成像研究。作者将高表达PD-L1的LLC肿瘤模型小鼠分为两组,实验组注射靶向脂质体Apt-ICG@Lip,对照组注射常规脂质体ICG@Lip。结果显示,靶向脂质体Apt-ICG@Lip具有更明显的肿瘤摄取和药物富集能力。 图5 靶向脂质体Apt-ICG@Lip光声成像和小动物活体成像研究接着,作者进一步进行了光热治疗研究。作者将LLC肿瘤模型小鼠分为PBS、ICG@Lip、Apt-ICG@Lip三组,在注射药物后分别使用808 nm激光进行照射,观测肿瘤的体积变化,并使用免疫组化和免疫荧光评估了肿瘤的治疗效果。结果表明,Apt-ICG@Lip由于具备主动靶向能力,具有更好的光热治疗效果,也进一步验证了MMD构建的靶向脂质体的性能。 图6 靶向脂质体Apt-ICG@Lip光热治疗研究最后,作者为了验证MMD构建靶向脂质体的通用性,进一步制备了多种不同用途的靶向脂质体。除了吲哚菁绿(ICG)外,作者还选择了FITC、NHWD-870和亚甲基蓝(MB)作为模型药物,并使用MMD制备了一种anti-Her2抗体修饰的靶向脂质体。作者使用Apt-FITC@Lip进行了细胞实验。结果表明,高表达PD-L1的细胞和Apt-FITC@Lip具有更明显的结合效果。 图7 靶向脂质体Apt-FITC@Lip细胞实验该工作提出的微流控混合器件(MMD)一步式构建靶向脂质体的方法,适用于多种靶向脂质体的制备,在靶向药物递送系统(分子成像、肿瘤治疗等)研究中具有巨大的应用前景。原文链接:https://doi.org/10.1002/smll.202205498.

应用实例

2023.07.04

哈尔滨工业大学(深圳)马星课题组 《Advanced Science》:超声辅助实现液态金属墨水的非

镓基液态金属(LM)是目前柔性电子制造应用最广泛的,这主要归因于它们具有低熔点、高电导率和热导率、低粘度、几乎无毒、饱和蒸气压低等物理特性。已有许多文献报道液态金属图案化的方法,主要包括模板法、增材法、减材法和注射法等。但LM的高表面张力妨碍了其在各种基材表面的直接印刷或涂布,较大地限制了其在柔性电子领域的广泛应用。目前为了解决这一问题,研究人员开发出由表面活性剂稳定的LM微米/纳米颗粒组成的LM墨水,它可以粘附在大多数基底上,从而实现了LM电子产品的定制与多样化,同时该方法极大提高了LM墨水的适用性和生产效率,且已广泛应用于智能穿戴柔性电子的各个领域。但需要注意的是,镓基LM在大气环境下表面会产生一层致密的并具有一定机械强度的氧化膜(约3~10 nm),氧化膜和其上附着的表面活性剂分子使镓基LM墨水液滴被孤立起来从而使墨水绝缘。为了获得导电路径必须打破氧化膜使内部的LM流出并融合,从而构建导电通路。目前研究人员主要通过机械烧结(拉伸或挤压)、激光烧结和自烧结等方法制备LM墨水导电电路,破坏氧化物外壳。但上述方法都面临着诸多挑战,如机械烧结过程的操作精度较低、LM较高的流动性使其易于与其他电子器件接触导致线路短路、挤压弹性封装层可能导致LM泄露、难以实现粗糙及复杂表面(如弯曲、凹槽等表面)的机械烧结。激光烧结虽能改善上述的问题,但其成本较高且由于光的反射和散射,复杂曲面图案的凹槽、拐角和孔隙等区域无法获得足够的能量实现导电通路,且来自激光的能量可能会对柔性基底造成热破坏从而使电子器件变形并损坏。自烧结方法主要利用由溶胀或毛细力引起的聚合物的膨胀来破坏氧化膜,虽然其保护了柔性基底但需要长时间的水蒸发过程,严重降低了制造效率。综上所述,目前提出的烧结LM导电墨水的方法仍存在各自的局限性,寻找一种操作快速便利并能制造烧结复杂表面结构LM墨水图案的方法对柔性电子制造有着重要的影响。近期,哈尔滨工业大学(深圳)马星教授团队提出一种超声辅助烧结策略,该策略不仅可以保持LM电路的原始形态,而且可以在各种复杂表面形貌的衬底上烧结电路。通过该方法实现了柔性材料上LM电路的烧结,并验证了该方法在构建可拉伸或柔性电子器件方面的可行性。其提出利用水作为能量传输介质,实现了与基底材料间接接触的远程烧结,极大地保护了LM电路免受机械损伤。该方法有助于为不同场景下的LM电路构建提供技术途径,如图1所示。相关成果以“Ultrasonic-Enabled Nondestructive and Substrate-Independent Liquid Metal Ink Sintering”发表在《Advanced Science》期刊 上。图1.  LM墨水的制备流程示意图,以及LM墨水电路在各种基板上的超声烧结,用于在多种应用场景中制造柔性和印刷电子产品。通过调整超声功率、时间及位置等参数,超声烧结手段可以在硬质的Al2O3基底上打破LM颗粒同时构建导电线路,如图2所示;通过将PDMS和Al2O3结合再施加超声的方法,超声烧结也可以用于构建基于液态金属的柔性电路和器件,如图3-5所示。同时,团队成员使用面投影微立体光刻技术(nanoArch P150,摩方精密)制备了不同的树脂模型,通过在模型上设计沟槽再涂覆墨水的方法实现了三维表面上复杂线路的构建,在曲面和具有沟槽、孔洞的粗糙表面上,机械挤压一类的手段往往因无法接触到液态金属墨水而无法使其烧结,超声法则不存在这个问题,它可以在介质中传播并最终使LM颗粒破裂,这一特性使超声烧结能用于在复杂表面上构建各类不同的导电图案,如图6-7所示。图2. 在刚性Al2O3板上超声烧结 LM 墨水图案。a) LM墨水图案化和印刷LM墨水的超声烧结工艺方案。b) 超声烧结和机械烧结处理的LM墨水图案的比较。c) LM墨水图案表面SEM观察示意图以及超声烧结前LM墨水表面SEM图像。d) 超声烧结后LM墨水表面的SEM图像。e) LM油墨图案横截面的SEM观察示意图和超声烧结前LM墨水的横截面SEM观察示意图。LM墨水电路在-80°C冷冻5分钟后被切断。f) 超声烧结后LM墨水横截面SEM图像。 图3. 柔性基板上 LM 墨水线路超声烧结的研究。a) 实验方案:打印在 PDMS 层上的 LM 墨水图案的超声烧结。b) 基板上振动幅度分布的Ansys仿真。c) LM颗粒在低振幅和高振幅超声波振动下超声烧结的示意图。d) Ansys 仿真结果中 P1-P4 上的振幅。e) 经过不同超声波功率处理后P1-P4上LM墨水线路的电阻(误差条:SD,n = 3)。f) 不同LM墨水线路经不同超声波功率处理后的电阻如图a)所示。超声头位于Al2O3板的中心。绿色柱代表导电线,红色柱为绝缘线。 图4. 烧结参数对柔性基板上LM墨水电路超声烧结效果的影响。a) LM 墨水在 PDMS 基底上超声烧结的示意图。b) 超声烧结后不同厚度PDMS基材上LM墨水的电导率(误差线:SD,n = 5)。c) LM 墨水颗粒的尺寸分布。通过超声处理 (I) 30 秒、(II) 1 分钟、(III) 5 分钟、(IV) 10 分钟来制备墨水。d) 超声烧结(720 W,2 s)前后LM墨水颗粒的SEM图像。I 至 IV 组的 平均粒径分别为 4.21 ± 2.02、2.48 ± 0.88、2.08 ± 0.77 和 1.08 ± 0.41 μm (n = 200)。e) 超声烧结后四组LM墨水线的电导率(误差线:SD,n = 5)。图5. 用于柔性电子制造的 LM 墨水电路的超声烧结。a) 超声烧结辅助制造基于LM电路的柔性电子器件方案。b) LM 柔性应变传感器的图片。c) 应变传感器响应不同拉伸应变的相对电阻。d) 应变传感器在拉伸应变下1000次循环的相对电阻响应,其中最大拉伸应变为30%。e) 准备好的 LM 压力传感器图片。f) 压力传感器在加载不同重量时的相对电阻响应。g) 压力传感器在手指随机按压下的相对电阻响应。 图6. 在水下和粗糙/弯曲表面上对 LM 墨水电路进行超声烧结。a) 实验方案:水下超声烧结过程和 LM 墨水电路的导电性。b) LM 墨水电路导电性的 LED 电路照片。LM油墨电路印刷在圆顶形样品架上,并连接LED和直流电源,这里LED亮起证明LM油墨已烧结。c) 不同超声波功率和烧结距离“d”的水下烧结电路的电导率(误差条:SD,n = 5)。d) LM 墨水电路涂在鸡蛋上。墨水在水下超声烧结,LED 亮起。e) 带凹槽的粗糙表面超声烧结示意图。超声烧结后LED亮,而机械烧结制备的电路LED无法工作。f)通过超声烧结制造的砂纸表面轮廓和砂纸上的导电LM油墨线。砂纸的平均粗糙度(Sa)为71.7 μm。 图7. 3D打印结构件上的超声烧结。a) 树脂模型上机械烧结(i)和超声烧结(ii)的对比示意图。b) 施加超声装置图;c) 包含LED灯的液态金属墨水电路;d) 复杂表面上超声烧结前后的液态金属墨水图案。原文链接:https://doi.org/10.1002/advs.202301292

应用实例

2023.07.03

年度盛会 | 摩方精密受邀参加2023中国增材制造产业高峰论坛暨年会!

开幕式现场2023年6 月 27 日- 29 日,以“引领新业态、赋能新应用”为主题的“中国增材制造产业发展(广州)高峰论坛暨2023年中国增材制造产业年会”在广州圆满召开。重庆摩方精密科技股份有限公司(以下简称:摩方精密)两项典型的应用场景——工业领域“产品原型快速试制”场景类型的“5G 通讯电子器件快速试制”以及医疗领域中的“诊疗辅助器具制作”场景类型的“超精密医疗微针器件微纳打印”入选国家工业和信息化部发布的首批增材制造典型应用场景名单,因此摩方精密荣幸地受邀参加此次盛会!摩方精密展位此次会议由工业和信息化部装备工业发展中心、广东省工业和信息化厅、广州市人民政府指导,中国增材制造产业联盟、广东省增材制造协会、广州工业投资控股集团有限公司主办,旨在贯彻落实国家战略部署和有关规划政策,探索增材制造产业发展新趋势、新业态、新模式,着力推进增材制造推广应用,营造良好产业生态,推动产业高质量发展。在这场产业年会上,摩方精密展示了多款超高精密样件,全方位呈现出面投影微立体光刻(PμSL)技术在精密医疗器械、精密电子器件、微流控、微机械、科研等领域的广泛应用,吸引众多宾客驻足观看,现场客似云来,热闹非凡!左上:微流控样件 ;右上:栅格阵列封装零件左下:陶瓷微针阵列;右下:陶瓷内窥镜端座国家智能制造专家委员会主任、第十三届全国政协经济委员会副主任、工业和信息化部原副部长苏波亲临摩方精密展位,工作人员向其介绍了公司的核心技术和高端产品,苏波对展示的先进技术和产品表达了关注与指导,对此公司深受鼓舞。摩方精密将继续提升技术水平、不断创新,为行业的发展贡献更多力量。苏波先生参观摩方精密展位6月29日上午,在增材制造典型应用场景推广会(医疗专场)上,摩方精密副总裁周建林先生作了题为《微纳3D打印微针贴片及其医疗领域应用》的主题报告。报告中,其介绍了增材制造行业的市场规模状况和主要应用领域,以及摩方精密的精密微纳增材制造技术、应用案例、产业化进程与发展成就,并重点阐述了精密微纳3D打印在医疗领域的应用。摩方精密副总裁周建林先生报告现场周建林先生指出:“摩方精密采用PμSL技术制备的微针贴片在医疗领域得到广泛应用,例如细胞内给药、血糖实时监测、癌症治疗和疤痕修复等方面,为保障人类生命健康发挥着重要作用。这一产品展现了摩方精密在增材制造领域的技术实力和创新能力,为产业发展提供了动力源泉。”同时,周建林先生向增材制造行业分享了公司最新的技术能力和成果,为行业的发展提供了新的思路,在会场上引起了热烈反响。左:摩方精密打印超高精密5微米针尖细节右:摩方精密与IMcoMET公司合作打印微针部件“合和共生,共赢增材”,通过参加本次高峰论坛,摩方精密展示了其在增材制造领域的发展实力,进一步提升了公司在行业中的知名度与影响力。摩方精密将充分发挥自主的技术研发优势,与社会各界深化增材制造产学研合作,加快产业融合发展。同时,公司也期待与各方终端产业用户展开合作,不断推动前沿3D打印技术的应用和落地,为客户提供更加优质的解决方案与专业服务!

企业动态

2023.06.30

武汉大学药学院黎威课题组《Advanced Healthcare Materials》:多功能微针贴

慢性感染伤口愈合是生物医学领域的主要挑战之一。传统治疗方式通常具有药物透过性差、药物生物利用度低、容易产生耐药性以及需要频繁给药等缺点。因此,开发一种新的治疗策略来减少抗生素的给药剂量、提高药物递送效率以及降低给药频次,对于慢性感染伤口治疗具有重要意义。基于此,作者构建了一种多功能微针(MN)贴片,该微针贴片是利用摩方精密的 nanoArch S140 3D打印设备加工模具后经PDMS翻模制备而成。可通过高效的化学-光动力抗菌协同作用和生长因子在创面的持续释放来实现伤口的快速愈合(如图1)。当微针贴片穿刺皮肤时,针体携带的低剂量抗生素和包裹生物活性小分子的金属有机框架(MOFs)会随着针体材料的溶解快速释放到伤口床。在光照下,MOFs纳米粒子能将 O2 转化为 1O2 ,与抗生素协同作用快速清除伤口的致病菌,由于其良好的化学-光动力学协同性能,使所需抗生素用量减少了10倍。此外,载药MOFs纳米材料可在创面组织中实现生长因子的持续释放,促进上皮组织的形成和新生血管的形成,从而进一步加速慢性创面愈合。总的来说,该研究设计的基于MOFs的多功能微针贴片为慢性感染伤口的治疗提供了一种简单、安全、有效的替代方案。相关研究成果以题为" Multifunctional MOF-based Microneedle Patch with Synergistic Chemo-photodynamic Antibacterial Effect and Sustained Release of Growth Factor for Chronic Wound Healing"的文章发表在《Advanced Healthcare Materials》(SCI一区,Top期刊,IF=11.092)。武汉大学药学院博士研究生曾勇年、王陈媛为共同第一作者,武汉大学中南医院黄建英主任和武汉大学药学院黎威教授为共同通讯作者。图1. 化学-光动力学协同抗菌多功能卟啉MOFs微针贴片促进慢性伤口愈合首先,作者将制备好的载有DMOG的MOF纳米粒子与抗生素通过真空抽吸和离心的方法一起装载到微针中,微针是由水溶性材料-透明质酸(HA)组成(如图2a)。通过实验观察到微针具有呈尖锐的圆锥形结构(如图2b),具有良好的机械强度和透皮性能(如图2c-e),可以有效地刺透皮肤(如图2f),并高效地将其装载的抗生素和载药MOF纳米粒子递送到皮下(如图2g)。研究人员进一步研究了微针的抗菌性能,结果显示构建的微针贴片通过化学-光动力学效应对大肠杆菌、金黄色葡萄球菌以及铜绿假单胞菌均具有显著的抑菌效果(如图3a-f),并且在金黄色葡萄球菌细胞内可以检测到激光照射后MOF纳米粒子产生的大量活性氧(如图3g)。通过对照实验发现,经过微针处理后的细菌表面呈现出皱缩和破裂的形态(如图3h)。同时,我们还发现,通过微针治疗,可以显著降低最小抑菌浓度(如图3i-k),从而进一步验证了微针具有有效的化学-光动力学协同抗菌治疗效果。最后,作者通过实验发现该多功能微针贴片能显著加速金黄色葡萄球菌的慢性感染伤口的愈合(如图4)。图2. 多功能M/DP MN贴片的制备与表征。(a) M/DP MN贴片制作工艺示意图。(b) M/DP MN的SEM图像。(d) M/DP MN贴片的力-位移曲线(插图:机械强度试验前后MN的光学图像)。M/DP MN贴片在(c)和(e)插入离体大鼠皮肤之前和之后的代表性光学显微照片。(f) M/DP MN贴片插入后的大鼠皮肤代表性亮场显微镜图像。(g) 离体植入大鼠皮肤的MN的组织学图像。图3. M/DP MN贴片的体外抑菌性能研究。不同处理对大肠杆菌(a)、金黄色葡萄球菌(c)和铜绿假单胞菌(e)抑菌带的代表性图片。黑色虚线表示MN贴片的施用位置,红色虚线圈表示抑菌区。对大肠杆菌(b)、金黄色葡萄球菌(d)和铜绿假单胞菌(f)抑菌圈的定量分析。金黄色葡萄球菌的不同处理显示ROS的产生。(h) 不同处理后金黄色葡萄球菌形态的FESEM图像。红色箭头表示膜裂纹。不同处理对大肠杆菌(i)、金黄色葡萄球菌(j)、铜绿假单胞菌(k)最低抑菌浓度的统计分析。 图4. 体内抗菌分析和伤口处理。(a) 体内实验时间方案。(b) 第0、3、6、9、11天不同处理小鼠皮肤创面的代表性光学照片。黑色虚线圈表示原始伤口区域。(c) 从不同处理后的伤口组织中分离出的培养细菌的代表性摄影图像。(d) 11天内各组创面形态变化示意图。(e) 通过测量不同处理后的创面面积,定量分析创面愈合情况。结论该研究作者提出了一种基于MOFs多功能微针贴片,该贴片具有化学光动力学协同抗菌作用和持续释放生长因子能力,为感染慢性伤口提供了一种简单、安全、有效的治疗策略。由于MN贴片采用水溶性HA材料制备,当微针应用到伤口时,MN尖端可快速溶解。将包裹的抗生素(即MEM)和装载DMOG的MOFs纳米颗粒递送至创面。在给予光照时,MOFs不仅能将 O2 转化为 1O2 ,还能持续释放生长因子。这种治疗方式不仅能快速清除病原菌,又能促进创面上皮组织再生、胶原沉积和血管生成。重要的是,MN贴片的优良化学光动力学协同作用能显著减少抗生素的使用剂量,从而大大降低细菌的耐药性。此外,体内和体外生物安全性实验证明MN贴片具有良好的生物相容性和安全性。这种多功能MN贴片的制备过程简单、成本低、易于实现大规模生产。值得注意的是,这种易于获取、安全有效的多功能MN贴片也适用于其他治疗药物的传递,为药物传递领域提供了新的思路。原文链接:https://doi.org/10.1002/adhm.202300250

应用实例

2023.06.29

浙江大学宁波研究院吴晶军副研究员《Mater. Horiz.》:DLP 3D打印具有多级结构的水凝胶

多孔水凝胶在能量转换和储存、催化、分离和生物医学应用等方面得到了广泛的应用,并且调控水凝胶的孔径和形貌对控制水凝胶的性能至关重要,但通过传统的制造方法在多尺度上控制这些材料的孔隙率仍是具有挑战性的。近日,浙江大学宁波研究院吴晶军副研究员团队开发了一种通过离子交联锁定3D打印水凝胶冻干孔隙的后处理方法制备具有多级孔结构水凝胶。通过3D打印赋予了水凝胶任意的三维几何形状和毫米长度尺度的可控孔隙,并将打印好的水凝胶网络进行冻干和离子交联的后处理过程,使水凝胶具有超出打印分辨率的微米级孔隙。利用这种分步制造技术可以创造出具有可调孔隙率和力学性能的3D水凝胶晶格,并可进一步开发为高效太阳能水蒸发器件。相关工作以“DLP 3D printed hydrogels with hierarchical structures post-programmed by lyophilization and ionic locking”为题发表在《Materials Horizons》上,第一作者为浙江大学硕士研究生孙卓,通讯作者为吴晶军副研究员。【多孔水凝胶制备原理】首先对3D打印的水凝胶进行冻干得到干凝胶泡沫,然后用Fe3+/乙酸乙酯溶液处理,将泡沫的多孔结构通过Fe3+-羧基相互作用作为二次交联锁定住,再用水取代乙酸乙酯后,可得到多孔的双交联水凝胶。单体NIPAM、AA,交联剂BIS,光引发剂LAP所配的水溶液作为光固化3D打印的前驱液,并在在405 nm光源下的DLP 3D打印机上进行打印出具有宏观三维孔结构的水凝胶,经过冻干和后处理后得到了一系列具有复杂几何形状的多级孔水凝胶。图1 多级结构水凝胶的冻干辅助DLP 3D打印【形貌表征】由于Fe3+-羧基交联的存在,冻干后的初级化学交联网络被锁定,冻干诱导的临时多孔结构在水中充分膨胀后被固定并保留,同时利用傅里叶红外证实了多孔水凝胶中Fe3+-羧基的配位相互作用的存在。因孔隙的大小和形态是由冰晶的形态决定的,冻干过程也直接决定了水凝胶的微观孔隙结构。在较低的冷冻温度下冻干的NA50水凝胶孔隙更小,这与更低的冷冻温度导致形成的冰晶晶核数量更多、晶体尺寸更小有关。此外,对3D打印的无孔水凝胶晶格进行定向冷冻、冻干,并用Fe3+进行处理,可得到各向异性的多孔结构,这些水凝胶具有整齐排列的孔隙结构。这些独特的三维排列、尺寸渐变分布的孔隙可用于定向流体输送等。图2 微观多孔水凝胶的形貌【力学性能】与普通多孔水凝胶相比,负载Fe3+的NA50多孔水凝胶具有不同寻常的高模量。此外,水凝胶的模量与Fe3+/乙酸乙酯溶液的Fe3+浓度密切相关。当Fe3+浓度大于0.5 M时,压缩模量可达5.32±0.47 MPa,高于绝大多数报道的水凝胶,一个1立方厘米的多孔水凝胶就可以承受1千克的重量而不发生明显变形。与此同时,与多孔结构直接相关的Fe3+-羧基交联是一个动态、可逆的键。因此,3D打印的水凝胶可以在非多孔结构和多孔结构之间进行可逆切换。当用EDTA水溶液处理所制备的NA50-0.1 M三维多孔水凝胶晶格时,EDTA会与Fe3+发生反应形成更稳定的Fe3+-EDTA螯合物,并导致Fe离子与高分子链段中的羧基配位进行解离。在没有二次交联的情况下, P(NIPAM-AA)主网络溶胀并变成无孔水凝胶。图3 力学性能和孔隙形态的可逆重构【太阳能水蒸发】3D打印的宏观结构赋予了水凝胶更大的比表面积的同时也更有利于对外界能量的吸收和水分蒸发。为了获得较高的光热转化效率,水凝胶被放置在多巴胺水溶液中,通过水凝胶中Fe离子引发的多巴胺聚合,聚多巴胺(PDA)原位沉积在孔壁上, NA50-1M-PDA在太阳辐照光谱中表现出高达95%的光吸收率。得益于PDA良好的光热效应,在模拟太阳光的照射(1 kW m-2)下,NA50-1M-PDA水凝胶顶层在8分钟内就迅速被加热至32℃,这样的快速升温过程保证了NA50-1M-PDA水凝胶可以在较短的时间内达到稳定的水分蒸发状态,三维水凝胶晶格的水分蒸发速率最快可达2.85 kg m-2 h-1。进一步地,实验中所蒸发的纯净水可由海水代替,并利用上述水凝胶晶格研究了海水淡化的效率,实验表明海水的光热蒸发速率约为2.55 kg m-2 h-1,并且在至少8小时内保持相对稳定。海水中具有代表性的四种盐离子(Na+、Mg2+、Ca2+、K+)的浓度在一次脱盐循环后降低了三个数量级以上,纯化后的水达到了WHO和EPA的标准。图4 多级结构水凝胶的界面太阳能水蒸发性能【小结】该研究提出了一种通过DLP 3D打印和后处理过程(冻干和离子锁定)相结合的制备多级结构水凝胶的方法。所制备的水凝胶的孔隙大小、孔隙形态和力学性能都可调节,这些具有三维晶格结构的多级孔水凝胶可应用于高效的太阳能水蒸发。在未来的研究中,研究人员可能会将该技术扩展到生物相容性较好的水凝胶领域,如海藻酸盐-Ca2+水凝胶,以研究多级孔结构在组织工程领域的有效性。原文链接:https://doi.org/10.1039/D2MH00962E团队简介:浙江大学宁波研究院化工分院智能制造团队吴晶军副研究员和谢涛教授团队长期从事光固化3D打印工艺和材料研究。针对光固化3D打印技术在大规模产业化应用中的若干关键问题,相继在基于水凝胶离型界面的超快速光固化3D打印(Nat. Commun., 2021, 12, 6070)、热塑性高分子光固化3D打印原理及其超高速成型工艺(Adv. Mater. 2019, 31, 1903970)、变形材料超快速4D打印(ACS Appl. Mater. Interfaces, 2019, 11, 32408)、可编程光固化3D打印材料(ACS Appl. Mater. Interfaces 2021, 13, 15584)、高性能光固化3D打印弹性体(产品开发落地)等方面取得创新。成果有望解决现有光固化3D打印效率低、成品功能性差等局限,推动光固化3D打印技术的发展和规模化应用。摩方精密简介:摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。

应用实例

2023.06.28

西安交通大学张留洋课题组《IEEE TMTT》:基于微纳3D打印和微流道液态金属填充的宽带和多带太赫

3D结构的超材料器件由于能通过增加入射电磁波和结构之间的重叠空间来增强光与物质的相互作用并在调控太赫兹波方面提供额外的自由度,展现出比传统平面2D结构超材料更大的应用潜力。然而传统的制造方法在制备3D结构器件上依然存在许多障碍,通过集成光刻、沉积、蚀刻、LIGA等一系列程序来制造3D复杂结构不仅存在耗时和经验要求高等缺点,且所构建的复杂3D结构无法满足需求。新的加工工艺不断被提出以开发此类复杂3D结构超材料器件,主要的新方法包括剪纸/折纸工艺、3D打印技术、液态金属填充技术等。其中,3D打印技术虽能胜任复杂几何结构的制造,但在太赫兹超材料的特征尺寸范围内,大多数3D打印方法在打印过程中只能使用单一材料,而许多器件同时需要多种材料来支撑复杂的结构和电磁功能,因此需结合其它步骤来引入额外的材料。如课题组前期工作提出的制备工艺,在通过微纳3D打印技术直接进行主体结构成型后还需使用镀膜工艺完成器件的金属化,由于3D打印技术的阶梯效应,3D打印结构不能太复杂,否则会对金薄膜的连续性造成不利影响,使所谓的3D结构实际上成为2.5D结构。在此情形下,将液态金属填充到微流道中的液态金属填充技术在克服此问题中具有独特的优势。液态金属填充技术不仅可提供构造复杂几何形状的替代方案,还可提供新的金属化策略。因此,西安交通大学张留洋老师课题组利用摩方精密提供的nanoArch S130打印系统,提出了一种将微纳3D打印技术与微流道液态金属填充技术相结合的微结构制备工艺,作为概念验证,通过所提出的制备策略制备了两种具有宽带和多频段特性的典型超材料,实验获得了与理论仿真吻合较好的响应光谱。该论文以“Broadband and Multiband Terahertz Metamaterials Based on 3-D-Printed Liquid Metal-Filled Microchannel”为题发表在《IEEE Transactions on Microwave Theory and Techniques》期刊上。图 1 3D太赫兹超材料的制造工艺示意图:(a)PμSL 3D打印系统,(b)3D打印超材料样品和(c)超材料样品的真空泵送和液态金属填充装置。相较于传统MEMS工艺善于加工2D结构的不同,微纳3D打印技术在构建复杂3D结构方面具备显著优势。图 1为3D结构微流道器件的加工流程图,流程简述如下:通过3D打印机(图 1(a))逐层固化BIO树脂,得到包含微流道结构样品(图 1(b));将所得树脂结构浸入异丙醇中约10分钟以洗掉微流道中残余的树脂;最后进行液态金属填充实现金属化,液态金属填充装置如图 1(c)所示。为证明所提出制备工艺的可行性,首先设计了如图 2所示的太赫兹宽带吸波器,其超分子由两个相互贯穿的圆盘组成。填充前后的结构在光学显微镜下的情形分别如图 3(a)和图 3(c)所示,在充分填充后按图 3(f)中的流程冲洗表面多余的液态金属。从图 3(e)可看出,实验光谱和仿真计算光谱均显示出高吸收率、大带宽的特征,表明所提出的吸波器能在宽频率范围内有效吸收入射太赫兹波。图 2 基于微流道的太赫兹宽带吸波器:(a)阵列和(b)超分子。图 3 3D打印宽带吸波器液态金属填充前(a)和填充后(c)的光学显微图像,(b)和(d)为局部放大图;(e)模拟和测量的吸收光谱;(f)吸收器顶部多余的液态金属冲洗示意图。类似地,依据所提出的制备工艺,设计并制备了第二种太赫兹超材料(图 4),其由两对垂直交叉的开口环组成,在完成液态金属填充后能在频率为0.1至3.0 THz的范围内形成了五个共振波谷,因此该基于垂直开口环的超材料可归类为多带太赫兹超材料。每一个共振波谷的反射都接近或超过-20 dB,表明吸收率可达到99%。此外,橙色线表示通过THz-TDS测量的反射谱,其中谐振频率和振幅与模拟结果基本一致。图 4 基于微流道的多带太赫兹反射器件:(a)阵列和(b)超分子。图 5 太赫兹多带超材料的显微镜图像:(a)液态金属填充前和(c)液态金属充填后;(b)和(d)为相应的放大图像。(e)模拟和实验测量的反射光谱。原文链接:https://doi.org/10.1109/TMTT.2023.3278945

应用实例

2023.06.27

中科院理化所王树涛教授团队/北航刘欢教授团队Nature Materials:仿松塔超慢运动

大自然为人类社会的进步和发展提供了源源不断的灵感和动力。向自然学习,有所发现,有所发明,有所创造,有所进步,是科学发展的一条行之有效的途径。松塔的吸湿运动为人工驱动器的设计和制造提供了许多灵感。目前认为,松塔的开合是由鳞片外层的“肉”(石细胞,sclerids)比内层的“筋”(维管束,vascular bundle)的收缩膨胀更大引起的。但以往的研究只专注于研究松塔的弯曲机制,而忽略了弯曲过程和原本的功能特点。松塔为了让风和动物把种子传播到远离母树的地方繁衍,只有在长期干燥的环境下才会打开。对于松塔的超慢运动,目前的机理还无法给出相应的解释,并且这一机制也很难解释单独的维管束也具有湿度响应特征。因此,松塔的超慢湿度响应机制目前仍然是不清楚的。最近,中国科学院理化技术研究所王树涛研究员团队和北京航空航天大学刘欢教授团队合作,重新审视松塔的吸湿运动,揭示了松塔湿度响应的超慢运动的奥秘,并受此启发研发了具有类松塔湿度响应的超慢运动的人工驱动装置,其运动速度比现有的湿度响应驱动器低两个数量级,其整个运动过程难以察觉。相关工作以“Unperceivable motion mimicking hygroscopic geometric reshaping of pine cones”为题发表在Nature Materials杂志上。该工作得到了国家自然科学基金项目的大力支持。文章第一作者是张飞龙博士和杨曼博士,通讯作者为王树涛研究员和刘欢教授,徐雪涛和刘熹博士共同参与本研究,江雷院士为本研究提供了专业的指导。现象与发现1.松塔的吸湿变形是一个超慢的过程松塔完全打开需要相当长的时间,约24小时(图1a)。在具有吸湿变形能力的植物组织中,松塔鳞片的厚度归一化的形变速度是最小的(图1b),这与其长距离种子传播的功能是一致的。2.维管束本身也能够吸湿变形研究发现,维管束(VB)本身就可以吸湿变形,且具有比外层的“肉”(skin)更大的变形能力和运动速度(图1c, d),表明VB在鳞片的湿度响应运动中起关键作用。而“肉”和整个鳞片的运动速度都远低于骨架(skeletons)和VBs。同样,与骨架和VBs相比,浸水的鳞片和“肉”的含水量更高,脱水速度更慢。因此,可以得出结论,VBs驱动鳞片的吸湿变形,而保水性好的“肉”减缓形变速度。图1. 松塔、鳞片及其各组成部分的吸湿运动。维管束(VB)的变形机制1.弹簧状微管和方形微管的异质结构为了探究VBs的弯曲机理,作者对VB的微观结构及各组成的吸湿膨胀行为进行了研究。从横断面扫描电镜图可以看出,VB具有典型的异质结构,包含两种管状的细胞壁,且两者边界清晰(图2a-d)。重构的微管三维结构图和纵向截面图进一步证实了,维管束是由平行排列的弹簧状微管和方形微管组成的典型的异质结构 (图2 e-g)。2.弹簧状微管和方形微管的吸湿膨胀行为不同通过机械剥离的方法,作者得到了弹簧状微管/方形微管对,并利用环境扫描电镜(ESEM)对其吸湿运动进行了原位观察(图2h)。随着相对湿度的增加,弹簧状微管伸长,微管对向方形微管侧弯曲(图3c)。相反,随着湿度的降低,微管对向弹簧状微管侧弯曲。根据上述结果,作者提出了一维弹簧状微管/方形微管异质结构的简化模型以解释VB的吸湿形变(图2i)。图2. 维管束的异质结构和弯曲机制仿松塔的超慢运动驱动器受此启发,研究人员利用双组份3D打印技术制备了由弹簧状管和方形管构成的异质结构的基本单元,在管中填充吸湿聚合物,以模拟鳞片中的“肉”增加吸湿路径,降低膨胀速度 (图3a, b)。打印出的弹簧状管/方形管展现出类似于松塔的吸湿变形性能(图3c)。利用简化模型与3d打印技术的可编辑性和兼容性,仅通过调节结构就可以实现各种精细的形状转变调控(图3d)。利用打印出的弹簧状管/方形管对,作者制作了一个可移动工作台,实现对上面的物体的超慢运输,不会周围的环境水造成干扰 (图3e-g)。利用打印出的弹簧状管/方形管对作为支架,探测器也可以在超慢运动的情况下增大监测范围(图3h)。图3. 仿松塔结构的超慢驱动装置该工作为理解松塔和其他植物组织的湿度响应形变提供了新的思路和结构基础,也为开发刺激响应驱动器提供了新的物理模型。该工作被新加坡国立大学(NUS)的Cecilia Laschi教授和意大利理工学院(IIT)的Barbara Mazzolai教授在《Nature Materials》杂志同期的News & Views专栏以“Move imperceptibly”为题,进行了专题报道。摩方精密简介摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。原文链接:https://doi.org/10.1038/s41563-022-01391-2来源:材料科学前沿

应用实例

2023.06.26

深圳大学董海峰教授《ACS Nano》:DNA水凝胶微针贴片,无创检测癌症

大量研究表明,miRNAs的异常表达与肿瘤的发生和迁移高度相关。它被认为是肿瘤早期诊断和临床治疗的潜在生物标志物。最近的实验证据表明,在血液中发现的所有类型的RNA也以相似比例存在于间质液中。对无创采样和个性化生理监测的需求不断增长,激发了人们对可作为生物标志物信息库的ISF进行探索的兴趣。因此,开发一种强大的微创方法在皮肤ISF中取样足够的靶点是势在必行的。由于miRNA在ISF中的表达水平较低,样本量有限,因此对ISF中miRNA的检测提出很大的挑战。为解决这一问题,深圳大学董海峰教授团队构建了由甲基丙烯酸透明质酸(MeHA)包裹的智能DNA水凝胶系统组成的微针贴片,用于快速采样和敏感检测皮肤ISF中的miRNA生物标志物。MeHA/DNA基质具有极高的亲水性,可在较短时间内提取足量的ISF (5 min, 0.97±0.2 mg)。此外,级联Toehold介导的DNA链置换信号扩增可以灵敏地检测低丰度的miRNA (低至241.56 pM)。该研究以题为“Microneedle Array Encapsulated with Programmed DNA Hydrogels for Rapidly Sampling and Sensitively Sensing of Specific MicroRNA in Dermal Interstitial Fluid” 的论文发表在《ACS NANO》上。用于信号放大的DNA水凝胶制备及可行性验证图1. DNA水凝胶的结构和链置换过程DNA水凝胶呈现出三维聚合物网络结构,其由 6 条单链 DNA(S-1 至 S-6)制备而成,分为长双链 DNA([S-1/S-2] n)和交联剂(CL)。[S-1/S-2] n和 CL 都有悬浮的单链 DNA(绿色),DNA水凝胶是由二者悬浮单链之间的杂交形成的。天然聚丙烯酰胺凝胶电泳(PAGE)证实了DNA水凝胶的成功形成和Toehold介导的链置换过程。透射电子显微镜(TEM)图像显示了DNA水凝胶微粒平均大小为700 nm。此外,进一步使用FL光谱分析来研究其可行性,与对照组相比靶miRNA引起的S-6置换触发FL恢复(绿色曲线),而燃料探针的加入进一步导致FL急剧增加(红色曲线)。MN的制备和表征图 3. 交联 MeHA/DNA-MNs 贴片制造工艺示意图及性能表征(形貌、机械强度、生物毒性、溶胀性等)为了制备 MeHA/DNA-MN,将 MeHA 水溶液和 DNA 水凝胶充分混合,然后倒入 PDMS 模具中(该模具是利用摩方精密的nanoArch P150设备打印微针阵列,结合PDMS翻模制成),在蓝光照射下交联并在室温下干燥。最后,从模具中剥离干燥的 MeHA/DNA-MNs 贴片。获得的 MeHA-MNs 贴片是15 × 15 的针头阵列,尖端锋利,高度为 860 ± 10 μm,底宽约为 340 ± 10 μm,针间距约为 800 μm。放大扫描电子显微镜 (SEM) 图像显示MeHA/DNA 水凝胶具有均匀分布的孔隙,这种互穿网络结构增加了 MN 的表面积和对样品的提取。通过压缩实验证实了交联的 MeHA-MNs 贴片和 MeHA/DNA-MNs 贴片具有相似的机械强度,表明 DNA 水凝胶对机械强度的影响很小。组织学研究显示穿透深度为 250 ± 20 μm,表明 MN 可以穿透表皮(厚度为 50-150 μm)以到达真皮。交联的 MeHA/DNA-MNs 贴片在琼脂糖凝胶中 15 分钟内可提取 86.6 ± 2.7 μL液体。通过 MeHA/DNA-MN 进行体外 miRNA 成像图4. 探究在琼脂糖和新鲜猪皮模型中MeHA/DNA-MN miRNA 成像性能为了测试 MN 贴片原位采样和检测 miRNA 的能力,首先研究了其在琼脂糖凝胶和暴露于不同浓度 miRNA-155 的新鲜猪尸体皮肤中检测 miRNA的性能。结果表明,在琼脂糖凝胶中可检测到低至 241.56 pM 的 miRNA。接着研究了其区分各种类型 miRNA 的能力,miRNA-155产生的FL强度分别是miRNA-205和miRNA-21产生的FL信号的2.19倍和2.39倍,这表明MNs检测具有良好的特异性。使用新鲜猪尸体皮肤模型验证了 MNs 对体外 miRNA 检测的敏感性和选择性,与对照(没有 miRNA 预处理)和 miRNA-205、miRNA-21 预处理相比,MNs 穿透与 miRNA-155 孵育的猪尸体皮肤显示出更高的 FL 发射,有力地证实了 MeHA/DNA-MNs 具有很好的在采样和分析皮肤 ISF 中的 miRNA 方面的潜力。通过 MeHA/DNA-MN 进行体内 miRNA 成像图 5. 在小鼠模型中使用 MeHA/DNA-MNs 贴片提取皮肤 ISF 和 miRNA 的 FL 信号分析使用小鼠模型来研究体内 MN 贴片的特性。将 MN 贴片压入小鼠背部皮肤,去除 MNs 贴片后微孔在 5 分钟内变得不可见, 30 分钟后皮肤未观察到红斑或水肿,验证了MNS不会引起任何炎症反应。为了研究体内毒性,健康小鼠和荷瘤小鼠用MN处理后处死小鼠,取主要器官(心脏、肝脏、脾脏、肺和肾脏)进行H&E 染色,微针植入后器官未见明显病理变化或毒性反应。MN 能够在 5 分钟内从小鼠实验中提取 0.97 ± 0.2 mg(约 0.97 ± 0.2 μL)的 ISF。此外,探讨了该平台用于检测肿瘤小鼠中 miRNA的性能。穿透无肿瘤小鼠MN 的 FL 强度比荷瘤小鼠低 1.58 倍,这有力地证实了 MeHA/DNA MNs 在体内采样和分析皮肤 ISF 中 miRNAs 的巨大潜力。结论作者开发的MeHA/DNA-MNs贴片不仅具有高机械强度以穿透皮肤,而且具有高亲水性,可以在短时间内提取足够的ISF。在 DNA 凝胶中精心设计了一个级联的Toehold介导的 DNA 置换反应检测系统,用于 ISF 中的 miRNA 信号放大分析。设计的贴片在小鼠模型实验中显示出在小鼠模型中有效且灵敏地监测乳腺癌相关 miRNA 的良好能力。MeHA/DNA-MNs 在临床应用中具有微创个性化诊断和实时健康监测的巨大潜力。全文链接:https://doi.org/10.1021/acsnano.2c06261来源:高分子科学前沿

应用实例

2023.06.25

深度学习助力增材制造梯度力学超材料逆向设计

由于其特异的宏微观基元拓扑构型,力学超材料在刚度、韧性、减隔振和热膨胀等性能方面显著优于传统均质材料,受到了航空航天、生物医学、电子电路和土木工程等领域的广泛关注。生物体经过长期进化形成的各类器官,与超材料的概念相契合,即通过多层级微结构实现超常物理力学特性,同时生物器官的微结构基元还呈现出梯度渐变、长程无序等特征。目前,针对力学超材料发展的拓扑优化方法和机器学习设计方法,主要面向周期性结构,对于仿生梯度超材料的逆向设计和优化,缺乏高效率、高保真的计算分析方法。 图1深度神经多网络系统实现多属性胞元的定制总体思路框图近期,来自北京理工大学的研究者们提出了一种加速梯度力学超材料逆向设计的深度学习方法。发展了一种由对抗神经网络(GAN)、性能预测网络(PPN)和结构生成网络(SGN)组成的多重网络深度学习框架,如图1所示,可实现力学性能参数和拓扑构型的快速双向映射。基于此深度学习框架,将各向异性材料杨氏模量、剪切模量和泊松比组成的属性空间,类比于R-G-B色彩空间,进而将梯度力学超材料逆向设计转换为色彩匹配问题。利用HTL树脂3D打印(NanoArch S140,摩方精密)制备了超材料结构样件,采用数字图像相关(DIC)方法验证了逆向设计的有效性。相关成果以“A Deep Learning Approach for Reverse Design of Gradient Mechanical Metamaterials”为题发表在《International Journal of Mechanical Sciences》期刊。图2 周期性超材料的应力应变曲线和泊松比应变曲线,其中左侧插图为3D打印试件,右侧插图为有限元分析模型。(a) 正泊松比结构。(b)零泊松比结构。(c)负泊松比结构;该研究中,首先基于拓扑优化方法得到了不同杨氏模量E、泊松比υ和剪切模量G的超材料胞元,并建立对应的属性空间作为数据样本。随后,基于Keras平台搭建了具备三个卷积解码/编码网络的深度神经网络系统,用于实现结构性能评估、结构补充与结构生成。基于拓扑优化样本实现PPN网络的离线训练,同时结合随机结构训练GAN网络以补充胞元属性空间。最后,基于属性空间扩充后的样本进一步训练SGN网络,对于任意的力学参数目标,均可在0.01秒内给出胞元构型,实现了多属性胞元的快速逆向设计。针对优化设计和网络预测得到的特定属性结构进行3D打印(如图2所示),并开展DIC压缩试验表征了其模量与泊松比,验证了算法的准确性和有效性。 图3 相邻胞元结构连通性的实现:(a)单元边界的定义和连接的分类(具有不同颜色的结构表示不同的属性);(b)SGN网络调整初始设计;(c)经过网络匹配得到的最终结构。在超材料胞元快速逆向设计的基础上,创新提出了一种结构像素化方法,通过结构的E-υ-G属性与R-G-B通道一一映射,将结构属性数据库转化为像素数据库。首先基于像素匹配的方式生成满足宏观属性需求的初始设计,随后网络系统根据结构的连通性要求进一步优化胞元结构,保证宏观结构的可制造性,如图3所示。研究者们以髋关节假体为例,开展了梯度超材料结构的快速设计。如图4所示,髋关节假体在人体中主要承受非轴向载荷,如果嵌入骨骼中的部分发生弯曲,受到弯曲拉应力作用的一侧,将牵引其上附着的骨组织,诱发组织损伤。模仿实际骨骼的力学属性分布特征,采用神经网络系统在不同位置自动排列模量与泊松比梯度变化的超材料胞元(图5),从而调整了宏观结构的变形模式,使髋关节植入结构的两侧,均保持在压应力状态,解决了假体界面失效的问题。计算模型基于围绕假体的凹槽,用于模拟假体插入骨骼,固定凹槽的底端并在假体的顶部施加非对称压缩载荷。同时他们还建立了一个多材料模型,每个晶胞区域代表一种材料,材料性质与超材料模型中相同位置的晶胞的E-G-υ一致。两种模型的水平位移计算结果如图5f所示,槽左侧的位移为负,而右侧的位移为正,这表明假体两侧的界面被均匀挤压。假体与骨牢固结合,有效防止界面破坏,梯度结构具有完美的连接状态,类似于超材料模型的设计目标。超材料模型和多材料模型的计算结果高度一致,证实了他们提出的超材料设计方法的准确性,这种有效的连接策略在满足增材制造要求的同时实现了与多材料设计相同的性能。图4  人体髋关节假体的受力状态。(从外到内为皮肤、髋骨和假体。假体受到不对称轴向压缩力作用,中间的粉红色区域被选为目标设计区域。) 图5 深度神经网络系统实现梯度模量/泊松比髋关节结构设计:(a)具有生物相似结构的梯度模量分布;(b)受变形模式启发的泊松比分布;(c)叠加后的最终力学性能分布;(d)GSN网络在像素匹配后调整结构;(e)满足目标模量和泊松比设计要求的超材料髋关节结构。(f)模拟假体受载的位移云图,等效多材料模型(上)和超材料模型(下)。原文链接:https://www.sciencedirect.com/science/article/pii/S0020740322007986

应用实例

2023.06.21

开启区域合作新篇章,摩方精密武汉办事处正式成立!

佳音美好,如约而至。为了快速响应湖北本地客户需求,同时辐射湖南和江西等周边省份,通过本地化经营和服务,深入拓展区域内客户,从而进一步提升区域内合作客户的使用体验。暨今年三月份南京办事处成立之后,重庆摩方精密科技股份有限公司(武汉办事处)于6月18日正式成立,标志着摩方精密在微纳3D打印领域的发展战略布局又迈出了坚实的一步!随着经营规模不断拓展,业务需求不断激增,今年以来,公司坚定夯实发展基础,明确发展方向,辐射全球市场,选派了经验丰富、责任心强的管理和业务人员常驻武汉,为客户提供快捷专业的服务,为到办事处的各界朋友做好相关保障。摩方精密武汉办事处坐落于武汉市东湖开发区珞喻路光谷世界城,地理位置得天独厚,具备无可比拟的市场优势。它将有利于扩大公司在湖北省及周边省份的品牌影响力和知名度,为客户提供更及时、高效的技术支持与服务支撑,同时大力拓展区域周边业务。武汉办事处的设立是我司发展战略的重要一步,也是公司适应市场发展,完善全国各地营销和服务布局的重要一步。我们希望与客户共同探讨先进制造技术和创新应用,探索和挖掘新的应用领域,进一步扩大公司产品的应用范围和创新能力。因此,在摩方精密武汉办事处成立之际,公司特邀请各行业客户共聚九省通衢的武汉,开展《先进制造技术创新研讨会》,共同探讨先进制造新技术和创新应用。研讨会上,摩方精密副总裁周建林先生作了《高精密微纳增材技术及其产业应用进展》的主题报告,他指出,摩方精密聚焦精密微纳增材装备及终端产品的研发和制造,在精密微纳增材制造领域具有20年以上的科研和工程经验,在全球率先实现工业化应用的超高精度3D打印系统。采用的PμSL技术(面投影微立体光刻技术)能有效平衡高精度与大幅面之间的固有矛盾,具有成型效率高、生产成本低、打印精度高的突出优势,是最有前景的微纳加工技术之一,广泛应用于精密零部件领域、医疗领域、消费电子领域、科研领域。左上-摩方精密副总裁-周建林右上-中国地质大学(武汉)特任教授-孔令运左下-武汉大学副教授-何蔓右下-武汉大学副教授-雷祎凤同时,特邀请到三位专家分别作了《微纳结构生物材料与糖尿病诊疗研究》、《3D打印在样品预处理中的应用》、《3D打印技术在油气地质和工程研究中的应用及展望》的主题报告,为研讨会提供了广泛而深入的内容,涵盖了微纳技术、3D打印技术以及生物医学工程等领域的最新研究进展。随着摩方精密武汉办事处的设立,它将依托公司总部的卓越资源和实力,致力于与客户共同探索、开创更广阔的应用前景。同时,将进一步拓展公司品牌业务,加强华南领域市场开发,不断提升业务能力水平,缩短服务响应时间,为更多客户提供更优质的专业产品与服务保障,积极为高精密增材制造领域贡献力量!让我们携手努力,以先进的技术和创新的思维,共同开创先进制造的崭新篇章!

企业动态

2023.06.20

东华大学游正伟团队ACS Nano:具有高度灵活性的三维运动仿生机器人

智能机器人的快速发展必将给人类的日常生活带来一场革。命。随着他们与复杂操作环境融合的要求越来越高,柔性和可变形机器人的发展变得至关重要。然而,现有的机器人通常需要刚性的电机泵来提供能量,并限制了其对环境的适应性。全软体机器人由于其优越的适应性和友好的人机界面,已经引起了人们的极大关注。已经报道了具有不同类型运动的水生软体机器人,如爬行、跳跃和游泳。然而,所报道的三维运动集中在单一相位上,要么是液体,要么是空气。没有报道与液体-空气界面有关。由于不平衡的机械环境,要在液气两相界面实现三维运动(X、Y和Z轴)仍然是一个艰巨的挑战。编辑切换为居中添加图片注释,不超过 140 字(可选)东华大学游正伟教授团队受半月板攀爬甲虫幼虫Pyrrhalta的启发,提出了三相(液-固-空气)接触线的机制,以应对上述挑战。一个基于光敏液晶弹性体/碳纳米管复合材料的3D打印的全软体机器人(名为larvobot)被开发出来。此机器人具有可重复的可编程变形和高自由度的运动能力,可以在液气界面的三维运动,包括扭转和滚动。通过分析幼虫机器人沿固体-水面的力学原理,建立了运动方程。同时,利用ANSYS计算应力分布,这与推测的结果相吻合。此外,软体机器人在精确的时空控制下由光远程驱动,这为应用提供了巨大优势,作者展示了软体机器人在封闭管道内的可控运动,这可用于药物输送和智能运输。相关成果以“Meniscus-Climbing System Inspired 3D Printed Fully Soft Robotics with Highly Flexible Three-Dimensional Locomotion at the Liquid–Air Interface”为题发表在ACS Nano上。第一作者为王洋和管清宝副研究员。编辑切换为居中添加图片注释,不超过 140 字(可选)可光聚合的主链液晶低聚物是由反应性中间物和胺连接物通过aza-Michael加成法合成的(图1b),它可以最大限度地提高潜在的致动应变。采用无溶剂基质来拉长LCE分子来最大限度地减少干燥过程中溶剂损失引起的体积变化和残余应力。在紫外光照射下,LCE的交联网络是通过3D打印过程后从活性丙烯酸酯端基中获得(图1a),这有利于保留程序化的中子排列。具有高光热转换效率和对近红外敏感的CNTs被用作关键部件,赋予LCE/CNTs复合材料精确的远程控制,并通过光实现方便和持续的能量供应。编辑切换为居中添加图片注释,不超过 140 字(可选)图1:3D打印LCE/CNTs larvobot的设计随着1 wt% CNTs的加入,LCE/CNTs条带的表面温度在0.69秒内达到约91℃,并能在不到8秒内从25℃上升到∼260℃(图2a)。LCE/CNTs墨水可直接写墨打印(图1a),在向列相内,墨水具有剪切稀化特性,墨水的粘度在 50-60°C 时出现了急剧的下降(图 2b)。为了使用直接写墨打印的长丝具有高保真的几何形状,打印温度被设定为50℃,所以LCE/CNTs墨水拥有及时的剪切稀化反应和合适的粘度。单轴印刷的LCE条显示了典型的各向异性的光学特性(图2c)。不同印刷速度的LCE条的取向程度用X射线衍射法进行了表征。结果显示,在12mm/s的印刷速度下,带材可以保持适当的形状和高的取向度(图2d)。这一事实说明从印刷注射器中挤出的LCE/CNT很容易使中间物质沿着编程的印刷路径对齐。为了了解全软机器人在两相界面上的驱动,作者还研究了由双层独立式LCE / CNTs条带组成的幼虫在空气中的光向性行为。通过打开和关闭NIR光,最初的扁平条带分别可以瞬间向上和向下弯曲(图1c)。编辑切换为居中添加图片注释,不超过 140 字(可选)图2:LCE/CNTs的表征除了条状的软体机器人,作者还印制了更复杂的结构。首先,LCE/CNTs软体机器人由四部分组成,具有不同的长丝方向,沿同一平面打印。上部和下部的灯丝倾斜了±45°。当+45°的部分被近红外光照射时,LCE/CNTs执行器向右旋转,反之亦然(图3a-b)。在近红外光照射下,由六个花瓣组成的、带有阿基米德螺旋方向的花丝的花状机器人正在绽放(图3c-d)。一个像孩子一样的LCE/CNTs全软机器人被打印出来,它可以随着近红外光的运动而跳舞(图3e-f)。图3g-h显示了一个网状的LCE/CNTs全软体机器人,其分子方向是通过直接书写墨水来控制的。该网状全软机器人由双层丝组成,一层的方向与另一层垂直甚至相反。与整个薄膜的旋转或弯曲不同,这种网状全软机器人在X-Y平面上表现出由近红外光远程控制的定点收缩。编辑切换为居中添加图片注释,不超过 140 字(可选)图3.基于空气中LCE/CNT的全软机器人的可编程空间运动随后,作者探索了方向控制和推进的机理,并尝试了力学分析(图4d)。在近红外光照射下,实现了幼虫机器人的自由泳。幼虫机器人随时间推移的实际位移和角速度如图4 g-h所示,这证实了图4c中描述的模型。值得一提的是,在1s内暴露于NIR光后立即开始运动,这与空气中的光热驱动一致(图4f)。在定向光暴露时,蜘蛛状全软机器人在液-空气界面的运动如图4j所示。当近红外光投射到远离蜘蛛状软机器人几何中心的左腿时,暴露部位的温度达到了向列到各向同性的过渡点(TN-I),并产生向光的弯曲。因此,蜘蛛状软机器人上的力失衡,使其右转。同样,当NIR光照射到右侧时,蜘蛛状的软机器人向左转。当左右轮流照射时,机器人会直线向前移动而不是转弯。除了二维运动外,基于LCE/CNTs的幼虫机器人还表现出在液-空气界面处的三维运动能力。作者还打印了一个较小的larvobot,放置在直径为15毫米的封闭玻璃管中,由于光线的穿透,身体可以自由旋转,并在3.5秒内旋转360°(图4i)。编辑切换为居中添加图片注释,不超过 140 字(可选)图4. larvobot机器人的机械分析为了理解软机器人在液-空气界面的运动,通过沿三相接触线改变角度来诱导表面张力差,从而建立了运动机制。在此过程中,幼虫的运动由浮力Fb和表面张力FT (图4b)控制。当近红外光照射在幼虫机器人上时,该过程可分为坠落、游泳和离开。如图5所示a(i和iv),力(fL)的Larvobot在落下和离开的某个时刻接近平衡,这与图4e中的分析相似。在游泳过程中(图5a),暴露于近红外光时会产生幼虫机器人的各种变形,导致表面张力和水平面之间的角度和长度可变,这主要归因于超出半月板攀爬甲虫幼虫Pyrrhalta的内在运动的三维运动(图1d和图5b)作者又进一步论证了三相接触线的机理。随着沿接触线的倾斜度变化,FT运动方向增加,这使得幼虫机器人游得比以前更快。矢量图和速度的nephogram在计算域中给出(图5c-d)。幼虫机器人的横向毛细管力在被光照射之前沿三相接触线均匀分布。照射后,幼虫的力分布主要集中在照射区域(图5e)。事实证明,幼虫在液-空气界面处的多维运动是由表面张力的差异引起的,这与力学分析一致。编辑切换为居中添加图片注释,不超过 140 字(可选)图5.在 larvobot 的三维卷起中进行运动学分析和有限元模拟小结:综上所述,全软机器人在液-空气界面的多模运动是通过构建模仿半月板攀爬甲虫幼虫Pyrrhalta的三相接触线差分来实现的。功能性LCE / CNTs复合材料与3D打印技术相结合,可实现所得结构的高度自由度和可编程运动,甚至在液 - 空气界面处超越天然甲虫幼虫Pyrrhalta的三维卷起。此外,光热材料通过简单的光照射实现时空可控的运动和连续的能量供应。通过结合各种功能填充物、编程方向、图案和三维结构,可以进一步改变运动。这项工作中开发的设计原理和材料将激发下一代功能性软机器人的灵感。编辑添加图片注释,不超过 140 字(可选)作者及团队简介游正伟教授长期从事弹性体材料研制及其在生物医学和生物电子领域的应用。建立了酸诱导环氧开环聚合反应(Biomaterials 2010, 31, 3129; Adv. Funct. Mater. 2012, 22, 28;),高效制备了一系列新型的功能化、生物活性的可降解聚酯类弹性体(ACS Appl. Mater. Interfaces, 2016, 8, 9590; ACS Appl. Mater. Interfaces 2016, 8, 20591; J. Mater. Chem.B, 2016, 4, 2090; J. Mater. Chem. B, 2019, 7, 123; Acta Biomater. 2019, 539, 351);发展了基于肟氨酯基团的新的动态键体系,研制了自愈合多功能聚氨酯类弹性体(Adv. Mater. 2019, 31, 1901402; Adv. Funct. Mater. 2019, 29, 1901058; Mater. Chem. Front2019, 3, 1833);通过工艺、设备、策略的创新,解决了3D打印中的一系列瓶颈问题,实现了包括上述热固性弹性体在内不易加工材料的3D打印(Mater. Horiz., 2019, 6, 394),构筑了常规3D打印难于获得仿生血管网络等三维精细结构(Mater. Horiz. 2019, 6, 1197);进而考察上述材料和加工技术在心肌(Adv. Healthc. Mater. 2019, 8, 1900065)、血管(Biomaterials 2016, 76, 359; Acta Biomater. 2019, 97, 321)、气管(Sci. China Mater. 2019, 62, 1910)、子宫(Adv. Healthc. Mater.2019, 8, 1801455)、和骨(J. Mater. Chem. B, 2017, 5, 2468)等组织再生和可穿戴电子(Adv. Funct. Mater. 2018, 28, 1805108; Nat. Commun.DOI: 10.1038/s41467-020-14446-2)等领域的应用。近期,针对磅礴兴起的可拉伸电子器件的需求,该团队将研究拓展到弹性凝胶材料领域,研制了基于水凝胶的自愈合(J. Mater. Chem. A 2019, 7, 13948)和基于离子凝胶的高拉伸、高透明、高稳定,适用于宽温度范围的摩擦纳米发电机(Nano Energy 2019, 63, 103847),近期研制了全新一代的导电纤维——高拉伸透明的有机水凝胶纤维,较水凝胶纤维保水抗冻性能显著提升,这些工作在人体交互的可穿戴电子设备、生物医学、人工智能等领域具有良好的应用前景。摩方精密简介摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。

应用实例

2023.06.20

中国林科院林化所周永红/刘承果研究员团队 CEJ:可回收且可重复DLP-3D打印的生物基光敏树脂

3D打印作为一种革。命性的制造技术,已经广泛应用于各种工业领域,如航空航天、生物医学、消费用品等。其中,数字光处理(DLP)型光固化3D打印技术由于打印精度高、速度快而备受人们的关注。然而,目前大部分光固化3D打印树脂来源于不可再生的化石能源,且废弃的3D打印制件不可回收利用,易造成严重的资源浪费及环境污染。部分研究者将动态共价键引入到光固化3D打印树脂中,废弃模型可以再次热压成型。但是,热压模型十分简单粗糙,且再加工材料老化严重,性能明显下降,故属于低价值回收。将光固化3D打印材料再次转化为液态光敏树脂,并重复应用于光固化3D打印,实现可循环的光固化3D打印,是可持续3D打印材料面临的重大挑战之一。近日,中国林科院林化所周永红/刘承果研究员团队开发了一种新型的、含有动态位阻脲键(HUB)的蓖麻油基光固化3D打印树脂,成功实现了打印材料的快速固液转化及可循环DLP打印。此外,将该材料用于打印牺牲模具,模具可以快速脱除并再打印;将该材料与温致变色微胶囊复合用于打印信息存储或防伪材料,实现了变色微胶囊的无损回收及循环利用。该工作以“Recyclable and reprintable biobased photopolymers for Digital Light Processing 3D Printing”为题发表于《Chemical Engineering Journal》, 第一作者为中国林科院2020级博士朱国强。该研究得到中国林科院院基金人才项目(CAFYBB2020QA005)和国家自然科学基金(31822009)的支持。 图1 光敏预聚体COIT的合成及可循环打印研究人员利用蓖麻油(CO)、异佛尔酮二异氰酸酯(IPDI)和甲基丙烯酸叔丁基胺乙酯(TBEM)合成了含有HUB的生物基光敏预聚体COIT。将COIT与30%稀释单体TBEM复配得到光固化3D打印树脂(COIT-T30)。打印材料中的位阻脲键在高温下可解离成异氰酸酯和叔丁基胺,同时利用稀释单体TBEM进行封端,交联网络被打开,打印材料逐渐降解。通过研究其降解动力学可知,当降解温度为90℃时,打印材料在TBEM溶液中仅需要4h 便可以完全降解成低聚物溶液,实现固液转化(100 ℃条件下仅需2h,考虑到温度太高会造成双键聚合等,选择90℃作为最佳降解温度)。最后,向降解的低聚物溶液中补充一定量的光敏预聚体COIT,得到可重复DLP打印的光敏树脂。 图2 COIT-T30打印材料的固液转化机理及降解动力学曲线考察了树脂的回收效率。首先,回收树脂的颜色与原始树脂完全一致,没有明显的老化变色。其次,经过连续3次回收后,回收材料的物理性能(粘度、收缩率等)、热性能、力学性能、聚合速率等也都基本保持不变,展示了优异的回收效率。因此,COIT材料的回收是快速且高效的,十分有利于循环3D打印。 图3 回收树脂与原始的性能对比、及回收效率3D打印可牺牲模具克服了传统模具制造过程中成本高、耗时长等缺点,逐渐受到模具制造领域的青睐。但是,已报到的可牺牲模具只能使用一次,降解的废液同样难以处理。本工作利用COIT-T30材料快速固液转化和可循环打印性能,实现了3D打印牺牲模具的循环打印。并且利用材料在乙醇中的溶胀特性,同时实现了室温脱模。 图4 可循环3D打印牺牲模具高价值的功能性填料经常被添加到树脂基体中打印特定功能的模型,其中高价值填料的无损回收具有十分重要的意义。温致变色微胶囊可赋予打印模型温致变色的功能。然而,小分子溶剂及高温(T>180 ℃)非常容易导致微胶囊破裂,从而失去变色能力。因此,温致变色微胶囊的回收是一个巨大的挑战。本工作利用温致变色微胶囊在弱碱性溶剂及油脂中十分稳定的特性,成功实现了温致变色微胶囊的无损回收及可循环利用。连续回收3次后,温致变色微胶囊及树脂基体的性能与原始微胶囊及树脂基体基本一致。 图5 温致变色微胶囊的无损回收利用几种不同温度响应的温致变色微胶囊与COIT-T30复配,打印出温致响应的图案,可用于信息的加密或防伪。温致变色微胶囊与打印树脂具有非常好的相容性,打印图案具有非常好的温致变色灵敏性和稳定性。随着温度的升高(22 ℃),可显示不同的信息,实现信息的解密。当温度高于65 ℃或低于22℃时,所有信息均隐藏,实现信息的加密。此外,利用COIT-T30打印材料的快速固液转化性能,实现了多种温致变色微胶囊的无损回收及循环利用。 图6 温致防伪图案的打印综上所述,本文首次利用解离型动态共价键实现了光固化3D打印材料的快速固液转化及可循环光固化3D打印,有望解决传统光固化3D打印材料带来的资源浪费和环境污染等问题。同时,首次实现了牺牲模具和温致变色材料的循环3D打印,尤其是变色微胶囊的无损回收及再利用。该工作为可循环光固化3D打印的材料研究提供了新思路。文章链接:https://doi.org/10.1016/j.cej.2022.139401摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。

应用实例

2023.06.16

基于空心微针的等离子体传感器,检测真皮间质液中的生物标志物

疾病的诊断和监测常常通过检测血液、尿液、唾液和其它体液中的生物标志物来实现。特别是包围着体内细胞和组织的间质液(ISF),是一种丰富的生物标志物来源。由于间质液中不含任何颗粒,并且运输的蛋白质比血清中运输的蛋白质少,因此有利于生物传感应用。此外,与其它体液相比,间质液中同时含有系统性生物标志物和特异性生物标志物。然而,收集间质液的困难限制了其在临床和研究中的应用。获取间质液对于促进新的生物标志物的发现、更有效的医疗保健以及对不同疾病的早期诊断和监测非常重要。就速度和安全性方面而言,通过皮肤来收集间质液是最佳方式。由于皮肤是最容易接触的器官,因而是一个有效的间质液来源。通过皮肤提取间质液的方法有多种,如植入式毛细管法、微移液管插入法和水泡法等。目前,这些方法正逐渐被微针(MNs)的使用所取代。微针具有更强的以微创方式获取生物信息的能力,并且具有无痛、耐受性好、易于使用和有效的优势。微针是一种具有微米级特征尺寸的装置,能够物理破坏角质层(SC),即皮肤的外层。微针的长度为数百微米,尖端锋利,通常以阵列形式组装在贴片上,并且,组装后的微针贴片可以轻松贴在皮肤上。不同类型的微针,如实心微针、溶胀微针和空心微针都可以用作传感器。其中,空心微针(HMNs)具有内置腔体,可以作为有效的生物流体收集器,在真皮层和皮肤外层之间的界面上创建透皮流体路径。此外,空心微针通常与吸液纸集成,集成后的装置能够收集间质液,以用于后续的化学分析。然而,通过空心微针装置收集的间质液通常需要在额外的独立装置中进行分析,从而需要引入额外的间质液转移步骤,即将纸基微针贴片在萃取介质中进行孵育,并通过离心从中提取分析物,而后再用适当的分析方法对提取出的分析物进行检测。总而言之,这些装置需要将收集到的间质液从微针管腔转移到分析物检测器。这通常使得微针装置只能以较长的时间提取少量可使用的间质液,从而进一步导致传感器响应的缓慢。为了克服以上微针技术的局限性,意大利国家研究委员会应用科学和智能系统研究所(ISASI)的研究人员提出了一种空心微针贴片装置,该装置的微针空腔中填充了含有金纳米颗粒(AuNPs)的高度溶胀聚乙二醇二丙烯酸酯(PEGDA)3D网络结构,从而构建了一种等离子体传感器。该微针装置可以直接检测提取的生物标志物,无需任何额外的步骤。该基于高分子量(Mw)PEGDA和球形金纳米颗粒的3D光学传感器集成了以下几个优点,例如,在空心微针腔内具有良好的适应性和灵活性,更高的表面积以及表面积体积比,并且不需要复杂的电路(因为与皮肤接触会产生干扰,复杂电路的需求通常是可穿戴生物传感器应用的瓶颈)。相关研究成果以“Hollow Microneedle-based Plasmonic Sensor for on Patch Detection of Molecules in Dermal Interstitial Fluid”为题发表于Advanced Materials期刊。等离子体纳米复合材料在空心微针阵列腔内的集成该空心微针贴片通过光刻方法制造,并利用了PEGDA在低分子量下的光交联特性。PEGDA是一种具有生物相容性的无毒聚合物。将金纳米颗粒包裹在高分子量PEGDA中,然后插入到空心微针腔中。随后,利用高分子量PEGDA的高溶胀特性提取间质液。该技术避免了对收集的间质液进行独立分析,并允许直接从微针装置检测感兴趣的靶分子。空心微针阵列的制备与表征此外,该微针传感装置利用金纳米颗粒作为光学换能器,该换能器的原理是基于局部表面等离子体共振(LSPR)现象,该现象是由特定激发波长下纳米颗粒表面电子密度的振荡引起的。与此同时,如果满足合适的条件,金纳米颗粒周围的电磁场增强可以导致荧光团的强荧光增强。这种现象被称为金属增强荧光(MEF)或等离子体增强荧光,通常用于将等离子体生物传感器的检测极限(LOD)提高到单分子水平。因此,设计并制作的基于高分子量PEGDA和球形金纳米颗粒的等离子体纳米复合换能器可在双光学模式下工作。随后,为了进行概念验证,研究人员利用生物素-链霉亲和素的相互结合作用构建靶/受体耦联系统,在溶液中测试了集成等离子体空心微针装置的传感性能。等离子体空心微针阵列对生物素-链霉亲和素相互结合作用的双光学模式传感最后,研究人员通过使用由封口膜和琼脂(分别用于模拟角质层和真皮层)制成的皮肤模型,测试了所提出的装置从皮肤中收集和捕获生物素靶分子的能力。测试结果表明,无论是利用无标记的LSPR传感机制还是基于荧光的传感机制,作为靶标的生物素,都可以被成功地检索和光学检测,从而证明了本文所提出平台的功能有效性。从皮肤模型中提取和检测生物素的概念验证工作综上所述,该研究开发的等离子体空心微针可以作为开发一种简单、低成本、可大规模推广和通用的使用点(point-of-use,PoU)检测装置工作的起点,可以替代传统的、昂贵的、费力的医院或实验室装置,用于监测患者体内间质液中的生物标志物。此外,通过利用不同形状的纳米颗粒(例如纳米棱柱、纳米三角形和/或纳米星形)以及其尖端形状现象,或者通过增加换能器体积从而增加收集的间质液体积,可以进一步提升小分子的无标记检测性能。由于人口老龄化以及专业人员和医院床位的缺乏,这些PoU检测装置正受到越来越多的关注。因此,对PoU装置的需求变得越来越迫切,所提出的方法可以为满足这一需求铺平道路。摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。论文链接:https://doi.org/10.1002/admt.202300037来源:微流控

应用实例

2023.06.16

哈工大(深圳)魏军团队 AFM综述:3D打印超级电容器 - 技术、材料、设计及应用

便携式、柔性和可穿戴电子设备的发展促进了高性能的电化学储能设备的快速发展。与电池和燃料电池相比,超级电容器表现出显著的优势,具有优异的倍率性能、杰出的循环寿命和卓越的安全性。然而,超级电容器的能量密度相对较低,不足以为电子设备提供连续且稳定的电源。为了提高能量密度,厚电极设计是有效的手段。而在传统的三明治结构的超级电容器中,平面电极的活性材料质量负载是相当有限的。设计三维多孔电极可以有效地提高活性物质的质量负载,同时保持较短的离子/电子传输距离和快速的反应动力学。但传统的制备三维多孔电极的方法通常复杂、昂贵、耗时,并且很难精确控制电极的结构。3D打印技术,通过计算机辅助设计/制造模型,对预定义的3D模型进行数字化控制,使得在短时间内精确控制和制造复杂结构成为可能。区别于传统的等材和减材制造技术, 3D打印技术可以实现几乎任何所需的立体几何形状,不需要所谓的模具或光刻掩模。这使得打印的超级电容器具有可调整的几何结构、高度集成、节省时间和低成本、以及卓越的功率和能量密度。为了总结这一领域的最新进展并为未来的研究提供设想,来自哈尔滨工业大学(深圳)的魏军教授团队,在Advanced Functional Materials上发表题为“3D Printed Supercapacitor: Techniques, Materials, Designs and Applications”的综述文章,回顾了3D打印超级电容器的最新进展,如图1所示。 图1.  3D打印超级电容器研究进展首先,介绍了用于制备超级电容器的代表性的3D打印技术,不同技术的原理图和特点如图2所示。 图2. 制备超级电容器的各种3D打印技术的原理图和特点接下来,文章重点介绍了超级电容器的可打印模块,包括电极、电解液和集流体,如图3所示。 图3. 用于3D打印超级电容器的材料在研究合适的可打印材料的同时,制造中的打印设计对于优化超级电容器的性能也是重要的。因此,文章总结了电极的设计(图4)、打印电极的后处理,并概括了3D打印超级电容器的不同构型(图5)。图4. 3D打印电极的不同结构设计 图5. 3D打印超级电容器的构型此外,还总结了3D打印超级电容器的各种应用,包括柔性可穿戴电子设备(图6)、自供电集成电子设备和传感系统(图7)。 图6. 不同类型的智能响应型超级电容器 图7. 3D打印的自供电集成系统,和超级电容器驱动的传感器系统。如图8可知,目前制备的3D打印超级电容器的能量密度与铅酸、镍氢电池和锂电池相当,有的甚至更高。 图8. 3D打印超级电容器的 (a)质量Ragone图, (b) 面积Ragone图最后,总结了目前3D打印技术的局限性和未来3D打印超级电容器的研究面临的挑战,并提出了一些可能的研究方向。 图9. 3D打印超级电容器的未来展望文章信息:Mengrui Li, Shiqiang Zhou, Lukuan Cheng, Funian Mo, Lina Chen,* Suzhu Yu,* Jun Wei,* 3D Printed Supercapacitor: Techniques, Materials, Designs and Applications, Advanced Functional Materials, 2022, 202208034.原文链接:https://doi.org/10.1002/adfm.202208034

应用实例

2023.06.15

为全民口腔健康保驾护航!2023牙齿表面超精密强化国际学术论坛圆满落幕

口腔健康是全身健康的重要组成部分,也是反映一个国家或地区居民身心健康、文明水平的重要标志。在“健康中国”战略背景下,口腔医疗健康产业的高质量发展, 更需要持续融入应用新技术和新理念。6月8日,由北京大学口腔医院、口腔生物材料和数字诊疗装备国家工程研究中心、国家卫生健康委口腔数字医学重点实验室主办、北大口腔医学-重庆摩方牙齿超高精度表面强化技术联合实验室协办的“2023牙齿表面超精密强化国际学术论坛”在北京圆满落幕。此次论坛特邀全球口腔医学领域二十多位著名专家,聚焦口腔数字医疗领域重大突破和热点课题,旨在通过国际学术交流全面提升口腔医学科研发展水平,引领口腔修复发展新高地,为全民口腔健康保驾护航! 活动现场作为业界权威盛会,本次论坛以科技创新助力口腔健康产业新发展为核心主题,特邀口腔领域众多知名学者与专家,开启一场学术交流盛宴,出席论坛的国内著名专家包括中国科学院王松灵院士、中国人民解放军总医院口腔医学研究所刘洪臣教授、北京大学口腔医学院周永胜教授、空军军医大学口腔医学院陈吉华教授、上海交通大学口腔医学院蒋欣泉教授、吉林大学口腔医学院孙宏晨教授、天津医科大学口腔医学院李长义教授、四川大学华西口腔医学院林云锋教授、北京大学口腔医学院孙玉春教授等;还有来自国际口腔医学界的专家韩国首尔国立大学牙科学院原院长,原国际口腔修复医师学院主席,韩国口腔修复学会原会长Jung-Suk Han教授和加利福尼亚大学洛杉矶分校(UCLA)牙科学院Reuben Kim教授等。北京大学口腔医院名誉院长张震康更是发来贺信,在致辞中,他对近年来我国口腔医学界在数字医疗领域取得的一系列成果给予高度评价,也期待以本次论坛为契机,将数字化更多技术成果用于临床,造福广大患者。同时,美国国家医学院院士、中国工程院外籍院士,加利福尼亚大学洛杉矶分校牙学院副院长王存玉院士也进行了线上致辞,对本次论坛给予高度重视及肯定。在开幕致辞中,王松灵院士以“牙齿表面无创强化的重要性”为主题,他表示传统工艺制作出来的牙齿贴面材料厚度在300-400μm,而利用超高精密3D打印技术能把牙齿贴面厚度降至80μm左右,该技术未来有助于在不磨牙或尽量少磨牙的前提下,快速强化和美化牙齿表面,保护天然的牙釉质,减少治疗过程中对健康牙体组织的损伤,使牙齿形状、颜色和整齐度快速焕然一新,还能迅速提升牙齿表面的耐磨性、防龋性,实现极微创/无创牙齿表面美学重建和快速强化,满足不同人群的美学要求,希望该牙齿表面超精密强化创新产品能早日服务于临床,造福更多的口腔患者。 王松灵院士致辞随后,北京大学口腔医学院党委书记、口腔修复学科带头人周永胜教授以“牙齿缺损修复技术百年进化与全球共同理想”为主题,从行业发展趋势角度展开介绍;口腔数字化医疗技术北大口腔医学-重庆摩方牙齿超高精度表面强化技术联合实验室主任孙玉春教授以“极薄强韧氧化锆贴面-天然牙齿微创/无创强化技术的新起点”为主题,重庆摩方精密科技股份有限公司首席技术官夏春光博士以“超高精密度陶瓷光固化成形技术最新突破”为主题,从超精密加工技术在口腔数字化领域的不同应用方向、具体案例带来分享,一系列观点和分析引发与会代表共鸣。 周永胜书记主题报告孙玉春教授主题报告 夏春光博士主题报告极薄牙齿贴面是本次论坛的重点研讨方向。医学研究表明,北大口腔医学-重庆摩方牙齿超高精度表面强化技术联合实验室以摩方的超高精度3D打印技术、氧化锆材料与后处理技术等多项核心技术创新研发出的极薄牙齿贴面超越了常规贴面的厚度极限,突破了全球牙齿贴面成型精度的技术壁垒,有助于实现微创/无创牙齿表面快速强化和美学重建,与口腔修复学发展的趋势以及市场需求充分契合,有望成为牙齿微创美学修复的重要里程碑。在论坛期间举办的主题研讨会上,与会专家们就围绕超薄到极薄中的机遇与挑战、超薄陶瓷贴面与前牙美学修复、重度损耗牙齿与合贴面修复技术、氧化锆陶瓷贴面粘接技术、面投影微立体光刻超高精密打印技术等热点话题展开对话交流,为行业未来发展以及临床应用带来专家解读和可行性意见。 主题研讨随着本次论坛达成一系列共识成果,获得圆满成功,与会专家一致认为,借助数字化东风,口腔医学健康事业的高质量发展不断提速。数字化技术的加速渗透,也给行业带来一系列创新与变革的机遇和挑战。未来,广大口腔医务工作者和科研人员也将坚持以临床需求为出发点,以科学创新作支撑,持续推进产、学、研、医相结合的合作共赢发展模式,通过推出一系列科学、全面、高效的数字化技术产品和解决方案,走出一条符合行业发展规律的数字化高质量发展之路,为全民口腔健康保驾护航,为“健康中国”事业赋能助力。

企业动态

2023.06.14

西南石油大学:一种具有可调力学性能的新型单斜拉胀超结构

具有负泊松比效应的拉胀结构是一类功能和结构一体化的力学超结构。由于反常规的负泊松比效应,拉胀超结构具有诸多独特的力学性能和广阔的工程应用前景。相较于缺失支柱胞元结构,手性拉胀结构(Chiral auxetics)可以在大应变下保持平滑的变形,并且对制造误差相对不敏感。缺失支柱胞元结构(missing rib auxetics)是一类典型的手性拉胀结构,可视为由传统手性拉胀结构的中心圆环替代为中心支架而成(图1)。 图1 传统手性及缺失支柱拉胀结构相较于传统手性拉胀结构,缺失支柱拉胀结构在大变形范围内具有更稳定的负泊松比响应,但由于中心支架缺乏有效支撑,其旋转效应无法得到充分发展从而拉胀性能较弱。为提高其结构刚度并获取可调范围更广的负泊松比,研究团队基于已有缺失支柱型结构发展了几种增强型结构,包括增强六手臂缺失支柱手性结构(Enhanced Hexa-missing rib)、增强三手臂缺失支柱反手性结构(Enhanced Anti-tri-missing rib)及增强四手臂缺失支柱反手性结构(Enhanced Anti-tetra-missing rib)。四手臂缺失支柱手性结构也是一种经典的缺失支柱胞元结构,并且由于对称性的缺失表现出独特的单斜性质(即:单轴拉伸/压缩时结构会产生耦合拉伸/压缩-剪切变形,如图2所示)。图2 传统四手臂手性拉胀结构(a)及四手臂缺失支柱手性拉胀结构(b)在单轴拉伸荷载下的变形图单斜特性对拉胀超结构力学性能的影响还鲜有报端。近期,西南石油大学朱一林副研究员团队发展了一种新型增强四手臂缺失支柱手性结构(Enhanced Tetra-missing rib,图3)。这种结构的单胞由两个”Z型”手臂及一个增强矩形框格组成,与团队之前发展的增强四手臂缺失支柱反手性结构(图1b)具有相同的基本单元(图3)。 图3 四手臂增强缺失支柱手性(a)及反手性(b)单胞结构为了确定可调的力学性能并为实际应用提供指导,研究团队基于卡氏定理推导了小变形下等效弹性常数的理论模型。由于单斜特性,推导等效弹性模量、泊松比和剪切模量时需要分别施加固定端部拉伸(fix-end uniaxial tension)荷载及固定拉伸的剪切(fix-tension shear)荷载。 图4 固定端部拉伸(a)及固定拉伸剪切(b)示意图通过调控结构的几何形状,即可获取大范围可调的力学性能(图5)。研究团队开展了系统的有限元计算(施加了周期性边界条件的单胞层面)。有限元计算结果与理论结果吻合度很高(图6),验证了理论推导的正确性。 图5 等效泊松比(a),弹性模量(b)及剪切模量(c)云图图6 理论及有限元分析等效弹性常数增强四手臂缺失支柱手性和反手性拉胀结构具有相同的基本单元,因此,研究团队对比了相同几何参数下两种结构的等效弹性模量和剪切模量(图7)。结果表明,单斜特性可显著增强结构的刚度,最高可达两个数量级。该研究成果为如何在不牺牲拉胀性能的同时提高拉胀结构的刚度提供了新的思路,具有重要的意义。 图7 增强四手臂缺失支柱手性及反手性胞元结构等效弹性模量及剪切模量对比此外,研究团队进一步通过结构层面的实验和有限元计算验证了理论公式的正确性。实验基体材料为HTL光敏树脂(弹性模量和屈服应力分别为0.6GPa和14MPa),试样利用微尺度3D打印机(nanoArch P150,摩方精密)制备,最薄处截面尺寸为0.15mm×1.0mm。结构层面的实验和有限元分析变形图吻合度很高(图8),并且弹性常数的理论结果与单胞层面的有限元分析结果、结构层面的有限元分析结果以及实验结果均吻合的很好(图9),进一步验证了理论公式的有效性。 图8 实验及有限元分析变形图 图9 理论、实验及有限元分析等效弹性常数该研究成果以“A novel monoclinic auxetic metamaterial with tunable mechanical properties”为题发表在国际权威期刊《International Journal of Mechanical Sciences》上。西南石油大学土木工程学院朱一林副研究员为第一及通讯作者;欧洲科学院院士、德国锡根大学结构力学系张传增教授为论文共同通讯作者;课题组硕士研究生江松辉、张祺,中国工程物理研究院总体工程研究所李建助理研究员,西南交通大学力学与工程学院于超教授为论文合作作者。该研究受到了国家自然科学基金、四川省科技厅国际合作项目、成都市科技局国际合作项目及国家留学基金的支持。

应用实例

2023.06.08

葡萄糖响应型胰高血糖素微针阵列贴片,用于低血糖无创治疗

低血糖是一种常发生在糖尿病患者的治疗过程中的副作用,较轻微时,会出现注意力不集中、出汗、心慌和视力变化等症状,可通过摄入碳水化合物解决,严重时,则会出现失去知觉、昏迷等症状,危及生命。因此,在这些不可预见的低血糖紧急情况下,需要及时补充胰高血糖素。采用安全、无痛无创的方式进行药物递送是解决上诉问题的理想方案。其中,微针阵列贴片是主要的候选方式。微针贴片由具有多功能特性的材料构成,其可以控制药物扩散动力学,实现按需给药。据麦姆斯咨询报道,近期,来自浙江大学顾臻团队的研究人员提出了一种结合3D打印技术和模具铸造技术的新型制造技术,制备了具有葡萄糖响应型胰高血糖素微针阵列贴片。该贴片可以预防胰高血糖素的物理和生物性失活,同时将有毒单体残留物消除到安全水平。相关研究成果以“Shrinking Fabrication of a Glucose-Responsive Glucagon Microneedle Patch”为题发表于Advanced Science期刊。具体而言,研究人员利用模具铸造工艺首先生成具有确定的形状和排列的相对较大的初步微针凝胶,然后进行脱水以最终实现尺寸小型化(图1A)。初始凝胶状过程可对微针形状、成型工艺和纯化进行轻松控制,而收缩步骤可确保保留小型化微针的形状细节和机械强度。为了测量整个收缩制造过程中的结构精度,使用商用3D打印机打印金字塔形微针框架,以复制PDMS模具。扩大到“毫米级”模具只需移液和超声处理即可快速浇注预冷聚合物溶液。纯化后,将凝胶状微针安装在透明的聚碳酸酯薄膜上并进行半密封以进行缓慢脱水,直到微针基底与聚碳酸酯薄膜分离。在收缩过程中,由于聚碳酸酯薄膜的稳定性,贴片的基部可以减少厚度,同时保持其原始尺寸和形状。类似地,每个微针尖端之间的中心距离保持不变,但微针尖端本身在水平和垂直方向上收缩以获得统一的预定义形状(图1B,C)。图1 葡萄糖响应型胰高血糖素微针阵列贴片制备过程而胰高血糖素递送响应于低葡萄糖水平的机制归因于CPAM/APBA聚合物网络的净电荷从阳离子到中性的转变(图2A)。当发生低血糖时,排斥性阳离子基质可以促进胰高血糖素的释放,随着血浆葡萄糖的增加,与APBA结合的葡萄糖分子数量的增加会导致更多的负电荷,以促进静电吸引(图2B),从而限制过量的胰高血糖素释放。图2 葡萄糖响应型胰高血糖素递送系统的机制和体外性能表征此外,研究人员还通过注射胰岛素以诱发胰高血糖素自动释放实验,进一步验证了该贴片的有效性。最后,研究人员验证了该贴片的长效稳定性,通过实验发现,在室温下保存的微针贴片在给药后显示出更好的提升血糖效果,并观察到微针贴片的稳定效果至少为4周。 图3 葡萄糖响应型胰高血糖素微针贴片的保护和保存评价

应用实例

2023.06.08

通过材料“尺寸效应”实现对微纳3D打印结构的力学性能调控

以面投影微立体光刻(PμSL)为例,目前高精度光固化三维(3D)打印已经被广泛应用于快速制造具备微纳特征尺寸的高分辨率聚合物模板结构,用于规模化成形制造特征尺寸小至几微米甚至百纳米级别的定制化3D微晶格(microlattice)机械超材料(mechanical metamaterials)。然而,聚合物3D打印件单元的本征力学性能在相关对应的尺度上尚没有系统的力学特性研究。特别是当超材料结构件的特征尺寸进入微米/亚微米级别时,缺乏对其弹塑性在对应特征尺寸下的根本理解,将大大限制了其在微/纳米晶格(microlattice/nanolattice)和其他多功能结构超材料(structural metamaterials)应用中的性能评估和可靠应用。然而,受限于目前的微纳尺度力学表征的技术困难,相关研究尚处于起步阶段。近期,香港城市大学机械工程系的陆洋教授及其合作团队在制造领域的顶尖期刊《极端制造》(International Journal of Extreme Manufacturing, IJEM)上发表《Tailoring Mechanical Properties of PμSL 3D-Printed Structures via Size Effect》的研究文章,基于实验室客制化的原位微纳米力学实验平台,在光镜下和电镜里,系统研究了PμSL 3D打印聚合物结构单元的“尺寸效应”。研究发现,在特征尺寸(单元杆直径)从20 μm到60 μm范围内,PμSL打印的聚合物微纤维强度与韧性显著提高,表现出明显的尺寸相关的力学行为。而当特征尺寸减小到20 μm,断裂应变高达~100%,断裂强度高达~100 MPa。这种三维光固化打印聚合物的显著“尺寸效应”可以使得PμSL打印微晶格的材料强度和刚度可以在更大范围内进行设计与调控,从而使制备的微晶格机械超材料具有增强的/可调的力学性能,或作为模板按照特定用途优化,并适用于各种结构和多功能应用。图 1 PμSL 打印(nanoArch P130,摩方精密)的聚合物微纤维样品的制备与原位力学表征图2 PμSL 打印聚合物微纤维的尺寸相关力学性能及其机制结合PμSL 打印聚合物的尺寸效应,作者设计并制备出具有相同几何形状、相对密度,不同杆尺寸的微晶格结构。结果表明,杆尺寸为20 μm的微晶格模量为~87MPa,是杆尺寸为60μm的微晶格模量(~43 MPa)的两倍;当晶格屈服后,杆尺寸为20 μm的微晶格应力随应变继续增大,表现出应变硬化特征,而杆尺寸为60 μm的微晶格表现出典型脆性材料应力应变曲线。这也提醒我们在设计微晶格超材料时应该重点考虑聚合物杆结构尺寸。这一结果也为使微晶格单元的材料强度和刚度在很大范围内可以按需调控,为新型微/纳米晶格力学超材料的合理设计和优化提供了基础。图3 通过结构单元“尺寸效应”来调控微晶格力学超材料结构的整体力学性能该项成果获得了深圳市科创委基础研究项目、长沙科技局项目及香港城市大学研究项目经费支持。

应用实例

2023.06.08

阿司匹林微晶沉积于微针针尖制备大剂量针尖载药的微针制剂

图1:微针的制备及使用过程阿司匹林是一线抗血小板聚集药物,口服生物利用度约为40-50%。口服阿司匹林需要大量和频繁地给药。阿司匹林在胃肠道和肝脏中水解,变成水杨酸。水杨酸没有抗血小板聚集的活性。因此,必须连续用药才能达到长期抗血小板聚集的目的。长期口服阿司匹林会使胃肠道粘膜损伤的风险增加。胃肠道不良反应是患者终止使用阿司匹林治疗的主要原因。经皮给药是减少胃肠道不良反应的一种有效方法。经皮给药避免了阿司匹林在胃肠道中代谢,从而避免了阿司匹林与胃粘膜直接接触。阿司匹林微针经皮给药提供了一种更安全的定期给药方式。微针的尖端可以刺穿皮肤的角质层,将药物输送到表皮和真皮层。与传统贴片相比,微针削弱了角质层的屏障保护作用,大大增加了药物的生物利用度。近期,为了降低阿司匹林引起的胃肠道粘膜损伤,中国科学院理化技术研究所高云华教授课题组研发了一种针尖负载阿司匹林微晶的聚合物微针贴片。该微针贴片是利用摩方精密的 nanoArch S130 3D打印设备加工制备模具经翻模制备而成。可生物降解的聚合物为微针提供机械强度。微针的针尖刺破皮肤的角质层,与皮下组织的接触而被溶解。微针贴片中的阿司匹林通过穿刺产生的微孔进行经皮递送。阿司匹林在微针中的水解率被控制在0.2%以下,并可以在室温下储存。与口服给药相比,微针给药的血浆药物浓度更平稳,抗血小板聚集的起效剂量更低。相关成果以“Aspirin microcrystals deposited on high‑density microneedle tips for the preparation of soluble polymer microneedles”为题发表在《Drug Delivery and Translational Research》期刊上。药物微晶必须进入皮内才能溶解并实现经皮给药,在微针基板上的晶体难以进入体内。因此,药物微晶必须集中于针尖才能实现高效的经皮递送。通常使用的微针为四棱锥型或者圆锥形。这种结构不适用于针尖负载药物微晶。使用3D打印技术将微针以六方最密堆积的方式排列在基板上,这大大增加了微针针尖的载药量。针形采用三段式设计。微针针尖为15°,尖锐的针尖用于穿刺皮肤。微针底部为60°,宽大的底部能使阿司匹林微晶更多的集中于针尖。微针中段沿切线连接底部和针尖,这使药物微晶更容易进入针尖。每片微针的面积为1 cm2,便于患者自我给药。图2:A:针高250 μm的微针设计图;B:针高300 μm的微针设计图;C(标尺1 mm)和D(标尺200 μm)为针高250 μm的微针体视显微镜照片;E:针高250 μm的微针荧光显微镜照片(标尺100 μm);F(标尺=1mm)和G(标尺200 μm)为针高300 μm的微针体视显微镜照片;H:针高300 μm的微针荧光显微镜照片(标尺100 μm)采用高压喷射研磨制备阿司匹林微晶。气流粉碎机在工作过程中保持在室温,这有效避免了阿司匹林因温度升高而水解。较小粒径的阿司匹林微晶能够顺利进入微针的针尖,也更容易悬浮在溶液中。较大粒径的晶体颗粒容易在溶液中发生沉降使微针的载药量不均匀。在1.2 MPa气流中制备得到粒径0.5-5 μm的阿司匹林微晶。粉碎前后阿司匹林的水解率没有显著性差异。正常的阿司匹林晶体为不规则长方体。在负压作用下,悬浮在溶液中的阿司匹林微晶集中于微针的针尖。负载阿司匹林微晶的微针具有良好的针形和均一性。在偏光显微镜下,阿司匹林晶体具有彩色的折射光(图3F)。微针基质材料为高分子材料,不具有晶体的折射光。针尖负载药物显著提高了微针的经皮给药效率。负载阿司匹林的微针提供了一种新的降低阿司匹林的胃肠道不良反应的方法,也为需要长期服用阿司匹林的患者提供了一种新的选择。 图3:A:阿司匹林微晶的粒径分布曲线。B:破碎前后阿司匹林微晶的水解率。C:阿司匹林晶体的荧光显微镜照片(标尺=500 μm)。D:阿司匹林微晶的荧光显微镜照片(标尺=5 μm)。E:微针的荧光显微镜照片(标尺=100 μm)。F:阿司匹林微晶的偏光显微镜照片(标尺=5μm)。G:微针的偏光显微镜照片(标尺=100 μm)。

应用实例

2023.06.08

摩方精密亮相Medtec China 2023,创新赋能共创医疗新时代

初夏时节,万物并秀。2023年6月1日至3日,第十七届Medtec China暨国际医疗器械设计与制造技术展览会在苏州国际博览中心盛大举行,摩方精密携最新研发成果再次精彩亮相,本次展会展出的微针贴片、内窥镜、心血管支架等多个医疗行业超高精密样件,引起强烈反响。作为Informa Markets旗下的Medtech World全球医疗设计与制造品牌系列展览会在中国的一站,Medtec China汇聚近800家来自全球近27个国家的优质品牌供应商,为中国医疗器械生产厂商提供产品研发、生产、注册所需的设计及软件服务、原材料、精密部件、自动化制造设备、超精加工技术、合同制造、测试和认证、政策法规和市场咨询服务,展品覆盖医疗器械设计与制造全产业链。作为微纳3D打印领域的先行者和领导者,摩方精密荣幸地受邀参加本次盛会。展会首日上午十时,摩方精密副总裁周建林先生为所有参会人员带来了主题为《超高精密3D打印在医疗行业应用与发展趋势》的现场报告。报告亮点纷呈,不但详细介绍了增材制造行业的发展历程、市场规模和应用领域,还深入浅出地为与会者讲解了基于精密微纳增材制造技术的产品解决方案,并尤其着重展现了摩方精密的增材制造技术方案在医疗领域的广泛应用。摩方精密在全球率先实现的超高精度3D打印系统,引起了现场与会者的共同关注。摩方解决了精密听力健康样件加工成本高昂、精密内窥镜加工周期过长的难题,助力精密眼科医疗器械和微创手术缝合器械的研发迭代,赋能颠覆性的微针贴片研发制造,研发全球最薄的氧化锆陶瓷牙齿贴面等一项项行业壮举,更是得到了所有参会者的高度赞誉。摩方精密能够在每一次重量级展会上精彩亮相,是企业综合实力的重要体现。为期三天的展会,汇聚了超过4万人次的高质量观众,基于多年积累的丰富参展经验,摩方精密精心打造的展位吸引了众多医疗行业的专业观众纷纷驻足,通过现场热烈的交流和讨论,也为促进企业下一阶段的研发创新和技术发展提供了新的思路。摩方精密始终视解决行业共性问题和挑战为己任,在不久的将来,我们期待能够继续与全球医疗器械行业专家及产业链企业一起,以产业协同和技术创新为出发点,共探医疗器械未来的发展方向,助力行业高质量发展,为医疗行业的技术突破做出更多的贡献。

企业动态

2023.06.08

新型光散射抑制机制助力高保真光固化生物3D打印

光固化生物3D打印技术(如:数字光处理,DLP)可精确控制细胞和生物材料在空间中的分布,以此构建复杂几何结构,被广泛应用于组织工程、药物筛选、外科植入物等生物医学研究领域。然而,在DLP打印过程中,光在固液两相界面会产生物理散射,细胞的混入会加剧此种散射效应,导致水凝胶在非目标区域固化,降低了打印精度,使众多生物性能优异且具有小尺度特征(如血管网络和薄壁结构等)的复杂结构难以成型,限制了DLP打印技术在生物医学领域的应用。针对这一挑战,湖南大学机械与运载工程学院韩晓筱教授等提出了一种光吸收与自由基反应协同作用的光散射抑制新机制,并基于此机制开发了一种新型光抑制剂(Curcumin-Na,Cur-Na),降低了载细胞水凝胶光固化打印过程中的光散射效应,将打印精度提高到1.2-2.1像素点,几何误差低于5%,成功制造了各种具有多尺度通道和薄壁网络结构的生物活性功能支架。此外,该方法具有较宽的打印参数窗口,极大地缩短了参数优化过程。相关研究成果以题为"Photoinhibition via simultaneously photoabsorption and free-radical reaction for high-fidelity light-based bioprinting"的文章发表在《Nature Communications》(SCI一区,Top期刊,IF=17.69)。湖南大学博士研究生贺宁为第一作者,湖南大学机械与运载工程学院韩晓筱教授和陈锋副教授为通讯作者。水凝胶生物墨水中传统的光吸收剂能够吸收过量的光能量,防止打印层厚过厚,从而在一定程度上提高垂直方向上的打印精度。然而,传统的光吸收剂难以解决由光散射引起的水平方向上过固化的问题。因此,该研究提出了光吸收与自由基反应协同作用的光抑制机制:保留传统光吸收剂功能的同时并能“抢夺”水平方向上散射光激发的自由基,抑制散射区域的自由基与水凝胶发生聚合反应,防止非目标区域的固化,从而提高水平方向上的打印精度和保真度。基于此机制,该团队首先成功开发了一种新型光抑制剂(Cur-Na)(如图1),其具有良好水溶性和生物相容性。接着,该团队制备了含不同光抑制剂的PEG-GelMA生物墨水,通过研究生物墨水的物化性质评价了其可打印性和机械性能(如图2)。然后通过理论和实验研究聚合过程,揭示了Cur-Na减轻散射效应的机制(如图3):Cur-Na的吸收峰位于425nm附近,非常接近光源波长,可以作为典型的光吸收剂降低光穿透深度。同时,Cur-Na 可以通过更高的反应速率竞争性地抢夺自由基来阻止水凝胶单体聚合形成固化水凝胶。再者,Cur-Na 的反应产物为液体,避免了非目标区域的固化。由于 Cur-Na 的高反应性速率,固定浓度的 Cur-Na 可以在很宽的光强度范围内抑制散射效应,避免在打印不同结构的时,打印参数再次优化,提高打印效率。文章中,图4和图5定量研究了加入Cur-Na后的生物墨水的打印分辨率和图案保真度,以验证Cur-Na在解决光散射效应方面的有效性。之后,团队将添加了Cur-Na的生物墨水应用到摩方精密 microArch S140光固化打印机中,成功地制造了各种复杂结构体(仿生支架,可灌注血管网络,极小三周期曲面等),证明了该光抑制剂在制造具有小尺度特征的功能性载细胞三维支架方面的卓越能力(如图6)。图7进一步证明了此生物墨水在组织工程中的适用性。图1. 姜黄钠的合成。a. 用姜黄素和碳酸氢钠合成姜黄素钠(Cur-Na)的过程。姜黄素分子中酚羟基的H+被Na+取代(红色椭圆),而姜黄素中的羰基键发生酮-烯醇互变异构(蓝色椭圆)。b. 姜黄素和Cur-Na的1H-NMR光谱,显示了合成过程中发生的化学性质的代表性变化。蓝色阴影区域表示酚羟基的特征共振(δ=9.65ppm)。绿色阴影是烯烃信号(δ=5.93ppm),表明C=C双键的形成。图2. 生物墨水的物化性质。添加了不同浓度光抑制剂的生物墨水(PEG-GelMA/LAP)的储能模量(G'反映材料的刚度)和损失模量(G''反映材料粘度)随时间的变化:a.柠檬黄和b. Cur-Na。G'和G'之间的交叉点被称为凝胶点,而凝胶时间被定义为曝光开始至凝胶点的时间(在该研究中约为20秒)。生物墨水在405nm、13mW cm−2的光照下曝光30s。阴影区域表示曝光时间。c. 水凝胶的应力-应变曲线。d. 三种水凝胶在~20%应变下的弹性模量。三种生物墨水的e. 溶胀比和f. 溶胶分数对比。图3. Cur-Na抑制散射效应的机制。a. 示意图显示了当光穿透生物墨水时光强的高斯分布以及不同情况下产生的固化区域,包括无散射、有散射、与细胞混合的生物墨水和添加Cur-Na的生物墨水。Cd和Cw分别是固化深度和固化宽度。E0表示生物墨水表面的光强度,而EC是引发聚合所需的临界能量。b. Cur-Na自由基链生长聚合的动力学过程由三个阶段控制:(1)引发、(2)链传播、(3)(4)终止。ki,kp,ktc和ktd分别是四种反应中的速率常数。每个Cur-Na与三个自由基(R·)反应,引发聚合物链生长,形成单体(M)。激活后的单体可以与其他单体反应,聚合物链通过传播而增长,形成Mn·和Mm·。当链传播通过终止反应终止时,形成聚合物(Mn和Mm)。c. Cur-Na和PEGDA聚合过程中官能团的转化率与时间的关系。散射区域的自由基可以被Cur-Na快速消耗;水凝胶单体由于缺乏自由基而难以在散射区域形成聚合物。 图4. 水平方向打印精度分析。a. 辐条状图案用于评估打印精度,从中心到外围相邻辐条之间的间隙增加。打印精度被定义为模糊区域直径(红色虚线圆圈)与辐条状图案直径的比值。b. 载细胞结构的荧光染色图。c. 打印结构的显微图像,显示了纯PEG-GelMA生物墨水(上)和添加了柠檬黄(中)和Cur-Na的生物墨水(下)的模糊区域(红色虚线圆圈)大小与相对曝光能量的关系。Er指相对能量,定义为实际光能与单位曝光量的比。d. 模糊区域大小与曝光能量的定量关系。e. Cur-Na的高精度打印窗口,灰色、红色、蓝色区域分别代表含1mM、2mM、3mM Cur-Na生物墨水的打印窗口宽度。f. 载细胞打印结构的模糊区域大小与曝光能量之间的定量关系。 图5. 多层打印中的中空通道打印性分析与评定高保真度的打印误差分析。a. 具有不同直径(D=300、500和700μm)通道的圆柱体的3D CAD设计。H表示圆柱体的高度,而h1、h2和h3是通道的中空部分。打印精度定义为中空部分与通道总长度之间的比率。b. 连续层打印中的散射效应及其引起的过固化现象。c-e. 打印精度随圆柱体直径的高度和通道直径的关系。f. 具有不同直径的多通道结构CAD设计。g. 分别使用含Cur-Na和柠檬黄的生物墨水打印的样品。h. 通道的实际直径与设计直径间的差异。图6. Cur-Na在打印生物医学应用中常用的复杂三维结构时的分辨率和高保真度。a. 脊髓支架。它的结构特点呈现不规则的通道和薄壁网络,模仿脊髓的内部结构。使用两种类型的水凝胶成功地制备了支架:PEG-GelMA(10%)和甲基丙烯酸缩水甘油酯改性的丝素蛋白(Sil-MA(15%))。b. 具有多个分支、可灌注通道(200-800μm)和薄壁(~100μm)的血管网络。通过注射有色染料溶液进行灌注。c. 具有独特拓扑特征(曲面、高孔隙率和连通性)的gyroid支架。d. 打印载HepG2细胞的gyroid支架并培养14天,展现了良好的细胞增殖效果。 图7. 基于PC-12细胞体外培养的Cur-Na 细胞相容性评价。a. 细胞活死染色荧光图展示了细胞14天的活力(绿色:活细胞;红色:死细胞)。b. CCK-8测定细胞增殖情况。细胞在支架中增殖14天,PEG-GelMA/Cur-Na水凝胶中的细胞展现出最好的增殖效果。c. 使用PEG-GelMA/Cur-Na水凝胶制造的通道支架(直径200μm)的荧光图像显示了均匀的细胞分布。最后一张图像显示了细胞沿着通道的生长情况。d. 第1、7和14天脊髓支架中通道的共聚焦图像。e. 荧光图像显示种植在PEG-GelMA/Cur-Na支架表面的PC-12细胞的分化和突起形成(第7天)。Tuj-1:Beta3-微管蛋白;DAPI:4’,6-二胺基-2苯基吲哚。结论该研究提出了一种光吸收和自由基反应协同作用的光抑制新机制,有效抑制光辅助3D打印中的光散射效应。基于此机制,开发了一种新的光抑制剂(Cur-Na),具有以下独特优势:(1)显著提高打印分辨率和保真度:在限制水凝胶的溶胀下,打印精度可接近打印机理论极限(~1像素);(2)具有良好打印参数适应性,极大简化了打印参数优化过程;(3)在制造具有微尺度通道和薄壁等复杂支架结构上展现出卓越能力,对于支架内营养物质的运输和氧气的渗透具有重要意义;(4)能成功制造对光散射效应尤其敏感的载细胞Gyroid支架,且在历经14天的培养后,支架内细胞展现出良好的增殖态势。(5)此方法可应用于其他由自由基链生长聚合控制的可光固化墨水中(例如Sil-MA等)。该研究提供的将多尺度特征直接赋予组织结构的方法,对于更好地模拟天然组织微环境至关重要。研究中确立的策略提高了生物3D打印高保真复杂结构的可打印性和可操作性,从而助力更先进的组织工程和再生医学应用的实现。

企业动态

2023.06.01

《Energy》:天然致密砂岩孔隙结构的3D打印与流体输运特性研究

流体在岩石孔隙中的运移规律及其流固耦合效应是地下油气储备与开发的核心科学问题,也是导致不同工程灾害或工程难题的重要因素。精确表征岩石微观孔隙结构,揭示微观孔隙结构与流体输运特性的内在关联,是开展深部岩体相关工程研究的基础。近期,中国科学院武汉岩土力学研究所的宋睿副研究员、刘建军研究员、杨春和研究员联合西南科技大学的汪尧博士等人提出了一种利用3D打印和微CT成像技术实现致密砂岩复杂孔隙结构定量表征和多相流体输运特性的可视化研究方法。研究团队利用新型的面投影微立体光刻技术(PμSL,nanoArch S130,摩方精密)实现了致密砂岩孔隙模型的原位尺度打印(~2μm光学分辨率),再现了致密砂岩复杂孔隙系统的三维拓扑结构特征与空间连通性。研究人员对比分析了3DP岩心与数字岩心(DRP)模拟得到的孔径分布(PSD)、孔隙度和绝对渗透率的差异;同时结合原位CT成像技术开展了3DP岩心可视化CO2驱油实验,并与实验基准数据进行了比较。研究成果为定量表征岩石复杂孔隙结构特征及其中多相流体输运机制提供了新的工具,具有广阔的应用前景。论文研究工作得到国家自然科学基金,武汉市知识创新专项(基础研究)和四川省自然科学基金等项目的支持。相关研究成果以“3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties”为题发表在《Energy》期刊上。图1. 基于CT图像与面投影微立体光刻技术的致密砂岩微观孔隙结构提取与3D打印制备流程(a)天然致密砂岩的微CT扫描;(b)数字图像处理与岩心重建;(c)面投影微立体光刻3D打印成型该研究中所采用的天然岩心样本为海相致密砂岩。通过从原始岩心中钻取直径约为5mm的小岩心柱塞样本,利用蔡司Xradia MICROXCT-400三维成像系统进行微CT扫描成像,获取天然岩心孔隙结构的微CT图像(如图1a所示),并将其用于孔隙空间提取、数字岩心重建与模拟(如图1b);然后,基于数字图像处理转化为3D打印通用的.stl文件,利用BMF公司的面投影微立体光刻成型技术完成孔隙模型的3D打印(如图1c所示)。图2. 3D打印岩心与天然岩心微观孔隙结构的对比分析(a)基于偏光显微镜和CT成像得3DP岩心孔隙结构表征;(b)基于图像校准的3DP岩心与原始岩心孔隙结构拓扑形态特征的对比分析;(c)孔隙结构特征参数的计算与分析为表征3D打印岩心在复刻天然岩心孔隙结构特征方面的准确性,该团队分别采用偏光显微镜和微CT成像对3DP岩心的2D/3D微观孔隙结构特征进行了定量表征(如图2a所示)。基于团队自行开发的数字图像处理与模型重建技术,分别研究了3DP岩心孔隙分布特征,并与天然样品的实验室测试结果进行了对比分析,结果表明3DP岩心和原始样品的PSD分布总体上一致(如图2c所示)。在对3DP岩心和原始岩心CT图像手动校准的基础上,团队采用开源图像处理软件(Fijiyama)中的块匹配算法(Block-Matching Algorithm)实现了3DP岩心CT图像与原始样品CT图像的自动配准,并作为后续分析的基准数据(如图2b所示)。结果表明,3DP岩心与原始岩心孔隙特征吻合较好,验证了3DP岩心在微米尺度下再现岩石微观结构的可行性和适用性。在此基础上,团队以分割的微CT图像为数据蓝本,引入峰值信噪比(peak signal-to-noise ratio, PSNR)和结构相似性指数度量(structural similarity index measure, SSIM)两个关键参数对3DP岩心孔隙结构特征进行表征,以量化3DP岩心与原始岩心孔隙结构的保真度(如图2c所示)。PSNR用于衡量相同空间位置上孔隙特征参数(大小和坐标位置)的绝对误差。SSIM用于测量两个图像之间的相似性,用于评估相应位置上的孔隙是否由3D打印机识别。计算结果表明:本文中3DP岩心的PSNR值介于[9.010,14.983]之间,其SSIM值介于[0.870,0.925]之间。大多数孔隙特征被打印识别,但一些孔隙并不在原始尺寸或位置上。由于后处理过程中,样品近端部的液体树脂更容易被去除,因此顶/底部结构的打印精度优于其他部分,显示出更高的SSIM值。图3. 基于原位CT成像的微观可视化多相渗流试验(a)团队自行设计的用于原位CT成像的微观可视化渗流试验系统;(b)3DP岩心饱和油状态(上部)和CO2驱油后(下部)3DP岩心中油相分布的微CT图像;(c)CO2驱油后3DP岩心中CO2分布及对应的孔隙网络模型,以及3DP岩心和原始岩心中残余油相原位润湿角计算结果的对比在3DP岩心与原始岩心孔隙结构特征对比分析的基础上,团队针对3DP岩心的流体输运特性开展了进一步的研究。利用自行设计的基于原位微CT成像的可视化渗流试验系统分别进行了3DP岩心的饱和油和CO2驱油试验(如图3a所示)。分别采集了饱和油状态与驱替完成时3DP岩心的微CT图像(如图3b所示)。为了消除不同扫描阶段样品放置的人为误差,研究人员对获取的CT图像也进行了手动校准和图像配准操作。分析结果表明:注入CO2气体主要沿孔隙中部流动,导致颗粒表面出现大规模残余油。考虑到制备3DP岩心使用的HTL树脂是强油湿性,残余油相优先附着到固体表面。当注入流体发生突破时,样品中会留下很大部分以油膜形式分布的残余油。在油湿性岩心中,毛细管压力是注入CO2的阻力,导致大量残留油块被毛管力卡断在小孔中。此外,研究团队对3DP岩心和原始岩心的原位接触角进行了计算与对比分析,讨论了微观润湿性在残余流体捕获机制中的影响(如图3c所示),并进一步提取了CO2驱替后3DP岩心的孔隙网络模型,对驱替过程中CO2气体的主要渗流通道以及微观赋存状态进行了讨论与分析。结果表明,注入气体主要沿3DP岩心的左侧分布,注入CO2沿优先通道突破,与剩余油分布一致。考虑到注入CO2的操作压力低于最小混相压力,驱替过程为不混相气-液流,界面张力和注入流体粘度的降低有助于提高波及效率和采收率。(如图3c所示)。

应用实例

2023.06.01

《Energy》:天然致密砂岩孔隙结构的3D打印与流体输运特性研究

流体在岩石孔隙中的运移规律及其流固耦合效应是地下油气储备与开发的核心科学问题,也是导致不同工程灾害或工程难题的重要因素。精确表征岩石微观孔隙结构,揭示微观孔隙结构与流体输运特性的内在关联,是开展深部岩体相关工程研究的基础。近期,中国科学院武汉岩土力学研究所的宋睿副研究员、刘建军研究员、杨春和研究员联合西南科技大学的汪尧博士等人提出了一种利用3D打印和微CT成像技术实现致密砂岩复杂孔隙结构定量表征和多相流体输运特性的可视化研究方法。研究团队利用新型的面投影微立体光刻技术(PμSL,nanoArch S130,摩方精密)实现了致密砂岩孔隙模型的原位尺度打印(~2μm光学分辨率),再现了致密砂岩复杂孔隙系统的三维拓扑结构特征与空间连通性。研究人员对比分析了3DP岩心与数字岩心(DRP)模拟得到的孔径分布(PSD)、孔隙度和绝对渗透率的差异;同时结合原位CT成像技术开展了3DP岩心可视化CO2驱油实验,并与实验基准数据进行了比较。研究成果为定量表征岩石复杂孔隙结构特征及其中多相流体输运机制提供了新的工具,具有广阔的应用前景。论文研究工作得到国家自然科学基金,武汉市知识创新专项(基础研究)和四川省自然科学基金等项目的支持。相关研究成果以“3D Printing of natural sandstone at pore scale and comparative analysis on micro-structure and single/two-phase flow properties”为题发表在《Energy》期刊上。图1. 基于CT图像与面投影微立体光刻技术的致密砂岩微观孔隙结构提取与3D打印制备流程(a)天然致密砂岩的微CT扫描;(b)数字图像处理与岩心重建;(c)面投影微立体光刻3D打印成型该研究中所采用的天然岩心样本为海相致密砂岩。通过从原始岩心中钻取直径约为5mm的小岩心柱塞样本,利用蔡司Xradia MICROXCT-400三维成像系统进行微CT扫描成像,获取天然岩心孔隙结构的微CT图像(如图1a所示),并将其用于孔隙空间提取、数字岩心重建与模拟(如图1b);然后,基于数字图像处理转化为3D打印通用的.stl文件,利用BMF公司的面投影微立体光刻成型技术完成孔隙模型的3D打印(如图1c所示)。图2. 3D打印岩心与天然岩心微观孔隙结构的对比分析(a)基于偏光显微镜和CT成像得3DP岩心孔隙结构表征;(b)基于图像校准的3DP岩心与原始岩心孔隙结构拓扑形态特征的对比分析;(c)孔隙结构特征参数的计算与分析为表征3D打印岩心在复刻天然岩心孔隙结构特征方面的准确性,该团队分别采用偏光显微镜和微CT成像对3DP岩心的2D/3D微观孔隙结构特征进行了定量表征(如图2a所示)。基于团队自行开发的数字图像处理与模型重建技术,分别研究了3DP岩心孔隙分布特征,并与天然样品的实验室测试结果进行了对比分析,结果表明3DP岩心和原始样品的PSD分布总体上一致(如图2c所示)。在对3DP岩心和原始岩心CT图像手动校准的基础上,团队采用开源图像处理软件(Fijiyama)中的块匹配算法(Block-Matching Algorithm)实现了3DP岩心CT图像与原始样品CT图像的自动配准,并作为后续分析的基准数据(如图2b所示)。结果表明,3DP岩心与原始岩心孔隙特征吻合较好,验证了3DP岩心在微米尺度下再现岩石微观结构的可行性和适用性。在此基础上,团队以分割的微CT图像为数据蓝本,引入峰值信噪比(peak signal-to-noise ratio, PSNR)和结构相似性指数度量(structural similarity index measure, SSIM)两个关键参数对3DP岩心孔隙结构特征进行表征,以量化3DP岩心与原始岩心孔隙结构的保真度(如图2c所示)。PSNR用于衡量相同空间位置上孔隙特征参数(大小和坐标位置)的绝对误差。SSIM用于测量两个图像之间的相似性,用于评估相应位置上的孔隙是否由3D打印机识别。计算结果表明:本文中3DP岩心的PSNR值介于[9.010,14.983]之间,其SSIM值介于[0.870,0.925]之间。大多数孔隙特征被打印识别,但一些孔隙并不在原始尺寸或位置上。由于后处理过程中,样品近端部的液体树脂更容易被去除,因此顶/底部结构的打印精度优于其他部分,显示出更高的SSIM值。图3. 基于原位CT成像的微观可视化多相渗流试验(a)团队自行设计的用于原位CT成像的微观可视化渗流试验系统;(b)3DP岩心饱和油状态(上部)和CO2驱油后(下部)3DP岩心中油相分布的微CT图像;(c)CO2驱油后3DP岩心中CO2分布及对应的孔隙网络模型,以及3DP岩心和原始岩心中残余油相原位润湿角计算结果的对比在3DP岩心与原始岩心孔隙结构特征对比分析的基础上,团队针对3DP岩心的流体输运特性开展了进一步的研究。利用自行设计的基于原位微CT成像的可视化渗流试验系统分别进行了3DP岩心的饱和油和CO2驱油试验(如图3a所示)。分别采集了饱和油状态与驱替完成时3DP岩心的微CT图像(如图3b所示)。为了消除不同扫描阶段样品放置的人为误差,研究人员对获取的CT图像也进行了手动校准和图像配准操作。分析结果表明:注入CO2气体主要沿孔隙中部流动,导致颗粒表面出现大规模残余油。考虑到制备3DP岩心使用的HTL树脂是强油湿性,残余油相优先附着到固体表面。当注入流体发生突破时,样品中会留下很大部分以油膜形式分布的残余油。在油湿性岩心中,毛细管压力是注入CO2的阻力,导致大量残留油块被毛管力卡断在小孔中。此外,研究团队对3DP岩心和原始岩心的原位接触角进行了计算与对比分析,讨论了微观润湿性在残余流体捕获机制中的影响(如图3c所示),并进一步提取了CO2驱替后3DP岩心的孔隙网络模型,对驱替过程中CO2气体的主要渗流通道以及微观赋存状态进行了讨论与分析。结果表明,注入气体主要沿3DP岩心的左侧分布,注入CO2沿优先通道突破,与剩余油分布一致。考虑到注入CO2的操作压力低于最小混相压力,驱替过程为不混相气-液流,界面张力和注入流体粘度的降低有助于提高波及效率和采收率。(如图3c所示)。

应用实例

2023.06.01

< 1 ••• 6 7 8 9 10 ••• 21 > 前往 GO

深圳摩方新材科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 摩方新材

公司地址: 广东省深圳市龙华区红山6979商业区26栋5楼 联系人: 黄先生 邮编: 518110 联系电话: 400-860-5168转4666

友情链接:

仪器信息网APP

展位手机站