您好,欢迎访问仪器信息网
注册
深圳摩方新材科技有限公司

关注

已关注

银牌5年 银牌

已认证

粉丝量 0

400-860-5168转4666

仪器信息网认证电话,请放心拨打

当前位置: 摩方精密 > 公司动态
公司动态

南洋理工大学王一凡课题组 :光固化3D打印可控粘附与力学性能的水凝胶传感器

导电水凝胶材料在可穿戴传感应用中得到了广泛的研究,因为它们具有良好的电导性、生物相容性以及接近人体皮肤的弹性模量等优势。基于水凝胶的可穿戴应变传感器由于其在实时健康监测和运动检测中的应用前景广阔,最近引起了人们的极大兴趣。然而,在水凝胶系统中同时实现综合的高拉伸性、自粘性和长期保水性能仍然是一个巨大的挑战,这限制了它们在可穿戴电子产品中的应用。近期,南洋理工大学王一凡教授团队针对于可穿戴水凝胶传感器的力学性能,黏附性能,保水性能以及生物相容性能难以兼顾的问题,通过引入蚕丝蛋白,设计了一种可光固化3D打印的聚丙烯酰胺/聚丙烯酸水凝胶体系,具有高机械强度,可调粘附性能,优异的保水性能,以及具有良好的生物相容性能,从而实现实现其对运动信号的实时、高效监测与识别。该文章系统性研究了不同单元含量对于水凝胶力学性能,粘附性能的影响,并系统性解释了其影响机理;系统性阐述水凝胶的粘附机理,同时揭示了不同表面微观结构对粘附性能的影响;解释了水凝胶保水性的意义以及对长期使用性能的影响;阐释了水凝胶高机械强度,高粘附性能,优异的保水性能,生物相容性能对其传感灵敏性、稳定性与可靠性的作用机理。该研究为利用3D打印多功能水凝胶开发可穿戴应变传感器进行运动与健康检测提供了全新视角。该研究工作以“3D Printed Silk Fibroin-Based Hydrogels with Tunable Adhesion and Stretchability for Wearable Sensing”为题,发表在国际著名期刊《Advanced Functional Materials》上。新加坡南洋理工大学王一凡教授(Nanyang Assistant Professor)为论文的通讯作者,博士生吴坤霖为论文的第一作者。图1. 介绍了DLP 打印SF-PAAm/PAAc水凝胶的材料,打印方法,以及打印样品。图2. 介绍了DLP 打印SF-PAAm/PAAc水凝胶的力学性能。图3. 介绍了DLP打印SF-PAAm/PAAc水凝胶的粘附性能。图4. 介绍了DLP打印的 SF-PAAm/PAAc 水凝胶传感器的传感能力。图5. 介绍了DLP打印的10通道水凝胶系统对PIP和MCP关节的信号采集。图6. 介绍了打印的10通道水凝胶系统对不同数字手势下PIP和MCP关节的信号采集。

应用实例

2024.06.28

多仿生槽锥刺结构实现跨气-液界面微油滴高效定向操控,摩方助力仿生输送系统研发

【科研突破】在复杂环境下,如何高效处理混合液和低表面能液滴,一直是能源、环境和健康领域的难题。但近日,西南科技大学微纳仿生系统与智能化研究团队李国强教授与海河实验室曹墨源研究员合作,受到自然界中鱼刺和水稻叶表面的启发,创新性地利用摩方精密面投影微立体光刻(PμSL)高精密3D打印技术,制备出了一种多仿生槽锥刺结构(BGCS)。这种结构能够在水下、空气以及跨气-液两相界面上,实现超快、连续传输油滴的功能,最高运输速度可达70.2 mm/s,是传统圆锥形结构的9倍!这项研究,不仅解决了水下微油滴收集的难题,也为生物分析、污染治理等领域提供了全新的解决方案。这项技术有望引领能源、环境和健康领域的技术革新,让我们共同期待更多突破性成果!

应用实例

2024.06.26

当微纳制造碰撞艺术创造,摩方赞助的 “微缩版诺亚方舟登月”艺术展正在日本展出

当微纳3D打印应用于艺术展览创造中,会产生怎样的化学反应?近期, “微缩版诺亚方舟登月”的艺术展览在日本相模原市立博物馆展出。这一展览由摩方精密(日本)赞助,日本多摩美术大学和日本国家宇宙航空机构(JAXA)联合推出。展览现场,来自日本多摩美术大学大学院的布展者为观众用艺术化的手法呈现了一出颇具想象力的场景:火箭发射升空,一艘载满地球生物基因和微型生物雕塑的“诺亚方舟”登陆月球,微型雕塑从诺亚方舟弹出,散落在月球表面,一场别开生面的地球微型生物雕塑展在月球上举办。字幕显示,“随着动物的DNA被注入到每个微型生物雕塑中,在未来的某个时刻,地球生物灭绝,地球的生物基因得以在月球继续保存。”展览中出现的各种微型地球动物模型,均是用摩方精密高精度3D打印制作而成,不仅体积小,超高的制作精度让模型细节也极为精美,雕塑形象栩栩如生。其中最小的模型仅有一根头发丝直径大小,为此,展览现场专门设置了放大镜供参观者观看细节。作为全球领先的微纳3D打印技术及精密加工能力解决方案提供商,摩方精密不仅能跨行业赋能包括医疗、电子、新能源、AI等各领域的创新型企业的研发迭代、创新制造,还能帮助基础研究、科研院所实现突破性的设计制造。截至2024年4月,摩方精密的技术和设备已广泛服务来自全球35个国家的近2200家工业企业和科研院所客户。2019年,摩方精密在日本设立子公司,并将高端精密制造设备出口到日本,让日本这个传统精密制造强国领略到“中国创造”的实力,一度引发日本主流媒体的关注。当前,摩方精密在日本客户突破350家,包括日本电子连接器、医疗器械等的世界500强企业和顶级高校、科研院所。日本JAXA也在积极探索将摩方精密3D打印技术融入其航空航天产品研制过程,此次展览所在地旁边即是JAXA 宇宙科学研究所。此外,摩方精密制造的高精度牙齿贴面产品,已在日本启动前期销售准备工作。此次“微缩版诺亚方舟登月”的艺术展览,摩方精密充分发挥了全球罕见的高精度3D打印的优势,在艺术领域完成了一次探索,帮助多摩美术大学的艺术家们将天马行空的想象以具象化的方式呈现,辅助完成这一展览。该艺术展览已于6月16日开展,将持续到7月17日,欢迎大家前来参观!

企业动态

2024.06.26

新加坡国立大学刘小钢团队:制备用于提高射线成像性能的像素化双锥形光纤阵列

当前,在全球范围内科技与产业革新的浪潮中,信息光电子、激光加工、激光全息、光电传感等技术正在快速发展。光电产业与能源、信息、医疗等领域的结合和渗透也在加速,推动着新技术、新产品和新商业模式的不断涌现,全球光电产业的竞争格局经历重大重塑。据Market Research Future预测,到2032年,光电市场的规模将从2024年的381.9亿美元增长至845亿美元。预计在2024至2032年期间,该市场的年复合增长率为10.44%,其中光电子在多个不同领域的应用增加以及红外元件利用率的提高是促进市场增长的关键市场驱动力。随着光电子技术的进步和规模化生产,社会生产对光电子相关器件的需求日益增加,互联网与光电产业深度融合。作为高新技术产业基础的光电元件,正快速朝着微型化、精密化、轻薄化以及集成化的方向发展。然而,由于其发展历程相对较短,仍面临诸多挑战和问题需要逐步解决。其中,高能射线成像是一种利用高能射线(如X射线、伽马射线等)进行成像的技术,主要用于医学、工业检测、安全检查和科学研究等领域。但该技术受到的主要限制因素在于厚层闪烁体材料内部存在的自吸收和散射现象。近年来,钙钛矿纳米闪烁体已直接集成到电荷耦合器件中以实现X射线成像。然而,为了有效吸收高能射线,钙钛矿闪烁体层必须达到毫米至厘米的厚度。但由于横向光子散射和固有的自吸收,毫米厚度的钙钛矿闪烁体的光穿透和空间分辨率仍将受到限制。基于此,新加坡国立大学(NUS)化学系的刘小钢教授研究团队开发了一种用于提高射线成像性能的像素化双锥形光纤阵列。该阵列通过双锥面设计可以有效地吸收传递闪烁体层激发的光子,降低闪烁体材料内部的散射和自吸收,从而有效提高射线成像的空间分辨率和成像性能。相关成果以“A double-tapered fibre array for pixel-dense gamma-ray imaging”为题,发表在《Nature Photonics》期刊上。光纤可以增强光耦合,执行光信号传输,并实现具有低损耗接口的光子集成电路。此外,理论研究表明,锥形或双锥形光纤可以通过促进倏逝波在锥形区域的基模上的传播来充当高功率放大器。在这里,研究人员扩展了理论分析,并通过实验验证了使用柔性双锥形光纤阵列和钙钛矿纳米晶闪烁体实现高灵敏度伽马射线成像的可能性。图1. 用于定向光收集的透明双锥形光纤阵列的结构特性研究人员对光收集特性进行了表征,并优化了锥形光纤的几何形状,以最大限度地提高光收集效率和传输效率。研究团队通过成型和层压聚氨酯和有机硅弹性体制造双锥形纤维阵列,首先采用摩方精密面投影微立体光刻(PμSL)3D打印技术制作出光纤阵列模具(nanoArch® S130,精度:2μm),并结合PDMS翻模技术得到双锥形纤维阵列。钙钛矿纳米晶充当闪烁体,通过测量其激发光谱对钙钛矿纳米晶进行表征,其表示作为波长的函数的相对发光强度。钙钛矿闪烁体表现出相对较小的斯托克斯位移和较高的量子产率,导致发射光子的大量重吸收。图2. 用于光子回收和高分辨率X射线成像的双锥形光纤阵列的光学特性双锥形光纤阵列系统的一个关键特征是它适用于发光穿透深度不足的所有情况,例如,具有上转换材料的近红外探测器、具有钙钛矿闪烁体的X射线或伽马射线探测器以及电激发发光二极管。通过将光纤阵列和钙钛矿纳米晶相结合,在实验中实现了输出信号增加了三倍,并通过4 mm厚的闪烁体层实现了6 MeV和10 MeV的伽马射线成像。伽马射线成像对于测量放射治疗、医学诊断和工业三维伽马射线断层扫描期间的皮肤剂量非常重要,因为这需要深度穿透。鉴于双锥形光纤阵列与硅技术的兼容性以及材料的可延展性,有望被大规模生产用于制造超灵敏光子探测器和用于高能辐射的大面积柔性成像设备,在仿复眼学、光场成像、生物分子传感、光学放大器以及发光二极管等领域也有着潜在应用。

应用实例

2024.06.26

香港大学、香港理工大学和山东大学联合研究团队《Science》:仿若绿植物的选择性定向液体传输

液体在固体表面的定向传输对许多应用都至关重要,例如生物医学检测、水收集、海水淡化、传热传质等。自然界中的定向传输现象为液体在表界面传输提供了丰富的解决方案。例如,仙人掌将收集的雾汽从刺尖输送到根部;蜘蛛丝将捕获的雾汽从周期性纺锤结输送到关节;蜥蜴通过相互连接的毛细通道将水输送到鼻子;翼状猪笼草利用多尺度结构从唇内边缘向外边缘定向输送花蜜;南洋杉叶利用毛细锯齿效应沿固定方向输送特定液体。然而,科学家们在这些生物体系中发现,液体传输都具有相同的模式,即一种液体只能沿着固定的方向定向传输。这不禁令我们好奇,自然界是否还存在其他的液体输运模式?探索新颖的液体传输机制,将为定向液体传输的设计提供新的启发和灵感。近日,香港大学、香港理工大学和山东大学联合研究团队在多肉植物若绿(Crassula muscosa)身上取得了重要发现——液体可以在其茎上沿正反两个方向中任一方向实现定向流动。该研究成果以“Selective directional liquid transport on shoot surfaces of Crassula muscosa”为题,发表在顶级科学期刊《Science》上。香港大学博士生杨玲、博士后李威为论文的共同第一作者,香港理工大学王立秋讲席教授、香港大学尹晓波教授和山东大学李加乾研究员为论文的通讯作者。若绿(Crassula muscosa)原产于干旱但多雾的南非和纳米比亚地区,它的茎叶很容易被雾汽润湿并捕获雾滴,进而为其生长提供充足的水分。若绿外形美观,清新奇特。抵不住对若绿的喜爱之情,研究人员也亲自养了一盆。在给若绿浇水时,他们发现液体在水平放置的不同若绿茎上,竟然可以选择朝着茎尖或根部这两个截然相反的方向自发地单向运动,这与传统认知中一种液体只能沿固定方向流动的观点大相径庭。图1 若绿图片。研究团队首次报道了这一自然界的选择性定向液体传输现象。通过进一步观察,他们发现这一神奇的现象得益于若绿叶片独特的不对称折返结构——叶片两端具有不同的折返角,包括朝向茎尖的上折返角(ω1)和朝向根部的下折返角(ω2),从而导致液体弯液面在两个相反方向存在差异,使得液体能够选择性地沿不同方向运动。这一研究成果不仅揭示了大自然中鲜为人知的独特液体传输机制,也为工程应用中设计更加灵活高效的液体输运系统提供了新的启发和可能。图2 若绿茎表面的选择性定向液体传输。为了进一步探索这一选择性定向液体传输现象,研究团队利用3D打印技术制造了一种模仿若绿叶片结构的阵列(Crassula muscosa-inspired arrays , CMIAs)。在具有不同折返角的CMIA I 和CMIA II上,他们观测到滴加的液体分别沿着正负两个相反的方向流动。通过高速相机观察液体流动规律,研究人员提出了一种各向异性弯液面理论模型来解释这一现象。结合实验观测结果,他们利用这一理论揭示了通过调节CMIAs的两个折返角和间距可以精准控制液体的流动方向。受此规律的启发,研究团队进而制作了可通过磁场和机械拉伸精准调控液体流动方向的磁控及柔性CMIAs。这些创新性的CMIAs结构不仅验证了理论模型,也展示了利用结构化表面实现灵活可控液体输运的新途径。图3 人造CMIAs上的选择性定向液体传输。图4 理论计算与实验结果解释流向调控规律。图5 磁场控制和拉伸控制的选择性定向液体传输。图6 图案化液体定向流动,三通阀控制的液体分配和混合。总的来说,研究团队成功揭示了若绿植物叶片表面独特的选择性定向液体传输现象。其关键在于叶片两端存在不对称的折返角度,从而产生异质的液体弯月面轮廓,最终导致液体能够自发选择性地沿正负两个相反方向进行定向传输。这一令人瞩目的发现,激发了研究人员设计可实时切换液体传输方向的新结构。这些创新成果不仅展示了可重构的液体传输、智能的传输方向调节, 还实现了自发和长距离的定向液体传输。这些突破性技术在生物医学检测、化学反应分析等领域都具有广阔的应用前景。

应用实例

2024.06.21

微纳3D打印技术在耐高温连接器制备中的应用

随着大数据、5G时代的到来,移动通信、计算机等领域迎来新的发展机会,连接器已成为这些行业不可或缺的组件。同时,受益于高端通信、消费电子、新能源汽车、工控安防等下游行业的持续发展,全球连接器市场需求保持着稳定增长的态势,全球连接器总体市场规模总体呈现上升态势。为满足下游终端产品的短小轻薄、性能提升的发展趋势,连接器也逐步向微型化、高速化和大电流方向发展。终端产品的微型化,意味着连接器的线距不断变小、接触点更加密集,需要在极小的空间内实现同等的功能,也对连接器内部的触脚间电阻、抗电磁干扰能力以及微型化设计等各方面的设计提出更高的要求。Z-Axis Connector Company成立于1995年,是一家全球领先的连接器制造公司。该公司汇聚了经验丰富的专家科学家、工程师、技术人员和管理者,致力于生产创新且具有成本竞争力的产品,无论是在消费级应用还是微小型连接器领域,都以满足多元化的需求为己任。Z-Axis在收集潜在客户需求反馈的时候,发现这些客户反映现有的标准连接器无法满足他们的特定应用需求。因此,对于Z-Axis来说,他们面临的一个关键设计挑战是制造出能够满足极端精准公差的连接器。尽管他们采用了传统的3D打印技术,但也仅能达到±50 μm的公差,这对于一些高精度要求的应用来说,仍然有所不足。01寻找解决方案在寻求满足严格公差要求的解决方案过程中,Z-Axis找到了摩方精密微纳3D打印设备,并得知利用摩方精密先进的面投影微立体光刻(PμSL)3D打印技术,能帮助他们实现精确到±10~20 μm的公差,这为制造微型且性能卓越的连接器开辟了新的可能性。Z-Axis面临的一项重大挑战是确保3D打印的连接器能够与传统的电子组装技术兼容。考虑到弹性连接器在必须在不损害其完整性的情况下历经高温焊接过程,Z-Axis借助了摩方高精度3D打印系统对材料的开源性和高兼容性,为确保完成后续工艺制作,Z-Axis最终选用3D Systems的Figure 4® HI TEMP 300-AMB材料进行打印。在生产过程中,所需的印刷电路板(PCB)需经过一个高达237°C的回流焊炉,整个循环仅需7.5分钟。得益于摩方精密打印样品在极端温度下的出色耐受性,Z-Axis可以采用标准的电子系统制造技术,通过使用3D打印连接器来推动微型化制备创新的步伐。安装在PC板上的3D打印连接器3D打印连接器的近距离特写02连接器制造创新的时代摩方精密的微纳3D打印技术使Z-Axiss能够采用表面贴装技术,进而摒弃了传统的穿孔调节方式。这一转变不仅极大提升了电子组装的效率,简化了复杂电子设备的组装流程程,而且还实现了设计的微型化,让他们能够创造出更加微型、高效且符合现代电子设备需求的电路设计。借助摩方精密的先进技术,Z-Axis成功地击破了传统制造的束缚,推出了远超行业标准的创新解决方案。这种高效、精确的制造方式,所需的时间和成本远低于传统的制造方法,这无疑将为整个行业带来深远的影响,并推动连接器制造技术迈向新的发展阶段。摩方精密致力于提供高精密、高公差控制、高质量、高标准的技术支持与服务,截至目前,全球排名前10的精密连接器企业,已有9家与摩方建立合作。摩方精密最新发布的复合精度光固化3D打印技术,在快速处理原型制造,解决精密电子、生物医疗、高端通讯、半导体等高精密行业跨尺度加工难题,将为行业产品创新迭代提供降本增效的解决方案,将携手更多的客户共同开创突破性、延续性和实用性的新技术、新产品和新应用。

应用实例

2024.06.19

重磅!华中科技大学等再发《Nature》,研发出“颅内生理信号监测黑科技”!

当前,临床上监测颅内压等关键生理指标的技术,通常需要通过外科手术将有线传感器植入患者颅内。这种方法存在一定风险,如术后感染和并发症等。尽管现有的无线电子传感器能够在一定程度上降低这些风险,但由于它们的体积较大(例如,传统电子元件的截面积往往超过1平方厘米),因此不适合通过微创注射方式植入。此外,由于无线电子传感器不能在体内自然降解,患者还需要进行二次手术来移除它们。因此,在临床实践中,这些无线传感器也面临着许多挑战。华中科技大学臧剑锋教授、姜晓兵教授以及新加坡南洋理工大学陈晓东教授团队携手合作,研发出一种创新型可注射超声凝胶传感器。该传感器有望克服传统有线传感器存在的感染风险和术后并发症等问题,同时避免现有无线电子传感器体积过大、无法体内降解等临床应用挑战。相关研究成果以"Injectable ultrasonic sensor for wireless monitoring of intracranial signals"为题在线发表于《Nature》杂志。传感器结构与制备:这种名为"超声超凝胶"的传感器是由双网络交联的水凝胶基质和内部周期性排列的空气孔道组成,体积仅为2×2×2mm³。这种可注射传感器是研究团队采用摩方精密面投影微立体光刻(PμSL)3D打印技术(nanoArch® S140,精度:10 μm)加工模具后,经水凝胶翻模制备而成。经过计算机模拟结构优化,该特殊结构在8-10MHz频段具有声学带隙,对入射超声波有很强的反射能力。图1. 可注射、可降解的超凝胶超声传感器设计原理。(a)基于超声反射的超凝胶无线颅内生理传感器示意图。(b)超凝胶样品及穿刺针照片,比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(d)照片显示超凝胶浸泡在37度的PBS溶液中一个月后开始降解。(e)超凝胶工作原理示意图。(f)变形导致超凝胶反射峰值频率偏移示意图。(g)超凝胶能带结构图。(h, i)带隙中心频率随晶格常数(h)及占空比(i)变化曲线图。(j, k)超凝胶变形前后声场(仿真)分布。多功能凝胶传感器:研究团队设计了三种功能凝胶传感器用于检测不同参数。压力凝胶采用双交联聚乙烯醇/羧甲基纤维素凝胶,灵敏度可达5.7 kHz/mmHg,分辨率0.1 mmHg;温度凝胶由温敏性聚乙烯醇/聚丙烯酰胺凝胶构成,温度检测范围28-43℃,分辨率0.1℃,灵敏度80kHz/℃;pH凝胶则利用质子化聚乙烯醇/壳聚糖凝胶,可检测pH 2-8的范围,分辨率0.5 pH单位,灵敏度256 kHz/pH单位。这些凝胶均采用生物相容性且可降解材料制成,注射入体约1个月后可自然降解,无需再次开颅取出。同步读取与算法:研究团队提出了同步读取多个凝胶传感器的新方法。通过检测各个凝胶的反射频率变化,结合先进算法,可高效分离压力、温度、pH等多种因素的耦合影响,实现对复杂生理环境的全面监测。图2. 超凝胶超声传感器体外测试表征。(a)温度及pH响应超凝胶示意图。(b)超凝胶及纯水凝胶照片(顶部)与超声图像(底部),比例尺2 mm。(c)超凝胶结构显微镜照片,比例尺500 μm。(c, d)超凝胶与纯水凝胶超声反射信号时域对比(c)与频域对比(d)。(e)压力超凝胶与商用压差计压力测试对比。(f)压力超凝胶校准曲线。(g) 温度超凝胶与商用温度计温度测试对比。(h) 温度超凝胶校准曲线。(i) pH超凝胶与商用温度计温度测试对比。(j) pH超凝胶校准曲线。(k) 压力超凝胶反映临近血管模型内流速。动物实验结果:在大鼠和猪的动物实验中,这一凝胶传感系统展现出媲美商用有线临床设备的检测精度,且在耗能、无热效应等方面表现出极大优势。值得一提的是,在实验猪体内,它甚至能检测到微小的呼吸引起的颅内压力细微波动(约1 mmHg),而同步植入的有线压力传感器则无法监测到如此精细的变化。图3. 活体大鼠传感实验及生物相容性表征。(a)实验装置配置照片。(b)超凝胶植入在大鼠颅内的磁共振图像,比例尺2 mm。(c)大鼠佩戴外部超声探头照片。(d)超凝胶与临床有线颅内压探头测试大鼠颅内压力变化曲线。(e, f) 超凝胶与商用有线温度探头测试大鼠颅内温度变化曲线。(g)超凝胶24天内多次监测大鼠颅内压变化。(h) H&E染色脑组织切片照片显示超凝胶降解过程。(i) 免疫荧光染色照片显示超凝胶存续期间炎症情况。图4.实验猪无线颅内压原位监测。(a)实验方案配置示意图。(b)超凝胶及临床有线颅内压探头植入后猪头部照片。(c) 猪腰椎穿刺位置照片。(d)超声图像照片显示超凝胶植入猪颅内位置。(e) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随腰椎注射生理盐水变化曲线。(f)体积测试管液面高度照片显示猪颅内压随呼吸起伏。(h) 超凝胶、商用压差计以及临床颅内压探头测量猪颅内压随呼吸变化曲线。临床颅内压探头难以测量微小颅内压变化。总结:该研究提出了一种创新型的植入式无线传感技术,该技术基于超凝胶材料变形所引发的超声波频移效应,能够精确地监测颅内各种生理参数,如颅内压、温度、pH值以及血液流速等。相较于目前市场上的植入式传感器,超凝胶传感器在尺寸、多参数分离监测能力以及可生物降解特性上展现出明显优势。这项技术不仅有望应用于颅内生理参数的监测,还能够扩展至人体其他部位的无创检测,从而为多种疾病的预防和治疗提供了新的技术支持。这种微型且可自然降解的传感器通过微创注射即可使用,大幅提升了患者的就诊便捷性,并为智能医疗健康领域的发展注入了新的活力。

应用实例

2024.06.18

西安交通大学:高渗透性、黏附和长时间耐用性的仿树蛙脚蹼的可穿戴柔性电极

近年来,随着生理电信号在辅助医疗、科学训练及神经科学研究等的领域的不断深入和广泛应用,可穿戴柔性电极成为了众多学者的研究焦点。非侵入式柔性电极能够将人体内部的离子电信号转换为电子元器件可读取的电子信号,成为了连接这两者的桥梁。然而如何实现高质量信号的采集、实现不同皮肤状态下的长时间稳定粘附及提高长时间穿戴舒适性,是阻碍柔性电极应用的研究难点。尽管已有研究团队提出了许多能提高粘附力与增加透气性的结构,但仍旧难以实现稳定粘附性、低界面阻抗和高透气性的有机统一。因此,开发一款兼具高透水透气性和粘附稳定性的柔性电极十分必要。近期,西安交通大学邵金友、田洪淼团队提出了一种仿树蛙脚蹼的非侵入式柔性可穿戴电极,用于生理电信号的长时间连续监测。该柔性电极是使用摩方精密nanoArch® S130(精度:2μm)高精度3D打印设备加工模具后使用导电复合材料翻模制备而成。相关研究成果以“Treefrog-Inspired Flexible Electrode with High Permeability, Stable Adhesion, and Robust Durability”发表在《Advanced Materials》上,西安交通大学兰天翔博士为论文的第一作者,西安交通大学邵金友教授和田洪淼教授为共同通讯作者。图1 设计灵感来源及结构展示。 (A)仿生灵感来源,(B)电极结构示意,(C)相较于普通平膜的优势。该柔性电极的设计灵感来源于红蹼树蛙脚蹼表面的分散六边形柱状结构及深层的粘液腺。六边形分散柱状结构可以将大液桥分散为多个小液桥,从而大幅提高树蛙脚蹼与各种表面之间的粘附力;分布于六边形柱状结构间隙的粘液腺,则可使得粘液在树蛙脚蹼间均匀分散,这两种结构共同实现了树蛙在多种表面的稳定黏附。结合此两种结构,本文设计了一种兼具高透水透气性、稳定粘附性及长时间耐用性的柔性可穿戴电极。该电极可分为上下两层:下层为分散柱状结构,有利于实现高效而稳定的电极-皮肤界面接触(接触面积/总面积相较于平膜提升了近一倍)、低界面阻抗(面积标准化阻抗与商用Ag/AgCl凝胶电极相近)及稳定附着(在干/湿条件下的粘附力相较于无结构电极提升了2.79/13.16倍);上层为参照鸟喙和粘液腺设计的改进锥孔结构,有利于实现人体皮肤表面排泄物定向搬运,从而提高了该电极的透水透气性(正向透气性相较于棉纺织物提升近12倍,透水性相较于3M医用敷料提升了40倍以上)。该仿生电极在粘附稳定性、透水透气性和耐用性等方面都具有显著的优势。首先,研究团队通过理论推导和仿真计算的方式得到了锥孔结构设计的最优参数区间,并将该结构的设计与电极底面分散柱状结构的设计解耦,大幅降低了分散柱状结构设计的复杂度。底面离散化结构除了能实现高效而稳定的界面接触之外,还能有效降低汗腺的被堵塞率,从而避免排泄物的局部堆积导致的粘附效果降低。为此,研究团队采用图像处理技术及离散优化设计方法,量化计算了全部三种可单一平面密铺正多边形柱状结构在不同尺寸参数下的最大汗腺堵塞率(最大堵塞率越小代表该电极在湿润条件下的粘附越可靠)及理论有效面积(该值会影响接触阻抗进而影响采集的信号质量),并在综合考虑这两者之间的矛盾关系后,制造了优化设计的柔性可穿戴电极。图2 结构优化设计。 (A)锥孔优化设计,(B)分散柱状机构可大幅降低汗腺的被堵塞率,(C)分散柱状结构尺寸参数,(D) 六边形柱状结构的最大汗腺堵塞率(E)不同形状及尺寸的分散柱状结构的未堵塞率和理论接触面积。在设计完成电极的微观结构之后,研究团队采用摩方精密面投影微立体光刻(PμSL)技术加工了具有良好一致性的树脂模具,并通过模塑工艺制造出了仿生电极和只含有锥孔的电极(对比组)。仿生电极相较于对比组的干/湿粘附力提升了2.79/13.16倍,实现了在干/湿环境下的稳定附着。图3 微观形貌表征。 (A)锥孔模板,(B)只含锥孔的电极,(C)分散柱状结构模板,(D) 仿树蛙脚蹼电极(E)仿树蛙脚蹼电极截面轮廓,(F)粘附力表征。之后,研究团队还测试了该仿生电极的正向和逆向水蒸气透过率,该电极的正向/逆向水蒸气透过率相较于棉织物提升了近12/6倍,实现了较好的透气性能。图4 单向输水性及水蒸气透过率表征。 (A)各种结构的表面接触角变化,(B)各种结构表面接触角随时间的变化关系,(C)水蒸气透过率测试,(D) 仿生电极与多种常见织物的水蒸气透过率对比。最后,研究团队采集了多种生理电信号,并对其进行了分析。该仿生电极采集出的生理电信号质量可与商用Ag/AgCl凝胶电极相媲美,并且长时间使用下安全性和稳定性性均优于商用Ag/AgCl凝胶电极。相较于已报道文献,本文所提出的仿生电极在机械性能、电学性能及电极性能方面表现出优异的均衡性能。图5 多种生理电信号的测试与性能对比。 (A)长时间心电信号的测量及信号分析,(B)睁眼及闭眼时脑电信号的采集与分析,(C)肌电信号的采集与分析,(D) 仿生电极与多种电极的综合性能对比。综上所述,本研究提出的基于树蛙脚蹼的仿生电极可以实现在干/湿皮肤表面的稳定粘附,且兼具高透水透气性、长时间穿戴舒适性及稳定的低接触阻抗等优点,有望促进生理电信号长时间持续检测的广泛应用。

应用实例

2024.06.18

兰州大学范增杰教授课题组《ACS Nano》:协同缓解肌肉萎缩并促进神经再生的仿生海参微针神经导管

周围神经损伤(Peripheral nerve injury,PNI)是一种常见的外伤性疾病,常由车祸、战伤、工伤和医疗事故等引起。PNI的典型临床表现为受损神经所支配的区域出现感觉和运动功能障碍,其严重程度因损伤程度而异。这种疾病给患者带来了极大的痛苦与不便,严重影响了他们的生活质量;同时,也给患者与社会带来了沉重的经济负担。PNI的传统治疗方法可分为手术治疗和非手术治疗两类。非手术治疗方法包括电刺激、磁刺激、激光光疗等,而手术治疗方法包括神经缝合术和神经移植术(包括同种异体移植和自体移植)。其中,自体移植术因其疗效最佳,被公认为是PNI治疗的“金标准”。然而,目前的PNI传统治疗方法仍然存在较大的局限性,主要体现在以下两个方面:自体移植术所需的供体神经来源有限,且术后存在潜在的致畸、致癌性等风险;此外,PNI并发的肌肉萎缩问题也会进一步影响功能恢复的效果。针对以上两方面,兰州大学口腔医学院范增杰教授团队设计开发了一种具有海参仿生特性的微针神经导管(MNGCs),用于PNI及其导致的肌肉萎缩的协同高效治疗。该MNGCs是由摩方精密 microArch®S230 (精度:2μm)高精度3D打印设备加工模具后经PDMS翻模制备而成。相关研究成果以“Sea Cucumber-Inspired Microneedle Nerve Guidance Conduit for Synergistically Inhibiting Muscle Atrophy and Promoting Nerve Regeneration”为题发表在国际知名学术期刊《ACS Nano》上。兰州大学口腔医学院硕士研究生胡策文、刘斌为共同第一作者,兰州大学口腔医学院范增杰教授和康涅狄格大学化学与生物分子工程系孙陆逸教授为共同通讯作者。海参是一种海生软体动物,体型呈圆筒状,体表外侧长有规则排列的锥形状疣足,内侧则长有规则排列的条状肌肉。海参的体壁柔软,含有大量的胶原。胶原因具有不对称的晶体结构,具有压电效应。受此启发,作者根据海参的生理特性和解剖特征设计了MNGCs。MNGC由聚己内酯(PCL),还原氧化石墨烯(rGO)和纳米氧化锌颗粒(ZnO NPs)组成。其中,PCL为MNGCs的基质材料,使MNGCs具有良好的柔韧性与生物相容性;rGO和ZnO NPs分别赋予了MNGCs良好的导电性能与压电性能,使MNGCs能产生并传导适宜的电刺激(ES)。这是模仿了海参具有产生并传导生物电的潜力的生理特性。同时,MNGCs的外侧为微针(MNs)的针尖,内侧为微通道;MNs可以刺入神经周围肌肉并传导ES,而微通道可以引导雪旺细胞(SCs)定向生长。这是模仿了海参具有锥形疣足和条带肌肉的解剖特征。MNGCs植入体内后,因形变而实现力电转换产生ES。在MNGCs的内侧,ES与微通道共同使SCs定向高效迁移,促进轴突和髓鞘的新生进而促进神经的新生;同时,在MNGCs的外侧,ES通过MNs向其插入的肌肉中传导ES,进而抑制肌肉的萎缩。最终实现了PNI及其导致的肌肉萎缩的高效协同治疗。图一. MNGCs设计、制备以及协同治疗的示意图。首先制备了具有良好导电性能和压电性能的复合材料PG与PZG。MNGCs的基质材料——PCL原本是不具有导电性能和压电性能的材料,向其中添加了rGO(PG)和rGO+ZnO NPs(PZG)后,复合材料的导电性能明显提升,也具有了压电性能。当rGO含量为2%时,其电导率为1.03*10-3S/cm;而当ZnO NPs含量为2%时,其可输出的电压和电流的最大值分别为4.6 V和1.9 μA。这一优良的电学特性具有充足的潜力促进PNI及肌肉萎缩的协同治疗。又因为rGO和ZnO NPs具有潜在的生物毒性,通过MTT法对其在PCL中的含量进行了筛选,发现当rGO和ZnO NPs的含量≤2%,材料仍具有良好的生物相容性(见图3-A&B)。因此,确定PG与PZG中 rGO和ZnO NPs的含量为2%,并进行后续实验。图二. PG与PZG的电学性能。(A). rGO含量不同时PG的电阻率。(B). rGO含量不同时PG的电导率。(C).PZG的PFM振幅图。(D)和(E). ZnO NPs含量不同时PZG的开路电压。(F)和(G). ZnO NPs含量不同时PZG的短路电流。研究团队使用上述PCL,PG与PZG作为材料,通过模板法制备了MNGCs。如图三所示,蓝色的模板为制备MNs用的PDMS阴模。此PDMS阴模的制备过程如下:先使用摩方精密microArch®S230 3D打印设备构建主MNs,再使用PDMS转写主MNs以获得PDMS阴模。材料完全注入PDMS阴模后,使用摩方精密microArch®S230 3D打印设备构建的黄色模板——塑料微通道模板,此微通道模板是直接由设备构建而来。MNs基底背侧的微通道构建完毕且MNs冷却完全后,将其取出并卷成管状,即可获得MNGCs。图三. MNGCs的制备流程。随后对MNGCs进行了理化组成、宏微观形貌与力学性能的分析。FTIR,XRD首先证明了MNGCs中含有PCL和ZnO NPs,Raman不仅证明了MNGCs中含有rGO,且此rGO是被成功还原的。PCL在添加了rGO和ZnO NPs后,由疏水转变为亲水,且亲水性较优秀,这有利于其生物应用。SEM证明了MNGCs中的MNs和微通道具有良好的微观形貌,而MNGCs的宏观形貌也与海参高度相似。MNGCs的导管主体部分均具有较好的拉伸性能,能够稳定桥接神经而不断裂;由PG和PZG制成的MNGCs的MNs针尖部分也具有较好的压缩性能,能够刺穿并插入肌肉中,为ES的高效传递创造条件。图四. MNGCs的表征。(A). MNGCs的FTIR图谱。(B). MNGCs的XRD图谱。(C). MNGCs的Raman图谱。(D)和(E). 不同MNGCs的水接触角照片及其定量分析。(F)和(G). MNGCs的MNs与微通道的SEM照片及其EDS分析。(H).MNGCs的数码照片。(I)和(J).MNGCs的导管本体的拉伸试验的应力-应变曲线及其杨氏模量。(K)和(I). MNGCs的MNs的压缩试验的试验力-位移曲线及其位移量为0.75mm时的试验力。在体外层面对MNGCs促进PNI修复的效果进行了验证,研究团队发现微通道能通过限定SCs的分布来引导其定向生长增殖,而ES的促进作用和导电微环境的改善均有利于提升SCs的线性迁移速率,其中ES的促进作用更为明显。上述两方面的共同作用使得SCs能在MNGCs内部高效定向迁移,进而促进PNI的修复。图五. MNGCs促进PNI修复的体外效果。(A). PG的细胞毒性。(B). PZG的细胞毒性。(C). 微通道引导SCs定向生长的效果。(D). 双重电学功能促进SCs迁移的效果。研究团队建立了大鼠的坐骨神经大范围损伤模型,在体内层面对MNGCs协同缓解肌肉萎缩和促进神经再生的效果进行了研究。首先研究了MNGCs缓解肌肉萎缩的效果。对腓肠肌健侧/患侧进行了对比,发现PZG-MNGCs组的腓肠肌萎缩程度,不论是大体观察状态还是湿重比均最接近自体移植治疗的效果。Masson染色的结果,即PZG-MNGCs组的腓肠肌的肌纤维面积最高且胶原纤维面积最低,也印证了这一结论。因此可以确定,PZG-MNGCs缓解PNI导致的肌肉萎缩的效果最佳。图六. MNGCs缓解肌肉萎缩的体内效果。(A). 患侧/健侧腓肠肌大体观察的照片。(B). 患侧腓肠肌的Masson染色图片。(C). 患侧/健侧腓肠肌的湿重比。(D). 患侧腓肠肌Masson染色的平均肌纤维面积。(E). 患侧腓肠肌Masson染色的平均胶原纤维面积。随后研究了MNGCs促进神经再生的效果。通过对新生神经进行甲苯胺蓝(新生轴突)和勒克索固蓝(新生髓鞘)和CD31-IHC(新生微血管)染色,发现PZG-MNGCs组的神经再生水平最接近自体移植治疗组。图七. MNGCs促进神经再生的体内效果。(A). 新生神经的甲苯胺蓝染色图片。(B). 新生神经的勒克索固蓝染色图片。(C). 新生神经的CD31-IHC染色图片。(D).新生神经中活跃SCs的密度。(E). 新生神经中髓鞘的密度。(F). 新生神经中CD31的密度。最后研究了MNGCs促进神经再生的潜在机制。将NF-200(轴突)和S-100β(髓鞘)作为标记为进行IF染色,发现PZG-MNGCs组中NF-200和S-100β的表达水平最接近自体移植治疗组。这说明PZG-MNGCs主要依靠施加ES+改善导电微环境来促进轴突和髓鞘的再生,进而促进神经的再生。图八. MNGCs促进神经再生的潜在机制。(A). 新生神经的NF-200的IF染色图片。(B). 新生神经的S-100β的IF染色图片。(C). 新生神经中NF-200的密度。(D). 新生神经中S-100β的密度。综上所述,最具有海参仿生特性的PZG-MNGCs能高效产生并传导压电ES,在确保稳定桥接缺损神经和可以向肌肉传递ES的前提下,通过内侧的微通道共同促进SCs迁移以促进神经再生,同时将ES通过MNs传递至周围肌肉,最终在协同缓解肌肉萎缩和促进神经再生中取得了相当接近自体移植治疗这一“金标准”的治疗效果。

应用实例

2024.06.12

自然启示录:猪笼草的神奇秘密,科研界的新突破

受自然生物学启发制备的具有不同润湿特性的功能性表面在液体收集、液滴操纵、减阻及油水分离和药物输送系统等领域蓬勃发展。值得注意的是,功能性拒水表面成为其中一个热门议题。荷叶上的超疏水现象表明由亲水材料制成的具有特殊微纳结构的表面可以实现疏水甚至超疏水特性。因此,越来越多的研究人员致力于设计和制造独特的微纳结构使得由亲水材料组成的表面呈现出超疏水的特性,进而实现更多特定的功能。西安交通大学机械工程学院张辉副教授等提出了一种新型 3D 打印仿生超疏水花瓣状微结构表面,其灵感来自猪笼草口缘区域的水钉扎效应。该团队利用摩方精密高精度3D打印技术(nanoArch® P140,精度:10 μm)实现了花瓣状微结构表面的制备。具有花瓣状微观结构的亲水性树脂具有宏观超疏水性和优异的拒水性。与普通蘑菇形结构相比,优化后的花瓣状结构承载力最大增加率为58.3%。相应的机理分析表明,锋利的边缘效应和弓形曲线效应是造成这种超排斥性能的原因。然后团队进行了对几何特征(花瓣数量P、结构间隙S及花瓣结构占比K)对花瓣状微结构表面液滴承载能力影响的实验研究。覆盖微结构数、接触角变化和最大崩溃体积参数反映了不同参数表面的液滴承载能力。优化后的微结构阵列(花瓣数量P为4,结构间隙S为100 μm,花瓣结构占比K为0.5)与普通蘑菇形微结构相比,液滴承载力的最大增加率为58.3%。花瓣状微结构表面具有优异拒水性可用于超大液滴承载、微反应器、无损液滴搬运、倾斜表面液滴快速脱附、油水分离、气泡保持和减阻等领域。

应用实例

2024.06.07

深圳大学张学记、许太林、刘轻舟课题组:用于实时生酮饮食管理的可穿戴垂直石墨烯微针生物传感器

生酮饮食在治疗慢性疾病方面引起了人们极大的兴趣,但长期的生酮饮食也存在健康风险。尽管现代医学在诊断和治疗方法上取得了进步,但在这种饮食策略的个性化健康管理方面仍存在巨大差距。因此,本研究提出了一种用于实时监测酮体和葡萄糖的可穿戴微针生物传感器。这种微针阵列具有出色的机械性能,可对间质生物标记物进行持续取样,同时减少皮肤穿刺带来的疼痛。垂直石墨烯具有出色的导电性,使传感器具有 234.18 μA mM-1cm-2的高灵敏度和 1.21 μM 的低检测限。将这种完全集成的生物传感器用于人体志愿者时,它在跟踪动态代谢物水平方面显示出了极具吸引力的分析能力。此外,评估结果与商业血液测量结果具有显著的相关性。总之,这种经济高效的传感平台有潜力促进生酮饮食在个人营养和健康管理中的广泛应用。关键词:生酮饮食 酮体 微针生物传感器 间质生物标记物 垂直石墨烯过去几十年来,随着全球肥胖人口的增加,低碳水化合物饮食应运而生。生酮饮食(KD)因其作为癫痫饮食疗法的成功而大受欢迎。它是一种高脂肪、低碳水化合物饮食,迫使人体燃烧脂肪作为能量来源并产生酮体。当人体在极低糖状态下无法通过消耗葡萄糖产生能量时,就会产生酮体。酮体是脂肪氧化代谢过程中的中间代谢产物,包括乙酰乙酸、β-羟基丁酸(HB)和丙酮。其中,HB 是生酮饮食中内源性产生的主要能量底物,目前已被广泛用于治疗各种健康指征,如癫痫发作、糖尿病、肥胖症、阿尔茨海默病、 及其他疾病。用于治疗癫痫和阿尔茨海默病的生酮饮食可能会导致低血糖症。对于糖尿病患者来说,酮体的过度积累可能会导致糖尿病酮症酸中毒,而这被定义为一种可能危及生命的疾病。目前,测量酮体和葡萄糖水平的方法主要依靠穿刺手指反复定期采血,这会给患者带来心理和生理上的痛苦。无创酮体监测技术非常有吸引力,但大多数研究在建立与血液采样的可靠相关性方面面临挑战。间质液(ISF)是血液流经毛细血管时交换形成的一种体液,它与血清和血浆样本具有多种生物标志物。可以使用多种方法收集和分析 ISF,包括离子电泳法、声波电泳法、微透析法、微针法。在这些方法中,微针阵列提供了一种直接采集ISF的无痛方法。虽然一些研究已经证明了使用微针监测间质酮体水平的可行性,但大多数研究仅在体外研究中得到了证明。迄今为止,电化学传感器因其灵敏度高、成本低、使用方便等优点,在生物标记物的监测和检测中得到了广泛应用。最近,石墨烯因其比表面积大、导电率高、化学稳定性好等优异特性而被广泛应用于传感器的构建中。垂直生长在基底上的石墨烯具有独特的特征,如非团聚的三维网状形态、大量开放的超薄边缘和可控结构。这些特征使得垂直石墨烯具有高电化学活性和导电率等惊人特性。在这里,深圳大学张学记、许太林、刘轻舟课题组研发了一种基于微针的生物传感器,它能够实时监测间质酮和葡萄糖,可用于对保持生酮饮食的人进行主动健康管理。这种生物传感器由3D打印的微针和垂直石墨烯电极构成,可实现间质液标志物的双重检测。当微针按压并刺入皮肤后,空心微针阵列可持续收集 ISF,双分析电极则可对其进行检测。此外,还集成了一个最小的电化学分析仪,可通过无线数据传输与智能设备同步。这种完全集成的生物传感设备有助于促进生酮饮食在肥胖症、癫痫、糖尿病和阿尔茨海默病等疾病治疗中的应用。相关工作以“Wearable Vertical Graphene-Based Microneedle Biosensor for Real Time Ketogenic Diet Management”为题发表在《Analytical Chemistry》。图1. 微针生物传感器原理图及图像。(a)个性化生酮饮食管理的可穿戴传感平台概念。(b)可穿戴微针传感器示意图。该可穿戴传感器主要由微针阵列、粘附层、银层、垂直石墨烯、衬底和液腔组成。(c)可穿戴微针传感器的光学照片。(d) HB和葡萄糖传感电极的试剂配置。(e)安装在志愿者手臂上的完全集成的微针生物传感器图像。垂直石墨烯具有三维六角蜂窝晶格结构,因此具有比表面积大、导电性好和化学稳定性好等优异特性,一直是可穿戴传感器研究人员的兴趣所在。在本研究中,研究团队选择垂直石墨烯作为电极材料,以提高生物传感器的电化学传感性能。图2. 垂直石墨烯基生物传感器的表征与电化学性能。(a)垂直石墨烯电极的光学照片。(b)垂直石墨烯的顶部和(c)横切面SEM显微图。(d)垂直石墨烯的拉曼光谱。不同电极在pbs加标(e) 1.0 mM HB和(f) 5.0 mM葡萄糖下的循环伏安图。(g)基于HBD的生物传感条带对人工ISF中连续添加0.1 mM至1.0 mM的HB的时序电流响应以及插图中相应的校准图。(h)基于GOx的生物传感条带对人工ISF中不同葡萄糖浓度的电流响应,连续增加1mM。(i和j)可能干扰物质的选择性试验:100 μM抗坏血酸(AA)、100 μM尿酸(UA)、1.0 mM乳酸(LA)。(k) 0.1 mM HB和(l) 1.0 mM葡萄糖在ISF基质中间隔10分钟的操作稳定性评价。微针技术作为是一种前景广阔的解决方案,能够有效地穿透皮肤角质层,从而增强透皮提取或药物输送的效率。重要的是,这些微针需要具备足够的强度,以承受插入和穿透皮肤时的力量。在可穿戴应用中,基于微针的设备引起的疼痛问题已经成为日常健康管理中的一个关键问题。影响疼痛程度的主要受微针长度的影响。以往的研究表明,当长度超过1000 μm时,微针引起的疼痛明显增加。因此,在这项研究中,微针的高度被优化为1000 μm,以最大限度地减轻应用于人体皮肤时的痛感。金字塔结构基于偏心通道设计,通过在中心保持坚固的支柱来增强微针抵抗力以便刺穿皮肤,微针的其他几何参数如图S3所示。研究团队利用摩方精密面投影微立体光刻(PμSL)3D打印技术(nanoArch® S140,精度:10 μm)成功制备了微针阵列,其尺寸为15.75 mm×15.75 mm。多个微针和单个微针的SEM图像如图3a和3b所示。图3. 微针性能评价。(a)多个微针和(b)单个微针的SEM图像。(c和d)一个微针的结构模拟结果。(e)微针刺入新鲜猪皮后的图像。(f)空心微针阵列插入皮肤前后的完整率。(g-i)插入和取出微针贴片后参与者的皮肤照片。(j和k)流体分析模拟结果。(l)毛细作用下微针提取人工ISF的流量随时间分布。本研究通过跟踪ISF中人体代谢物水平的变化,对基于微针的健康监测传感器的有效性进行了评估。用户佩戴配有电化学微工作站的微针传感器,并记录每30分钟(30、60、90和120分钟)摄入酮和葡萄糖补充剂之前(0分钟)和之后的电流响应。同时,将微针传感器测量的结果与市售血酮/血糖仪测量的数据进行比较,以建立生物传感器用于皮下检测的可靠性。结果表明,ISF样本与血液样本之间酮类分析和葡萄糖分析呈现较高的相关性。图4. 微针生物传感器的身体性能。(a)身体测试过程示意图,参与者佩戴微针传感器并摄入商业酮或葡萄糖补充剂,电化学工作站进行酮和葡萄糖分析,这与血酮和葡萄糖水平相关。(b和c)分别记录酮葡萄糖补充前(0 min)和补充后(30、60、90和120 min)的相关浓度。(d) HB和(e)葡萄糖血液和ISF样本的相关性分析。(f和g)动态测量。总结:综上所述,本研究提供了一种用于ISF双重检测的微创传感装置。作为传感器的关键部件,3d打印微针阵列具有优异的机械性能,不仅可以连续提取ISF标志物,还可以确保皮肤穿刺时的安全性。此外,电极的材料、几何形状和试剂配置都经过精心优化,以最大限度地提高生物传感器的分析性能。在这两种成分的协同作用下,生物传感器表现出优异的分析性能。在身体监测期间,研究团队记录受试者服用酮或葡萄糖补充剂前后的HB/葡萄糖水平,并将结果与血酮或葡萄糖水平进行比较。与血液测量的强相关性表明,本研究中开发的传感器有潜力作为测定代谢物水平的替代方法。通过集成电化学工作站,电化学传感器的信号可以通过无线传输技术发送到移动设备,这对于实现以患者为中心的远程监测具有重要意义。综上所述,本研究证明了开发用于生酮管理的微针生物传感器的可行性,促进了生酮饮食在个人医疗保健中的推广和发展。

应用实例

2024.06.07

西湖大学周南嘉团队《AM》:通过模块化设计的挤出头调控纤维内部周期性结构

具有复杂内部结构的多材料一维(1D)纤维一直是科学与工程领域的研究热点。其柔性、可扩展性和多功能性使纤维广泛应用于驱动器、发光器件、储能设备、传感器和药物输送装置等应用。其中,周期性结构纤维可以通过对周期的设计和调控,显著提高纤维的性能和功能。将一维纤维组装成二维图案或三维结构将大大扩展其应用空间。然而,传统的纤维加工方法(包括熔融纺丝、溶液纺丝和静电纺丝)需要编织、针织等后纺丝工艺,这限制了生产效率,并给材料选择和复杂结构的制造带来了困难。与传统制造相比,增材制造 (AM) 具有复杂结构设计和快速成型的优势。利用 3D 打印技术,可以轻松实现微观和宏观结构的制造。其中,直接墨水书写 (DIW) 是一种被广泛使用的多材料挤出加工方法,在成本效益与材料兼容性等方面具有较大优势。为了扩展挤出过程中多种材料的可编程性,微流体挤出头设计已被用于创建多功能纤维结构。然而,由于高分辨率微流道的设计和制造的复杂性,目前挤出头的结构选择仍然有限。基于此,西湖大学工学院周南嘉团队提出了一种模块化策略设计挤出头,利用多材料直写工艺挤出具有可调控周期性结构的纤维,并用来制造具有空间可编程周期性结构的 3D 物体。不同功能的模块可以通过串联,并联,串并联等不同的方式进行连接组装,用来制备具有层状结构和棋盘结构的多材料纤维。纤维内部的周期性结构可以通过调节工艺参数,模块的种类数量和尺寸进行控制。通过模块化平台策略,极大的简化了挤出头设计的难度,提高了具有周期性结构纤维的加工效率。该挤出头是利用摩方精密nanoArch® P140和S140 高精度DLP 3D打印设备(精度:10μm)一体化成型制造而成。通过研究团队的策略,两种具有相似流变性能和不同机械性能的不混溶材料用于共挤出。周期性结构可以显著提高纤维和晶格结构的机械性能。首先,对于硬/软硅橡胶复合弹性体,层状结构纤维展现出最高的断裂韧性(14.009 KJ/m2),分别是均质软硅橡胶和硬硅橡胶的1.8和11.8倍。其次,受生物珍珠壳状结构启发,加工得到环氧树脂/硅橡胶层状复合材料,纤维的增韧效果表现出明显的各向异性行为。在此基础上,研究团队通过控制打印路径,在3维木桩结构中对周期结构进行空间编程,使打印结构在压缩测试中不会发生灾难性的结构损坏。与直接混合的复合材料相比,层状结构的纤维的韧性和交错木桩结构的能量吸收能力表现出了显著的增强,分别提高了 4.3 倍(10.45 MPa)和 6.5 倍(12.43 J/g)。本研究成果以“Multimaterial extrusion of programmable periodic filament structures via modularly designed extruder heads”为题发表在学术期刊《Additive Manufacturing》上。西湖大学博士生任靖波为论文第一作者,西湖大学特聘研究员周南嘉为论文通讯作者。本研究得到了西湖大学未来产业研究中心,先进微纳加工与测试平台,物质科学公共实验平台的大力支持。图1. 模块化挤出头和打印结构。(a):模块化挤出头打印设备和打印 3D 结构的示意图。放大的部分显示了具有内部流道结构的基本单元倍增器 (BME) 设计。(b):通过分裂、堆叠、扩散实现流体强制倍增的过程。(c):组装策略对纤维结构的影响。模块化挤出头设计以及对应于串联和串并联挤出头各个部分的理论纤维结构——包括入口模块 (IM)、倍增模块 (MM)、出口模块 (OM) 和连接模块 (CM) 等功能模块、纤维内部周期性图案示意图以及串联和串并联组装策略的打印纤维的横截面照片。比例尺,2 mm (a), 100 μm (c)。图2. (a):串联(左)和串并联挤出头(右)的照片。(b):定制的四轴打印平台(左)和在3D打印设备中组装的挤出头(右)。比例尺,5 mm (a)。图3. 纤维内部周期性结构的调控。(a-b):粘度匹配对层均匀性的影响。(c):流量比对层厚度的影响。(d-e):多层结构纤维的横截面照片与实际层厚与理论层厚的比较。比例尺,100 μm(c,d)。图4. 硬/软硅橡胶层状复合弹性体的力学性能。(a):硬/软硅橡胶墨水的流变行为。(b):组分对弹性体韧性的影响。(c):层状结构增韧机理与复合弹性体纤维在拉伸试验过程中相应的断裂过程。(d):层数对弹性体韧性的影响。(e):韧性和临界应变的比较。比例尺,100 μm (a),1 mm (c)。图5. 环氧树脂/硅橡胶层状复合纤维的力学性能。(a):环氧树脂/硅橡胶墨水的流变行为。(b):三点弯曲试验示意图和相应的长丝应力分布。(c):复合纤维的测试方向。(d):组分对复合材料模量和韧性的影响。(e):层状结构阻止裂纹扩展进行增韧。(f):层数对复合材料韧性的影响。比例尺,100 μm (a),1 mm (e)。图6. 3D交错木桩结构的力学性能。(a):打印路径示意图。(b):压缩应力-应变曲线。(c):打印结构在压缩测试中相应的失效过程。比例尺,5 mm(c)。通过引入更多功能模块和不同的组装方式,可以设计高度可定制化的挤出头,以制备具有独特性能和新功能的复杂结构纤维。设计的灵活性和材料兼容性使研究团队的策略在建筑、光电、生物医学支架等领域具有良好的应用前景。

应用实例

2024.06.06

上海市委常委、浦东新区区委书记朱芝松调研走访摩方精密

6月3日下午,上海市委常委、浦东新区区委书记朱芝松率队走访了上海摩方启赋科技有限公司(简称“摩方启赋”),开展自贸试验区制度型开放课题调研。摩方启赋是摩方精密在浦东新区成立的全资子公司,并落地超高精密器件国际创新中心,全力推进摩方原创超高精密增材制造技术能力在终端应用产品领域的研发、设计和孵化。朱芝松书记走进摩方展厅,详细了解了摩方原创技术在极薄牙齿贴面、新型微创青光眼手术引流器等领域的创新应用,鼓励企业继续坚持研发投入力度,不断提升产品创新力、竞争力。朱芝松书记表示,各类市场主体是浦东创新发展的重要力量,欢迎摩方精密来到浦东发展并取得阶段性成果。相关部门要深化用好重点企业服务专员工作机制,加强高效对接,统筹做好各项支持配套工作,助力企业技术创新和成果转化,赋能百行百业。摩方精密创立于2016年,是全球最早实现2微米级加工精度兼具高标准公差控制力的精密增材制造解决方案供应商,在上海、北京、深圳、珠海、厦门等地设有分支机构,同时在东京、波士顿、圣地亚哥、伦敦和慕尼黑等设有与国内协同运营的事业部、研发中心或销售办事处。开放的创新战略,让摩方积极主动融入全球科技创新环境,建立了庞大的全球工业企业合作网络,形成了良好的工业应用发展生态。截至当前,摩方的设备和技术已服务全球35个国家约2200家客户。工业级增材制造设备是先进制造业上游的重要工具之一,被多地纳入“工业母机发展规划”中。摩方作为精密制造创新型工业母机,其设备、材料及工艺深度绑定,在高精密增材制造领域具有领先性、专利优势和丰富的应用经验,成为众多行业产业链中不可替代的上游装备和加工解决方案供应商,在包括精密医疗、精密电子、5G、新能源等在内的制造业各领域创新生态链中发挥重要赋能作用,为新兴产业创新突围提供强有力的支撑。一路走来,摩方用突破性创新、延续性创新与开放式创新,创造了中国新兴硬科技企业“从0到1”原始创新和发展壮大的典型案例。

企业动态

2024.06.06

央视关注!摩方高精度3D打印硬核科技屡获突破

近日,央视新闻直播报道了摩方的高精度3D打印设备和成果,获万千网友点赞。摩方是国内少有的能实现打印精度达到2微米,兼具高标准公差控制力的超高精度3D打印解决方案供应商。截至2024年4月,摩方与来自全球35个国家约2200家客户建立了合作关系,创造了国产创新型工业母机及高端精密制造设备反向出口到日本、德国、美国等工业强国的罕见案例。图:西洽会现场作为重庆创新型硬科技企业代表,日前,摩方携高精度3D打印设备和成果亮相第六届中国西部国际投资贸易洽谈会(西洽会),成功吸引了现场直播的央视新闻的注意,并获邀接受采访。图:摩方S240设备亮相西洽谈会,现场展示了青光眼导流钉和极薄牙齿贴面等应用产品摩方总裁助理白春燕向央视记者介绍了展示在现场的摩方高精度增材制造设备microArch® S240,它曾代表摩方斩获全球光学领域最高奖“棱镜奖”,摩方也是国内首个凭借本土原创精密制造技术获得该奖的企业。图:摩方高精度增材制造设备S240亮相西洽会现场还展示了两款用摩方高精度制造技术打印的产品:青光眼引流器和极薄牙齿贴面。前者为摩方与北京同仁医院合作,利用摩方的技术研发、生产的新型青光眼引流器,通过该引流器植入手术,可将传统需8个步骤、耗时30-40分钟的青光眼手术,缩短为开睑、制作角膜缘切口、植入引流物3个步骤,耗时仅3-5分钟。目前该型引流器已完成型式检验、动物安全性验证,并完成5例濒临失明的青光眼患者的紧急救助性临床手术,至今已超过10个月,未发现不良反应。图:摩方总裁助理白春燕接受央视新闻采访极薄牙齿贴面由北大口腔医院与摩方深度联合研发。利用摩方的技术,可加工出厚度低至0.04毫米的牙齿贴面,让患者免磨牙釉质就可实现牙齿的修复和美观。2023年底,由摩方牵头的国家“十四五”重点研发计划重点专项“极薄强韧陶瓷义齿微立体光固化增材制造技术与装备”获科技部批准立项,该项目以摩方精密独有的“面投影微立体光刻技术”为切入点,联合北大口腔等9家单位,全面系统研究极薄强韧陶瓷义齿增材制造系统的共性关键技术。随着这一产品的全面上市,将掀起口腔行业一场不小的创新。事实上,自首套设备交付以来,摩方坚持原创技术研发,保持设备的更新迭代;其突破性的工业级加工能力,持续在各个工业制造的应用层面展现出颠覆性的一面,发挥精密制造工业母机价值,为各行业底层技术的创新添翼增彩。2024年5月,摩方刚刚发布了复合精度光固化3D打印技术,面向全球市场推出首创的Dual Series设备:microArch® D0210和microArch® D1025,在速度、质量和便捷性上进行大幅提升,能有效解决增材制造中高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。D系列设备依旧保持了摩方精密超高精密、超高公差控制能力,全新搭载复合精度光固化3D打印技术,新增自动化操作平台,使工业级3D打印更智能、更稳定、更高效。在打印尺寸上,首次实现2μm到100mm*100mm*50mm的跨尺度加工突破。在快速原型制作上,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。当前,摩方还在持续加大研发投入,更新设备,提升服务,开拓终端应用,全方位提升精密制造能力,发挥行业领头羊作用,为推动国内精密制造行业不断升级迭代,提供不懈助力。

企业动态

2024.06.04

中国科学院上海硅酸盐研究所马明研究员团队《Nano Today》:融合螺旋聚焦流微反应器与高通量筛选

‍‍‍‍纳米药物在癌症治疗、免疫调节、透皮药物递送、皮肤护理等领域具有广泛的应用。相比于传统的纳米药物制备技术,微反应器技术(也称微流控合成技术)展现出了高可控性、可调性以及可重复性等优势。然而,目前商用的微通道反应器普遍存在耐压性能差和合成通量低等问题。尽管通过增大微通道截面的方式可以提高流体通量,但容易引起微通道内局部区域混合不充分等问题,导致纳米颗粒均一性下降。针对以上问题,中国科学院上海硅酸盐研究所和国科大杭州高等研究院化学与材料科学学院研究人员自主开发具有全新微通道结构的螺旋聚焦流微反应器,并将其与自主开发的高通量自动化纳米颗粒筛选平台进行了有效整合,从而快速获得同时满足期望平均粒径和最小多分散系数(PDI)的载药纳米脂质体最佳制备工艺条件。相关成果以“Combined helical-blade-strengthened co-flow focusing and high-throughput screening for the synthesis of highly homogeneous nanoliposomes”为题发表在学术期刊《Nano Today》上。本研究所开发的螺旋聚焦流微反应器采用超高精度面投影微立体光刻(PμSL)3D打印技术一体成型制造(摩方精密nanoArch® S140,精度:10 μm),有效克服传统键合方法所引起的通道堵塞和结构稳定性差等问题,可实现高达100 mL/min的流体通量。同时,该微反应器内含独特的螺旋子通道(图1),可数倍增强水相和醇相流体的径向混合效率。以PEG化纳米脂质体的合成为例,在不同水相/醇相流速条件下,螺旋聚焦流微反应器相比于常规3D同轴流动聚焦装置获得纳米颗粒产物的粒径PDI值明显更小,均低于0.1(图2)。螺旋聚焦流微反应器同样适用于卵磷脂等其它组成纳米脂质体的粒径均一性优化,为载药纳米脂质体的均一化和高通量制备提供了一种国产化高效策略。图1. 螺旋聚焦流微反应器的结构示意图及实物图。图2. 在不同流速条件(总流速和流速比)下,利用螺旋聚焦流微反应器(HBSCF)和常规3D同轴流动聚焦装置(CF)制备的PEG化纳米脂质体产物对应的平均水合动力学粒径和PDI值。进一步,团队以螺旋聚焦流微反应器为技术核心开发了螺旋聚焦流纳米药物合成仪。该合成仪配有触屏数显界面、微反应器连接件和自动收集台等模块,具有批次间高重复性、易操作等优势,可适用于纳米脂质体、脂质纳米颗粒和其他类型纳米颗粒的高流速和均一化合成。此外,团队自主开发集高通量合成和粒径筛选为一体的自动化纳米颗粒筛选平台,以提高基于螺旋聚焦流微反应器的纳米脂质体合成工艺条件的优化效率,最终将载药纳米脂质体的粒径PDI值减少到0.04以下。鉴于该微反应器的高通量特性,研究人员无需改变微反应器类型,即可基于优选技术参数实现纳米药物的连续放大合成。上述围绕螺旋聚焦流微反应器技术开发的多种装备对提高纳米药物质量和促进产业化应用具有重要推动作用。该研究成果由中国科学院上海硅酸盐研究所和国科大杭州高等研究院的科研人员和学生共同完成,已经获得1项国家发明专利授权及多项实用新型专利和软件著作权。研究生王浩霁、田睿智和工程师兰正义为发表论文的共同第一作者,马明项目研究员为通讯作者,该工作也受到了陈航榕研究员的大力支持。‍‍‍‍

应用实例

2024.06.03

杭州师范大学材料与化学化工学院朱雨田教授课题组《JCIS》:基于麦芒仿生多级结构的高灵敏与宽量程离-

电容型柔性压力传感器在智能机器人、可穿戴电子产品、人机交互等领域有着广泛的应用。传统的电容型压力传感器由于受介电层压缩性和单位面积电容(UAC)的限制,其灵敏度和检测精度均较低。近年来,由离子凝胶基介电层和柔性电极组成的电容型离-电式压力传感器因其具有高灵敏度、高检测精度受到广泛关注。基于离-电式压力传感器的双电层(EDL)原理,传感器输出电容信号的变化主要取决于其内部介电层/电极界面的演变。因此,对介电层/电极层界面进行有效设计是获得高性能离-电式压力传感器的关键。除了优异的传感性能外,光学透明度也是传感器在电子皮肤、可穿戴电子产品等应用中所必需的。目前,压力传感器如何同时具备高灵敏度、宽响应量程和良好的透明度仍然是一个挑战。基于此,杭州师范大学材料与化学化工学院朱雨田教授团队基于麦芒仿生多级结构设计开发了一种兼具高灵敏和宽量程的离-电式压力传感器。该麦芒分层结构是利用摩方精密 microArch® S240(精度:10 μm)3D打印设备加工模具后经聚乙烯醇(PVA)/磷酸(H3PO4)翻模制备而成。相关研究成果以“Highly sensitive and wide-range iontronic pressure sensors with a wheat awn-like hierarchical structure”为题发表在期刊《Journal of Colloid and Interface Science》上。杭州师范大学材料与化学化工学院研究生王静为第一作者,杭州师范大学材料与化学化工学院朱雨田教授、陈建闻副教授为共同通讯作者。基于麦芒仿生结构的离-电式柔性压力传感器是由两个柔性透明电极层(银纳米线(AgNWs)/聚氨酯(TPU)/离子液体(IL))和一个具有麦芒仿生阵列结构的PVA/H3PO4介电层以“三明治”结构组装形成(图1)。EDL在PVA/H3PO4介电层与AgNWs/TPU/IL透明电极层的界面处形成。在施加外力之前,对于顶部电容器,界面接触只发生在PVA/H3PO4阵列顶部与电极层之间(图1d1)。此时,只有少量离子被吸引到电极表面,因此,EDL电容值较低。施加外力后,PVA/H3PO4介电层中的金字塔向同一方向倾斜,导致顶部电极与介电层的界面接触增多(图1d2)。同时,AgNWs的导电网络变得更加致密,底部电极与介电层之间的界面接触更加紧密。因此,传感器的电容值随着介电层与电极界面接触面积的增加而显著增大。当施加在传感器上的压力进一步增加时,PVA/H3PO4金字塔继续倾斜,从而导致传感器的电容持续增加(图1d3)。因此,基于麦芒仿生结构的PVA/H3PO4介电层的独特结构演变将赋予该离-电式柔性压力传感器高灵敏度和宽检测量程。 图1. (a)透明电极的制备,(b)具有麦芒仿生结构介电层的制备,(c)所制备传感器的结构示意图,(d)压力传感器响应机制示意图。电极和介电层的微观形貌对离-电式柔性压力传感器的压力传感性能具有重要影响。从电极和介电层的SEM图像可以看出,PVA/H3PO4介电层表面存在数个向同一方向倾斜的金字塔状阵列结构,与麦芒的结构相似。这些金字塔朝同一方向倾斜10 °,金字塔状结构宽为300 mm、高为800 mm(图2a1, a2, b1, b2)。从电极的微观扫描图可以看到大部分AgNWs均匀嵌入TPU基体中,少数AgNWs位于TPU基体表面(图2c1, c2)。此外,AgNWs的直径和长度分别约为110 nm 和20 mm,所制备的AgNWs具有大的长径比,这有利于AgNWs之间相互搭接形成导电网络。 图2. (a1,a2)PVA/H3PO4介电层的俯视SEM图像,(b1,b2)PVA/H3PO4介电层截面SEM图像,(c1)AgNWs的SEM图像,(c2)AgNWs/TPU/IL电极的SEM图像,(d-f)麦芒状PVA/H3PO4介电层加载前后形貌演变的SEM图。将不同H3PO4含量的PVA/H3PO4介电层定义为PVA/H3PO4(x),其中x表示H3PO4与PVA的质量比。随后,对比了不同PVA/H3PO4(x)介电层的离-电式压力传感器在外加压力下的相对电容变化(ΔC/C0,ΔC=C-C0,C为实时电容值,C0为初始电容值)。当H3PO4与PVA的比值从0.4增加到1.2时,传感器在1 N负载下的ΔC/C0值从18.72增加到81.76 (图3a-c)。这是因为当H3PO4与PVA的比例增加时,介电层模量的降低会导致EDL界面的变形和接触面积增大。然而,当介电层中H3PO4含量进一步增加时,传感器的C0显著增加,导致ΔC降低。因此,传感器的ΔC/C0值显著降低(图3d)。 图3. 基于PVA/H3PO4(0.4)(a)、PVA/H3PO4(0.8)(b)、PVA/H3PO4(1.2)(c)和PVA/H3PO4(1.6)(d)的传感器在0.1 N、0.5 N和1.0 N负载下的相对电容变化。从压缩过程中传感器的ΔC/C0随压力变化的演变曲线(图4a)可知,由于介电层/电极界面接触面积的连续变化,该压力传感器的有效检测量程可达238 kPa,其灵敏度在低压下高达47.65 kPa-1。除了压力检测量程和压力灵敏度外,在循环负载下压力响应信号的稳定性在应用中也至关重要。该传感器在小压力(100 Pa)和较大压力(150 kPa)刺激下的压缩/释放循环测试中均表现出较高的稳定性(图4b, c)。在0.025 N-0.1 N-0.025 N范围内压缩/释放循环测试过程中,该传感器能够精确地识别压力变化并输出相应的电容信号,而且其压力响应信号的可重复性高(图4d)。此外,本工作还研究了不同加载速率(3 mm/min、5 mm/min、7 mm/min、9 mm/min)下,传感器在0.1 N压力下的电容响应信号(图4e)。显然,电容信号与加载速率无关,从而进一步保证了传感器的可靠性。该传感器的响应时间和恢复时间分别为13 ms 和12 ms (图4f),明显低于人体皮肤的响应/恢复时间(几十到几百毫秒)。在超6000 次的循环加载测试中,该传感器电容信号的振幅没有明显下降(图4g),说明该离-电式压力传感器具有出色的重复性、稳定性和耐用性。 图4.(a)基于麦芒仿生结构介电层的传感器在0 ~ 238.65 kPa压力范围内的ΔC/C0演变曲线,(b)在100 Pa循环加载下的ΔC/C0演变曲线,(c)在100 Pa循环加载下的ΔC/C0演变曲线,(d)在不同力(0.025 N、0.05 N 和 0.1 N)加载下的ΔC/C0演变曲线,(e)在不同加载速率(3、5、7、9 mm/min)下对0.1 N加载下的ΔC/C0演变曲线,(f)离-电式压力传感器的响应/恢复时间,(g)在加载压力为0.05 N、加载速度为5 mm/min条件下的6000次循环试验中传感器的ΔC/C0演变曲线。为了评估该传感器在个人健康监测、人体运动监测、信息加密传输等方面的潜在应用,本工作做了以下的演示实验(图5)。该传感器可以灵敏地感知水滴逐滴滴加的微弱压力(约1.08 Pa),显示出较高压力的检测精度(图5a)。此外,志愿者手腕的微弱脉冲信号P、T、D特征波也可以被该传感器检测到(图5b)。该传感器还可以通过观察ΔC/C0峰值的频率来监测和区分人体的运动状态。当志愿者行走、站立、快走时,贴在志愿者鞋底的传感器的ΔC/C0值会发生相应的变化(图5c)。该传感器还可以根据摩尔斯电码的规则,对信息进行加密和转换(图5d)。图中显示了我们的传感器对信息(“sensor”)进行了加密和转换。同时,本工作构建了用于盲文识别的传感器阵列。通过将阵列传感器放置在盲文上,对阵列传感器施加一定的压力,就可以根据ΔC/C0的差值来识别凸起的位置。在相同载荷下,凸起上方传感器的ΔC/C0值大于平坦上方传感器。ΔC/C0的不同值可以转换成声音信号传输给盲人,实现盲文识别。图5e显示了所设计的传感器阵列对“化学”盲文的识别情况。此外,该传感器阵列具有优异的光学透明度(图5f),且可以通过观察传感器ΔC/C0值差异所产生的压力映射图像的颜色和位置来识别“H”、“Z”、“N”、 “U”四个字母,在智能机器人和足部医疗诊断领域具有良好的应用前景。 图5.(a)传感器对水滴产生的微弱压力刺激产生的电容响应信号,(b)传感器检测到的脉冲信号,它清晰地显示了脉冲信号的三个特征波,(c)传感器检测的人体运动的电容响应,(d)“sensor”信息的加密和翻译,(e)对“化学”盲文信息的识别,(f)传感器阵列的光学照片和图片,(g)“H”、“Z”、“N”、“U”压力图的识别。该离-电式柔性压力传感器具有高透明度和优异的传感性能,在人机界面、柔性显示器、可穿戴设备等领域具有应用前景。在工作中,我们组装了一个由2 × 3阵列传感器组成的透明智能手环,以评估其在可穿戴智能设备中的应用。手环的每个传感器都用一个通用短语编程,然后设计成一个快捷键。当用户触摸传感器时,传感器的电容会发生明显的变化,并使用数据采集系统记录电容信号。然后,将电容信号转换成相应的短语,通过蓝牙传输到计算机上。这种柔性透明的智能设备在人机交互和移动设备方面显示出巨大的潜力。 图6. 传感器在智能手环中的应用演示结论:综上,研究团队基于麦芒仿生多级结构开发了一种兼具高灵敏和宽量程的离-电式压力传感器。该新颖的结构设计使得介电层/电极层界面在压力作用下的接触面积持续增大,从而使传感器的电容信号规律变化,对传感器的可检测量程和灵敏度的提高起到了至关重要的作用。此外,透明电极和PVA/H3PO4介电层赋予传感器良好的光学透明度。所获得的传感器具有高灵敏度(47.65 kPa-1)、宽检测量程(1.08 Pa-238 kPa)、出色稳定性以及良好的透明度。此外,该传感器可以设计成透明的智能手环和智能窗口,在健康监测、可穿戴电子设备和电子皮肤等方面具有应用潜力。

应用实例

2024.05.31

为产业赋能,摩方与全球顶尖科技力量一起亮相澳门

作为全球高精度3D打印领军企业,5 月 22 日- 25 日,摩方精密携高精度3D打印设备、创新样件及解决方案来到澳门,与全球顶尖科技创新力量一起,亮相第四届BEYOND国际科技创新博览会(BEYOND Expo 2024)。图:中国澳门特别行政区行政长官贺一诚在科技博览会现场巡展本届大会设立了近十万平方米的展区,吸引来自全球的数百家企业参加,包括500强公司、大型跨国企业、独角兽创新企业以及新型前沿创新企业,为科技创新企业、投资人和科技爱好者们带来一场前所未有的科创盛宴。摩方精密展区不仅展示了利用摩方高精度制造能力打印的丰富多样的精细样件,还展出了一台尖端设备—2微米超高精度3D打印设备microArch® S230A。它是极限微纳复合树脂增材制造设备,可用于生物医疗、精密电子、仿生、微流控、传感等多个科研和工业领域,可实现小批量、规模化精密仪器的生产制造。搭载自动化操作系统,集成平台自动调平,绷膜自动调平和滚刀自动调节三大功能,使工艺参数设置、液面调平、流平时间等步骤实现全自动作业模式。支持高黏度树脂材料,搭载液槽加热系统,地域适配性广,兼容更多材料加工,满足多元化的应用场景。图:澳门科技总会会长、BEYOND国际科技创新博览会创办人贺建东(左二)到访摩方精密展台展会现场还设置了丰富的前沿趋势领域议题,吸引了超过250位来自不同领域的全球领军人物参与,共同探讨科技创新热点话题,为参会者带来了深刻的见解和独特的国际视角,促进跨行业、跨领域的深度对话。摩方精密作为用颠覆性精密制造技术跨行业赋能包括医疗、电子、新能源、AI等各领域的创新型企业,很早就启动了国际平台战略,具备丰富的国际视野。据了解,截至2024年4月,摩方精密已与来自全球35个国家的2100多位客户建立了合作关系。图:广东恒健投资控股有限公司领导参观摩方精密展位为期四天的博览会集中展现了科技创新在各领域的最新成果和发展趋势,共计吸引超过两万人次参会。摩方作为全场罕见的高精度打印创新制造企业代表,同样吸引了不同行业企业领军人物、投资人和科技爱好者的大量围观。图:摩方对各行业强大的赋能能力吸引了不同行业参会者的围观随着展会落下帷幕,一些在展会上首次接触到摩方精密制造能力的各行业代表、投资人,纷纷发来实地探访邀约。未来,摩方将继续致力于精密制造能力的创新和突破,在设备、服务、技术创新、终端应用等方面全面推进,致力于用高精密制造为科技创新赋能,推动医疗、电子、新能源、AI应用等高精尖制造领域的发展,为国内制造业转型升级持续供给能力与效率。

企业动态

2024.05.30

南方科技大学葛锜教授课题组《Science Advances》:高性能共价适应性网络形状记忆聚合物的

4D打印技术使3D打印结构在外界环境刺激下产生主动变形,从而实现三维机械构件-驱动器一体成型。智能材料4D打印的是国内外的跨学科研究热点之一。形状记忆聚合物(Shape Memory Polymers,SMPs)是一种具有较高模型的智能材料,已被广泛用于4D打印。然而,大多数SMPs是热固性材料,它们具有稳定的化学交联,因此只能“记忆”一种形状。为了实现一个打印的三维SMP结构“记忆”多个形状并完成多种任务,需要使SMP的交联网络具有可塑性。共价适应性网络(covalent adaptable networks,CAN)是实现SMPs可塑性的有效手段。目前的CAN-SMPs无法实现机械强度、打印性能、重构能力和变形能力等性能的综合兼顾。南方科技大学葛锜教授课题组开发了一种适用于高分辨率DLP 3D打印的高力学性能共价适应性网络形状记忆聚合物(Mechanically Robust Covalent Adaptable Network Shape Memory Polymer, MRC-SMP),实现了可完全重构、高断裂应变、高精度4D打印。MRC-SMP在编程和重新配置温度下都表现出高变形性(失效应变分别为1640%和1471%),这使得MRC-SMP能够在大变形下多次重新编程和配置(图1a)。MRC-SMP的高可打印性(粘度:0.2 Pa·s,凝胶化时间:每100μm 4.5 s)使其可适用于高精度DLP打印机——摩方精密 microArch® S240 (精度:10μm),可以打印出高复杂度高精度的可重构形状记忆三维晶格结构(图1b-d)。MRC-SMP还表现出优异的可焊性,因此单独印刷的零件可以在热处理后合并为一个完整的零件(图1e)。此外,由于MRC-SMP具有高的玻璃化转变温度Tg(75°C)和高的室温模量(1.06 GPa),因此印刷SMP结构可以在室温下固定其临时形状,并承受重载(图1e)。图1. MRC-SMP优异的高力学性能和可打印性展示。a、 MEC-SMP样品的高拉伸性能和形状记忆性能展示。b、摩方精密 microArch® S240打印的MRC-SMP晶格结构。c、长方体MRC-SMP晶格结构的大变形和形状记忆循环。d、 重新配置成弧形的MRC-SMP晶格结构的大变形和形状记忆循环。e、 一种SM夹具,通过将三个由摩方精密 microArch® S240打印的MRC-SMP晶格结构重新配置并焊接到打印的圆形底座上而制造的一种形状记忆夹具。图中比例尺:5mm。可打印MCR-SMP卓越的可重新配置性和可焊接性彻底改变形状记忆三维结构的制造方式。研究团队在自制的多材料3D打印机Multi Mater C1上打印平面Miura折纸图案来制造形状记忆折纸结构(图2a-c)。MRC-SMP的显著可变形性允许将一张打印的折纸薄片重新配置为多个SM折纸配置(图2c-f)。MRC-SMP的高Tg确保了3D折纸结构在室温下具有高刚度,并且可以支撑重负载(图2g-h)。多材料和重新配置的结合能够以任何配置制造3D折纸结构,并大大缩短了制造复杂SMP折纸结构的时间(图2i)。图2. 多材料可重构形状记忆折纸。a-b,多材料打印可重构SM折纸的示意图。c-f,可重构SM折纸的多重配置和SM行为的演示。g、 重新配置的3D折纸承载重物的照片。h、 在25°C下对不同配置的折纸结构进行的压缩试验。i、 通过不同的制造方法制造各种3D折纸配置所需的时间。本研究成果以“Reconfigurable 4D printing via mechanically robust covalent adaptable network shape memory polymer”发表在国际知名期刊《ScienceAdvances》上,南方科技大学研究助理教授李红庚(现任大湾区大学助理教授)为论文第一作者,南方科技大学葛锜教授为通讯作者。本研究得到了国家自然科学基金、广东省珠江人才计划、广东省自然科学基金和深圳市科技创新委员会的支持。

应用实例

2024.05.30

港科大最新研究!当机器人按照上苍蝇复眼会怎样?!

香港科技大学范智勇教授团队开发了一种独特的针孔复眼(PHCE)系统,该系统集成了3D打印的蜂窝状光学结构和半球形的全固态高密度钙钛矿纳米线(PNA)光电探测器阵列。这种无透镜的针孔结构(PHA)可以根据底层图像传感器的需求,设计制备出任意布局。该团队通过对比光学模拟和成像结果验证了该视觉系统的关键特性和功能,包括超宽视场、精准的目标定位和运动跟踪能力。该团队进一步演示了PHCE系统在无人机上的功能集成,使其能够跟踪地面上的四足机器人。这种独特的空中-地面协作机器人互动展示了PHCE系统在未来多机器人协作和机器人群技术开发中的潜在应用前景。研究者受到昆虫(例如强盗蝇)复眼独特几何结构的启发,设计了蜂窝状的针孔阵列,通过光学计算和模拟仿真优化了有限像素数下的接受角Δφ、小眼间角ΔΦ,确定了对应针孔的最佳长度直径比,可以消除相邻小眼之间的盲区并减少光效率损失。研究者使用摩方精密面投影微立体(PμSL)光刻3D打印技术(nanoArch® P140,精度:10 μm)制备了对应几何参数的针孔阵列,并与半球壳的凸面共形,原料为光敏树脂。由于高打印自由度和简化的结构,上述针孔阵列的参数可以很好地设计和协调,以满足对应图像传感器的需求。

应用实例

2024.05.24

《PNAS》:基于极小曲面的微纳米点阵材料的优异力学性能,摩方精密推进超材料研发进程

清华大学李晓雁教授课题组采用面投影微立体光刻设备(microArch® S240,精度:10 μm)制备了特征尺寸在几十至几百微米量级的多种桁架、平板和曲壳微米点阵材料。(点击链接查看详细内容)。该团队通过原位压缩力学测试研究并对比了多种不同结构的微米点阵材料的变形特点和力学性能。该研究表明,基于极小曲面的点阵材料能够表现出比传统的桁架点阵材料更为优异的力学性能,同时其光滑、连续、无自相交区域的特点使得其在构筑结构功能一体化的微纳米材料方面具有重要的应用前景。

应用实例

2024.05.24

北京理工大学何汝杰教授课题组《JAC》:先驱体转化SiOC陶瓷微点阵结构3D打印精度与力学性能

研究背景与意义:先驱体转化SiOC陶瓷材料 (PDC-SiOC) 具有优异的抗氧化性、热稳定性和力学性能,有望作为航空航天耐高温材料。近年来,具有人工设计周期性结构的点阵结构因其表现出优异的力学性能,已成为结构力学领域的研究热点之一。然而,传统机械加工的方法难以实现复杂结构PDC-SiOC点阵结构的高精度制造。3D打印能够实现复杂结构陶瓷材料的一体化成型,尤其在复杂陶瓷点阵结构制造领域表现出巨大优势。其中,光固化3D打印技术具有最高的成型精度,适用于PDC-SiOC点阵结构的高精度制造。然而,一方面,目前关于PDC-SiOC陶瓷点阵结构3D打印的制造精度及力学性能仍存在较多限制,结构特征尺寸一般为几百微米。随着PDC-SiOC结构及器件向着小型化发展,特征尺寸通常要小于100 μm甚至更小,虽然目前已有双光子光刻等极高精度3D打印方法,但制备的材料尺寸过小、难以应用。另一方面,目前报道的PDC-SiOC点阵结构力学性能较弱,压缩强度一般仅有0.06 ~ 10MPa。亟待开展高精度、高强度3D打印PDC-SiOC微点阵结构研究。研究内容:针对以上问题,北京理工大学何汝杰教授使用摩方精密面投影微立体 (PμSL) 光刻3D打印技术(nanoArch® S140pro,精度:10 μm)对PDC-SiOC微点阵结构的高精度制造工艺进行了研究。采用苏丹III作为光吸收剂,对光敏前驱体进行改性并光固化3D打印。结果表明,苏丹III对改性光敏树脂的紫外光吸收、流变行为与光固化过程影响显著。通过精准控制苏丹III加入量,能够有效调控PDC-SiOC微点阵的3D打印精度。随着苏丹III含量从0.02 wt.%增加到0.06 wt.%,3D打印精度由180%提高到12.5%,实现了PDC-SiOC微点阵的高精度制造。图1 (a) 环氧硅酮树脂改性过程及 (b) PDC-SiOC微点阵3D打印工艺。图2 (a) 点阵结构模型;(b) 模型切片图片;苏丹III添加量为 (c) 0%、(d) 0.02%、(e) 0.04%、(f) 0.06%、(g) 0.08时微点阵结构x-y及x-z平面显微图像;(h) 不同苏丹III添加量下打印精度变化;(i-l) 不同苏丹III添加量下微点阵SEM图像及(m) 添加量为0.06%时微点阵EDS图像。图3 不同苏丹III添加量下改性光敏树脂 (a)紫外吸收光谱图及 (b) 光固化机理;(c) 改性光敏树脂流变行为及 (d) 不同粘度下光固化机理。此外,研究人员还通过XRD、拉曼、FTIR等表征手段对先驱体聚合物的陶瓷化过程进行了研究。热解过程中先驱体聚合物表面的C-H、C=O、Si-O等有机官能团发生断裂,并以小分子气体的形式释放出,造成聚合物热解质量损失 (约73.5%) 及体积收缩 (约43%) 。热解后所得PDC-SiOC微点阵结构未被破坏,且结构为无定型。图4 热解前后 (a) XRD及 (b) 拉曼光谱图;(c) 先驱体聚合物TG-DTG图像;(d) 热解前后FT-IR图像;添加量为0.06%和0.08%时 (e) 热解后PDC-SiOC显微图像及 (f) 热解收缩率。研究人员进一步尝试对PDC-SiOC微点阵在更小的尺度进行高精度制造,成功制备出具有不同特征尺寸的微点阵结构。获得的PDC-SiOC微点阵结构杆径尺寸52 ~ 220 μm。此外,研究人员对PDC-SiOC微点阵结构在小尺度下的力学强度增强效应进行了研究。结果表明,随着杆径从220 μm减小到52 μm,微点阵结构的抗压强度从8 MPa提高到31 MPa。Branicio等人的报道指出,脆性陶瓷在破坏过程中形成的微裂纹产生于位错线性成核。尺寸效应可能是由于破坏过程中材料微区出现的“位错饥饿”现象。与更大杆径尺寸相比,位错在小尺寸桁架移动和繁衍过程中更趋向于材料表面,从而使PDC-SiOC微点阵力学强度增加。图5 不同特征尺寸下PDC-SiOC微点阵结构 (a-e) 模型图;(f-o) 宏观照片;(p-f) 显微图像。图6 不同特征尺寸下PDC-SiOC微点阵结构扫描电镜图。图7 不同特征尺寸先驱体聚合物热解收缩率、热解前后表观密度及热解后相对密度。图8 (a) 压缩应力-应变曲线;(b) 原位压缩实验; (c) 压缩后微点阵结构扫描电镜图;(d) 小尺度力学强度增强原理图。与现有报道相比,研究团队制备的3D打印PDC-SiOC微点阵结构打印精度更高、力学性能更好,为高精度、高强度PDC-SiOC的研究工作提供了指导和启发,并为PDC-SiOC微型器件的应用提供制造基础。图9 点阵结构相对密度-压缩强度及杆径-压缩强度Ashby图。

应用实例

2024.05.24

香港科技大学范智勇教授《Science Robotics》:基于半球形纳米线阵列的超宽视场针孔复眼

自然界中的生物视觉系统因其多样化的功能引人注目,尤其是具有非凡视觉能力的复眼系统,如宽阔的视场角和强大的运动跟踪能力,在机器视觉的实际应用中具有巨大的潜力。当前制造复眼系统通常采用可变形电子技术,然而该技术面临包括全局形变的复杂性、应力稳定性、几何限制、以及光学组件与探测器单元之间不匹配的潜在问题,因此开发一体化的人工复眼系统并将其集成到自主平台如机器人或无人机上实现特定的视觉功能极具挑战性。近期,香港科技大学范智勇教授团队开发了一种独特的针孔复眼(PHCE)系统,该系统集成了3D打印的蜂窝状光学结构和半球形的全固态高密度钙钛矿纳米线(PNA)光电探测器阵列。这种无透镜的针孔结构(PHA)可以根据底层图像传感器的需求,设计制备出任意布局。该团队通过对比光学模拟和成像结果验证了该视觉系统的关键特性和功能,包括超宽视场、精准的目标定位和运动跟踪能力。该团队进一步演示了PHCE系统在无人机上的功能集成,使其能够跟踪地面上的四足机器人。这种独特的空中-地面协作机器人互动展示了PHCE系统在未来多机器人协作和机器人群技术开发中的潜在应用前景。相关工作以“An ultrawide field-of-view pinhole compound eye using hemispherical nanowire array for robot vision”为题发表于国际顶级学术期刊《Science Robotics》,并当选当月封面文章。香港科技大学电子与计算机工程系博士后周宇、孙梽博和博士研究生丁宇宬为文章共同第一作者,香港科技大学电子与计算机工程系讲席教授范智勇为文章通讯作者。该工作得到了香港研究资助局项目、粤港澳联合实验室项目、科学探索奖以及中银香港科技创新奖的大力支持。图1. PHCE及其集成组件的示意图和图像。(A)PHCE整体结构示意图。(B)PHCE系统的剖视图。(C)半球形多孔氧化铝膜中钙钛矿纳米线的横截面电镜图像和宏观照片。(D)强盗蝇眼的宏观照片。(E)安装在印刷电路板上的PHCE系统的侧视照片。(F)相邻针孔单元的横截面示意图。(G) 不同小眼间角下针孔像素数量与整体视场角的相对关系。(H)单个针孔和针孔阵列角度依赖的归一化强度分布。要点:研究者受到昆虫(例如强盗蝇)复眼独特几何结构的启发,设计了蜂窝状的针孔阵列,通过光学计算和模拟仿真优化了有限像素数下的接受角Δφ、小眼间角ΔΦ,确定了对应针孔的最佳长度直径比,可以消除相邻小眼之间的盲区并减少光效率损失。研究者使用摩方精密面投影微立体(PμSL)光刻3D打印技术(nanoArch® P140,精度:10 μm)制备了对应几何参数的针孔阵列,并与半球壳的凸面共形,原料为光敏树脂。由于高打印自由度和简化的结构,上述针孔阵列的参数可以很好地设计和协调,以满足对应图像传感器的需求。图2. 钙钛矿纳米线光电探测器的性能。(A)多孔氧化铝膜中不同钙钛矿纳米线的光致发光光谱。(B)不同组分钙钛矿纳米线的X射线衍射光谱。(C)单像素纳米线光电探测器各部分能级关系。(D)单像素探测器的时间依赖开/关光响应。(E)单像素光电探测器的光强依赖光电流密度和响应度。(F)未封装单像素光电探测器的工作稳定性。要点:钙钛矿纳米线是在氧化铝纳米通道内以铅纳米线作为前驱体之一生长的,未完全消耗的铅与钙钛矿形成接触,在除去基底后,通过热蒸镀的方式制备凹球面的铟电极,研究者使用PμSL 3D打印技术制备了与半球壳凹面共形的掩膜版。氧化铝多孔结构为钙钛矿材料提供了天然的封装,提高了器件的工作性能。通过调节钙钛矿中的卤素和金属元素,PNA光电探测器感测区域可以从可见拓展到近红外。在弱光下,探测器的响应度可达到2.9 A/W,随着光照强度的增加,光电流增加而响应度减小。此外,未封装的器件在常规环境中存放 10 个月后,仍保持超过80%的原始光电流数值。图3. PHCE系统的成像能力。(A)测量装置的示意图。(B)半球形成像系统的视场测量。(C)捕获的圆形图案图像。(D)捕获的十字和三角图案图像。要点:研究者集成了由121个小眼构成的单目复眼系统,半球形的几何结构赋予整个系统约140°的大视场角。PHCE系统能够在广阔的视场内成像。由聚光灯生成的圆形、十字和三角图案可以被PHCE系统准确捕获并成功识别。上述实验成像效果与模拟仿真结果高度吻合。图4. PHCE系统的目标定位和无人机运动跟踪。(A)包含两个 PHCE 的双目视觉系统照片。(B)双目视觉系统的工作原理。(C)在3D空间中移动点光源的空间位置和生成的移动路径。(D)无人机运动跟踪的工作原理。(E)安装在无人机上的PHCE照片。(F)-(H)光源和无人机移动期间的相对位置照片以及由无人机上的PHCE捕获的相应图像。要点:为了精确定位点光源在3D空间移动轨迹,研究者进一步构建了基于一对PHCE(分别具有37个小眼)的双目复眼系统,其中两个PHCE之间的角度固定为60°,整体视场增加到220°。双目系统可将整个区域可以分为三部分,即盲区、运动检测区和精确定位区。双目复眼捕获运动光源在不同位置的图像,研究者可以解析这些位置并重建其在3D空间中的运动轨迹。由于PHCE系统出色的角度选择性,研究者进一步将其安装在可编程的商业无人机上,实现了对载有点光源的四足机器人运动的实时定位和追踪。综上所述,受到昆虫复眼系统的启发,研究者设计并制造了一种独特的针孔复眼系统,具有广阔的视场、精确的目标定位和动态运动跟踪能力。通过进一步改进和技术升级,包括缩小设备尺寸、增加小眼数量、提高成像分辨率和响应速度,该复眼系统有望实现在智能光电传感和机器人技术领域的广泛应用。

应用实例

2024.05.22

《ACS AMI》:基于小球藻细胞的磁性复合多聚体微机器人,摩方助力突破性靶向抗癌治疗技术研发

北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于摩方精密面投影微立体光刻(PμSL)技术(nanoArch® S140,精度:10 μm)设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验。

应用实例

2024.05.20

苏州大学严锋教授团队《Advanced Materials》:小球藻抗菌微针治疗糖尿病创面

慢性创面是一种发病率很高的流行病,影响着超过1%的人们,已经成为医疗保健系统中的一大挑战。糖尿病创面是影响许多糖尿病患者的典型慢性创面,由于其愈合困难和复发率高。虽然已经开发了涉及生化(如生长因子)和生物物理(如负压疗法和高压氧疗法)的糖尿病伤口治疗的新疗法,但慢性创面的治疗效果仍然不令人满意。此外,细菌感染在慢性糖尿病创面中普遍存在,这会加剧伤口的缺氧和营养缺乏。更重要的是,糖尿病创面的高糖微环境会进一步增加微生物感染的可能性,并导致血管生成受损和巨噬细胞功能障碍,进一步延缓伤口的愈合过程。因此,有效清除微生物和调节创面微环境是治疗慢性糖尿病创面的关键。针对上述问题,苏州大学严锋教授团队从缓解缺氧和抗感染两方面出发,构建了负载小球藻的聚离子液体微针(PILMN-Chl),用于对耐甲氧西林金黄色葡萄球菌(MRSA)感染的糖尿病慢性创面进行微针释氧和抗菌的治疗。PILMN-Chl由于负载小球藻,光照下进行了光合作用,可以稳定持续产氧30h以上。通过结合微针的屏障穿透能力、小球藻持续充足的供氧能力和PIL的杀菌活性,PILMN-Chl可以通过局部靶向杀菌和伤口深处的乏氧缓解,来加速体内慢性糖尿病伤口的生长。因此,自身氧气产生的微针可能为治疗慢性、缺氧和感染的糖尿病创面提供一种有前途的、简便的治疗策略。图1.小球藻负载PIL基微针(PILMN-Ch1)的合成示意图。PILMN-Chl可通过光合作用持续向创面提供充足的氧气,并通过PIL发挥杀菌作用,促进创面愈合。图1展示了PILMN-Chl的合成和应用。在紫外光照射下,单体与小球藻进行光交联,制得PILMN-Chl。微针上装有光合作用的小球藻,能够通过光合作用持续稳定地产生氧气。这种创新的方法促进了产生的氧气直接输送到伤口,有效地解决了经皮氧气输送的挑战。由此产生的PILMN-Chl不断产生氧气并将氧气输送到伤口部位,并通过与膜损伤相关的杀菌机制杀灭细菌,从而缓解慢性糖尿病伤口的缺氧和促进伤口愈合。图2. a)观察逐渐放大的PILMN-Chl。b)PILMN-Chl的扫描电子显微镜图像和c)用EDS表征的PILMN-Chl中相应的元素图。d)PILMN-Chl的溶胀率。e)PILMN和PILMN-Chl在30℃时的失水率。f)PILMN和PILMN-Chl在不同频率扫描下37℃时的储能模量和损耗模量。g)PILMN-Chl的压缩应力应变曲线。在50%压缩应变下出现的压缩曲线。h)PILMN和PILMN-Chl的拉伸应力-应变曲线。i)记录了PILMN和PILMN-Chl在穿透六层封口膜过程中的力-位移曲线。j)阳离子桃红FG标记的PILMN的图像和插入染色针尖后留在皮肤内的相应针孔。k)活体小鼠皮肤表面的PILMN-Chl图像。去除PILMN-Chl后,皮肤内的压痕在10分钟内迅速恢复。研究者对微针进行了测试与表征,首先对微针的物理性能进行了表征,证明了微针的力学性能的满足要求,特别是透皮方面的性能(图2)。接下来是释氧及抗菌性能的探究。在产氧方面,通过紫外及荧光等测试证明了小球藻在微针上的存活及产氧性能(图3)。图四是通过涂板法、活死染色及SEM,从多方面证明了PILMN-Chl的抗菌性能,并且对其破坏细菌细胞膜的机理进行了研究,表明该微针具有光谱的杀菌性。图3. a)不同浓度的小球藻悬浊液的UV-Vis光谱。b)对应的不同吸光度和浓度下的小球藻悬浊液的标准曲线。c)不同浓度的小球藻在光照(5500lux)下产生的溶解氧。d)不同时间(0h、6h、12h、24h)提取的PILMN-Chl中叶绿素的OD值和e)UV-Vis光谱。f)PILMN-Chl在光的照射下在PBS中产生的溶解氧。g)氧探针[Ru(dpp)3]Cl2在不同处理后的MRSA菌液中的荧光光谱。以PBS处理的细菌作为对照组。h)用[Ru(dpp)3]Cl2染色的MRSA细菌经不同处理后的荧光图像。图4.a)MRSA, b)S. aureus and c)E. coli经不同处理后的相对细菌存活率。b)与PILMN或PILMN-Chl共培养4h后,MRSA的荧光染色和扫描电子显微镜图像。e)通过DPH的荧光光谱来分析MRSA细胞膜的流动性。f)通过CFDA-SE的荧光光谱来分析不同处理后MRSA的细胞膜渗透性。g)PILMN和PILMN-Chl处理的MRSA的Zeta电位。生物材料的生物相容性是影响其在体内实际应用的关键因素。因此,研究者们通过溶血和细胞毒性实验评价了PILMN和PILMN-Chl的生物相容性。同时,由于氧气的产生可以促进细胞的增殖和迁移,并且小球藻可以产生抗炎的物质。基于这些优异的体外测试数据,如超强的体外抗菌活性、产氧活性、良好的生物相容性、使用方便和无痛特性,研究者进一步评价其对体内MRSA感染的糖尿病创面的治疗效果,并进行了切片染色,进一步研究分析其在糖尿病伤口处的应用潜力。图5.a)PILMN和PILMN-Chl与红细胞孵育4h后的红细胞溶血活性,分别以PBS或Triton X-100处理的红细胞为阴性对照和阳性对照。b)PILMN和PILMN-Chl处理的L929细胞24h后的细胞存活率,并以PBS处理的L929细胞为对照组。c)不同处理的L929细胞24h增殖图像。d)L929细胞迁移的图像。PILMN和PILMN-Chl对LPS诱导的RAW 264.7细胞炎症反应的影响。用酶联免疫试剂盒检测促炎细胞因子IL-6和IL-1β的释放。图6.a)活体研究流程图。b)伤口闭合9天的图像。c)相应的伤口大小图和d)伤口愈合过程中伤口面积的定量统计分析。e)对治疗后第5天小鼠伤口组织中分离的细菌菌落进行统计分析。用试剂盒检测IL-6和g)IL-1β的释放。该研究展示了一种双管齐下治疗糖尿病创面耐药细菌感染、消除细菌和缓解缺氧的综合疗法。该微针给药系统兼具抗菌和产氧功能,有望成为动物和人类慢性创面感染治疗策略的候选材料,在相关生物医学领域具有广阔的应用前景。相关成果以“Chlorella-Loaded Antibacterial Microneedles for Microacupuncture Oxygen Therapy of Diabetic Bacterial Infected Wounds”为题发表于《Advanced Materials》上。文章的第一作者为苏州大学硕士研究生高淑娜,通讯作者为郭江娜副教授和严锋教授。/doi/10.1002/adma.202307585来源:高分子科技

应用实例

2024.05.20

复合精度光固化技术助力超材料产业化进程

5月10~12日,备受瞩目的“第三届全国超材料大会”在浙江省桐乡市乌镇隆重召开,吸引了众多的业界精英和学者专家的参会。其中,中国科学院院士、中国工程院院士以及在超材料领域有影响力的专家们现场分享行业现状以及发展趋势,并面对面沟通交流,挖掘超材料领域的技术创新以及应用空间,促进超材料技术成果产业化发展。摩方精密携多款样件及最新技术报告出席会议。会议期间,摩方精密展位吸引了众多专家学者就创新性、自主化、国产化的超高精密解决方案展开洽谈和交流,共探超材料领域的未来发展方向,为不同领域的精密制造难题提供了有效的解决之道。微纳3D打印技术赋能,推动超材料研发应用转化会议上,摩方精密副总裁周建林先生带来了《复合精度微纳光固化增材制造技术及其应用》主题报告,就复合精度光固化技术、Dual Series设备等新技术展开分享,重点介绍了摩方精密在超材料与太赫兹等尖端领域的典型应用案例。在技术方面,摩方精密不断创新微纳级超高精密3D打印技术和装备制造,突破增材制造“卡脖子”难题,将打印精度、系统硬件、材料及成型工艺结合于一体发展。最新发布的复合精度光固化技术和D系列设备,有效解决增材制造中高精度和大幅面的固有矛盾,在打印速度、质量和便捷性上进行了大幅提升。在打印尺寸上,也是首次实现2μm到100mm*100mm*50mm的跨尺度加工突破,将为精密电子、生物医疗、高端通讯、半导体等高精密行业和科研创新带来高速灵活、降本增效的全新解决方案。在创新应用领域,摩方精密锚定全球高端制造与精密制造难题,持续为工业和科研客户提供技术支持,助力各行业应用取得开创性成果。超材料作为一门前沿的交叉学科,是诸多颠覆性技术的源头,在电磁、声学、力学、热学和量子等领域有非常广阔的应用空间。多年来,摩方精密辅助了多个超材料课题组进行结构研究和应用探索,助力打通科技成果转换的新路径,深化推动产学研合作新范式。可重构齿轮超材料国防科技大学智能科学学院方鑫、温激鸿等联合香港理工大学成利教授和德国Fraunhofer研究院,提出了基于齿轮/齿轮组构型的力学超材料设计方法,实现了金属基材料的大范围、连续、快速调节。该团队利用摩方精密nanoArch® S130 (精度:2 μm)制备了5x6太极齿轮(24个齿,单个齿半径60μm,预留的齿轮间隙32μm)。面投影微立体光刻(PµSL)技术具有高精度、跨尺度打印的特点,可助力实现集成化超材料一体化制造和集成驱动,为设计智能材料与结构开辟新道路。022-01269-3仿生交叉层状超材料香港城市大学机械工程系的陆洋教授提出了一种独特的机械超材料结构设计长程周期性概念:即在保留整体结构周期性的基础上引入了局域特殊性,从而同时实现机械超材料在受力变形过程中剪切带均匀分布与尺寸缩减的目的。通过利用摩方精密开发的基于面投影微立体光刻(PμSL)3D打印技术(nanoArch® P130, S140超高精度3D打印系统),实现了仿生机械超材料单元在微米尺度的高分辨制备。通过使用超高精度PμSL技术可制备参数可调的交叉多层结构,进一步推动功能性吸能超韧材料的研究和应用,为超材料领域提供了新的研究方向。2c12297板基-桁架复合分级结构清华大学李晓雁教授课题组采用桁架和平板单胞作为基本单元构筑设计了多种新型的混合多层级点阵结构,并采用摩方精密3D打印设备microArch® S240(精度:10 μm)制备了相应的多层级微米点阵材料。相比于单一层级的平板点阵,桁架-平板混合多层级点阵具有密度更低、易于制备的优点;并且这种混合多层级的设计策略可以扩展至不同尺度和不同组分材料,在构筑轻质且具有优异力学性能的新型结构材料方面具有重要的应用前景。因此,通过利用高精度PμSL技术结合分级结构设计可制备轻量化且具备优异力学性能的超材料。2206024太赫兹宽带/多带超材料西安交通大学张留洋老师课题组利用摩方精密提供的nanoArch® S130(精度:2 μm)打印系统,提出了一种将微纳3D打印技术与微流道液态金属填充技术相结合的微结构制备工艺,作为概念验证,通过所提出的制备策略制备了两种具有宽带和多频段特性的典型超材料,实验获得了与理论仿真吻合较好的响应光谱。采用PµSL技术可打印超高精密的微流道部件,结合液态金属填充技术可便捷有效制备高吸收率的太赫兹吸波器,在隐身、传感与探测等领域具有广泛的应用前景。23.3278945复合精度光固化技术突破,共绘产学研发展蓝图会议期间,摩方精密以复合精度光固化3D打印技术、双精度面投影光固化3D打印系统,和多元化结构样件吸引了众多行业专家学者与现场专业技术人员交流互动,深入探讨了微纳3D打印技术在多个行业和领域的跨学科精密制造解决方案。大会顾问、大会主席、中国工程院周济院士,大会主席、功能复合材料与结构研究所所长彭华新教授,学术委员会委员、教育部多功能材料与结构重点实验室主任徐卓教授,以及学术委员会委员、南京大学固体微结构物理国家重点实验室主任陈延峰教授等一行专家学者,亲临摩方精密展台,就微纳3D打印技术的研发进程、核心优势及未来趋势进行了深入了解。他们对此项技术在中国制造业升级中所能发挥的推动作用抱以厚望,并表达了对微纳3D打印未来发展的热切期待。展望未来,摩方精密将继续秉持自主研发方针,加强“产、学、研”紧密合作,推动技术创新和基础与应用研究,不断提升我国制造业的转型升级能力、本土化替代水平和产业链的自主可控性,为我国制造业技术进步和产业升级贡献中坚力量。

企业动态

2024.05.17

赋能新质生产力,带动产业发展!摩方两款产品入选重庆2024首台(套)重大技术装备

近日,以“向‘新’而行,创新不止”为主题的2024重庆市首台(套)重大技术装备新品发布会顺利举行。摩方精密的两台(套)设备microArch® S230和microArch® S240入选第二批“69件新产品”名单,并获正式授牌。重庆首台(套)重大技术装备是指经过创新研制,品种、规格或技术参数等有重大突破的装备产品,具有高新技术突破、带动产业发展、市场潜力较大等特点。最终入选名单是根据《重庆市首台(套)重大技术装备认定管理办法》(渝经信规范〔2022〕5号)规定,经市经济信息委组织专家评审而来。图:摩方两套设备入选重庆首台(套)重大技术装备此次发布会上,包括摩方在内的45家研发企业自主研制的69个产品被认定为第二批重庆市首台(套)重大技术装备产品,囊括了智能制造装备、节能环保装备、动力电气装备领域,其中多款重大技术装备产品解决了行业技术“卡脖子”问题,填补了国内空白。图:摩方代表(左二)在2024重庆首台(套)重大技术装备新产品授牌仪式现场接受表彰摩方精密作为国产精密制造工业母机,是一家典型的“从0到1”创新型硬科技企业,为全球首家推出2微米级增材制造精度并稳定应用与工业界的精密增材制造解决方案供应商。其精密增材制造设备采用面投影微立体光刻(Projection Micro Stereolithography, PμSL)技术,利用这一颠覆性技术,摩方赋能各行业精密制造工业企业应用创新和科研创新,帮助推动更多“从0到1”的同时,也在逐步成就自身的“从1到N”。此次入选的摩方第二代2μm 精度3D打印系统microArch® S230,在产品设计上,兼顾用户对打印精度与打印速度的更高要求,在实现2μm的超高精度的基础上,提升了打印速度和打印体积。为了满足客户在精密样件加工尺寸、加工效率及加工材料等方面的需求,S230具备更大的打印体积(50mm×50mm×50mm),打印速度提升最高5倍,打印材料可兼容树脂和陶瓷材料。microArch® S230还配置了激光测距系统,便于打印平台和离型膜的调平;同时,配置了滚刀涂层系统后,加快了液面流平时间,拓宽了支持打印的树脂种类,可支持粘度范围(30~5000cps@25℃)的耐候性工程光敏树脂、韧性树脂、生物兼容性树脂和陶瓷浆料(氧化铝、钛酸镁)等功能性复合材料,材料的多元化也拓展了新的应用领域,如毫米微波应用(5G天线,波导,太赫兹,雷达等电子元器件)、新能源器件、精密零件等,极大满足了工业领域制造对终端产品功能性和耐用性的需求,也为科研领域开发新型功能性复合材料提供支持。摩方入选的另一套设备microArch® S240在保持了第一代S140打印机在高精密方面的特点——10μm打印精度,±25μm加工公差的同时,进一步满足了客户在精密结构件加工尺寸、加工效率及加工材料等方面的需求。S240具备更大的打印体积(100mm×100mm×75mm),更高得印速度——提升最高10倍以上,能够生产更大尺寸的零部件,或实现更大规模的小部件产量。在打印材料方面,S240支持高粘度陶瓷(≤20000cps)和耐候性工程光敏树脂、磁性光敏树脂等功能性复合材料,极大地满足了工业领域制造对产品耐用的需求,也为科研领域开发新型功能性复合材料提供支持。图:摩方设备microArch® S240亮相重庆首台(套)重大技术装备成果展事实上,一直以来,摩方持续加大研发投入,不断提升产品竞争力。2024年5月初,摩方还正式发布了复合精度光固化3D打印技术,面向全球市场推出首创Dual Series设备:microArch® D0210和microArch® D1025,在速度、质量和便捷性上进行了大幅提升,能有效解决增材制造中超高精度和大幅面的固有矛盾,再次实现工业级3D打印技术新突破。近年来,为加快发展和培育新质生产力,进一步支持重庆市首台(套)重大技术装备推广应用,重庆市经济信息委、市发展改革委、市财政局、市国资委、国家金融监督管理总局重庆监管局联合制定政策,为入选重庆首台(套)重大技术装备的企业送上“政策大礼包”,包括资金奖励、市场推广、金融扶持等多个类别。“首台(套)重大技术装备的创新和推广,不仅是发展新质生产力的体现,也是产业升级和科技进步的重要支撑,它们对于产业链上下游将形成拉动效应。”重庆市经信委负责人表示。摩方精密两款产品同时被认定为重庆市首台(套)重大技术装备产品,彰显了摩方精密制造装备强劲的市场竞争力、领先的技术优势和强大原创研发实力。未来,摩方将一如既往,保持原创研发精神,加大创新投入,增强产业链自主可控,不断提升产品核心竞争力,更好地服务精密制造产业升级,赋能新质生产力应用创新,为地方产业和经济发展注入活力。

企业动态

2024.05.15

武汉大学药学院黎威教授课题组:具有长效抗菌效果的活性益生菌微针贴片用于感染创面快速愈合

伤口感染是指伤口在愈合过程中仍被细菌或其他微生物感染的疾病。与急性伤口不同,慢性感染性伤口通常经历较长时间的愈合过程或无法完全愈合,给患者带来了严重的后果和沉重的负担。传统上,感染伤口的治疗方法主要包括定期伤口清创、口服抗生素、抗菌敷料等。但是这些方法都有一定的局限,首先,细菌在伤口部位产生的生物膜形成物理屏障,限制抗菌剂或生物大分子渗透到深部组织,从而显著降低药物递送效率;其次,抗生素的误用和过度使用是增加抗生素耐药性风险的主要驱动因素,抗生素耐药性已成为严重的全球健康问题;此外,频繁更换敷料,可能会导致伤口疼痛和继发性损伤,从而显著降低患者的依从性。因此,非常需要研发一种新的伤口愈合治疗策略。基于此,武汉大学药学院黎威教授团队设计开发了一种具有长效抗菌效果的活性益生菌微针贴片,用于治疗慢性感染伤口。该微针贴片是利用摩方精密 microArch® S240 (精度:10μm)3D打印设备加工模具后经PDMS翻模制备而成,相关研究成果以“Accelerated infected wound healing by probiotic-based living microneedles with long-acting antibacterial effect”为题发表在期刊《Bioactive Materials》上。武汉大学药学院硕士研究生靳银丽、武汉大学中南医院药剂科卢云、武汉大学药学院博士研究生江雪为共同第一作者,武汉大学药学院黎威教授、武汉大学中南医院整形美容科郭亮主任医师为共同通讯作者。该微针贴片(5% GL MN)由聚乙烯醇(PVA)、蔗糖、5%甘油和罗伊氏乳杆菌制成。其中,PVA-蔗糖基质为5% GL MN提供足够的机械强度,促进5% GL MN在插入皮肤后快速溶解,从而实现罗伊氏乳杆菌的快速递送;罗伊氏乳杆菌可以代谢甘油产生具有抗菌作用的罗氏菌素,从而在慢性感染伤口处实现抗菌、减少炎症、促进伤口愈合的作用。值得注意的是,在5% GL MN中加入的甘油不仅不影响罗伊氏乳杆菌的存活,而且还为罗伊氏乳杆菌持续产生罗氏菌素提供了充分来源,从而在伤口深处实现长效抗菌和抗炎作用。图1.用于慢性感染伤口愈合的5% GL MN示意图。(a)含有罗伊氏乳杆菌的5% GL MN示意图。(b)罗伊氏乳杆菌具有抗菌和抗炎作用的工作机理。(c)5% GL MN具有长效抗菌作用,可加速感染伤口愈合。首先采用真空辅助微成型方法制备GL MNs 贴片,并对微针的形貌、机械强度、穿刺皮肤的能力、溶解速度以及释药效率等进行一系列表征。图2. GL MNs贴片的制造和表征。(a)GL MNs贴片的制作过程示意图。(b)具有不同甘油浓度的GL MNs 贴片的代表性明场显微镜图像。(c)分别含有0%、2.5 %和5 %甘油的GL MNs 贴片的力-位移曲线。(d)GL MNs 贴片插入猪皮肤后的代表性明场和荧光显微镜图像。(e)施用GL MNs贴片后猪皮肤的组织学切片图像。(f)GL MNs贴片施用于猪皮肤后不同时间的代表性明场显微镜图像。(g)施用于猪皮后残留微针长度的定量分析。(h)GL MNs 贴片在PBS中的累积药物释放。每个点代表平均值±SD(n = 3),***P 制备的GL MNs 贴片结构为基底半径200 μm,高度850 μm,尖端半径∼10 μm的锥形,微针排列成10×10阵列,面积为7 mm×7 mm。罗伊氏乳杆菌以良好的形态封装在微针内。液相色谱-质谱联用(LC-MS)结果显示,罗伊氏乳杆菌产生的物质中存在与3-羟基丙醛(3-HPA)相对应的分子离子峰(M=74.0607),这表明罗伊氏乳杆菌具有产生抗菌物质罗氏菌素的能力。定量分析表明,5 % GL MNs 中的罗伊氏乳杆菌能产生更多的罗氏菌素。而罗氏菌素可以引起大肠杆菌、金黄色葡萄球菌和铜绿假单胞杆菌的显著形态变化,据推测,罗氏菌素通过抑制细菌核糖核苷酸还原酶的活性,而核糖核苷酸还原酶对DNA合成至关重要,从而实现广谱抗菌活性。图3. 5% GL MN 贴片的表征和罗氏菌素的抗菌作用。(a)5% GL MN 贴片(b)5% GL MN贴片单根针的横截面和(c)从5% GL MN 贴片中提取的罗伊氏乳杆菌的FESEM图像,(b)中的黄色箭头表示微针中存在罗伊氏乳杆菌。(d)对5% GL MN 贴片中罗伊氏乳杆菌产生的罗氏菌素的LC-MS分析。(e)含有不同浓度甘油的GL MNs贴片产生罗氏菌素的定量分析。(f)大肠杆菌、金黄色葡萄球菌和铜绿假单胞杆菌用罗氏菌素治疗后形态的代表性FESEM图像。每个点表示平均值± SD(n = 3),*P 随后,为了进一步评估5% GL MN贴片的抗菌效果,通过细菌的活死染色实验、平板涂布和抑菌圈实验来验证5% GL MN贴片具有良好的抗菌效果。此外,5 % GL MN贴片在体外也显示出有效的金黄色葡萄球菌生物膜清除率,这通常在有害细菌的耐药性中起关键作用。图4. 5% GL MN贴片在体外的抗菌作用。(a)金黄色葡萄球菌与GL MNs贴片孵育24小时后的活/死测定。(b)GL MNs贴片处理后大肠杆菌、金黄色葡萄球菌和铜绿假单胞杆菌的细菌死亡率。(c) LB琼脂平板的代表性明场图像,显示大肠杆菌、金黄色葡萄球菌和铜绿假单胞杆菌在与不同GL MNs贴片孵育24小时后的生长情况。(d)接受不同GL MNs贴片处理24小时后LB液体培养基中大肠杆菌,金黄色葡萄球菌或铜绿假单胞杆菌的OD600值。(e)不同GL MNs贴片处理24小时对大肠杆菌,金黄色葡萄球菌或铜绿假单胞杆菌抑制区的代表性明场图像。红色虚线圆圈表示对药敏片的位置,黑色虚线圆圈表示抑制区。(f)对大肠杆菌、金黄色葡萄球菌或铜绿假单胞杆菌的抑制区的直径。每个点代表平均值±SD(n = 3),***P 图5. 5% GL MN贴片体外的生物膜清除效果。(a)金黄色葡萄球菌接受不同治疗后的共聚焦激光扫描显微镜图像。绿色:活细菌。(b)不同微针处理后用结晶紫染色的生物膜图像。(c)金黄色葡萄球菌在(a)中接受不同处理后的生物膜清除率。(d)金黄色葡萄球菌在(b)中用不同微针处理后的生物膜清除率。每个点表示的平均值±SD(n = 3)。*P 紧接着,通过流式细胞术、实时定量聚合酶链反应(qPCR)、蛋白质印迹(WB)验证了基于罗伊氏乳杆菌GL MNs贴片的抗炎作用。图6. 体外GL MNs贴片的抗炎特性。(a)流式细胞术分析不同组的RAW 264.7的细胞内CD86的荧光强度。(b)不同组的流式细胞术直方图。(c)不同组的CD86相对表达水平。(d-e)不同处理后通过qPCR测定RAW 264.7细胞中IL-6和TNF-α的表达水平。(f-h)不同处理后通过蛋白质印迹法测定RAW 264.7细胞中IL-6和TNF-α的表达水平。每个点表示平均值±SD(n = 3),*P 基于GL MNs贴片的形态、皮肤穿透能力、机械强度、溶解速度和抗菌功效等方面的表征,确定5 % GL MN是递送罗伊氏乳杆菌到伤口处进行抗菌的最佳方案。之后,细胞活死染色实验及细胞溶血实验证明了5% GL MN贴片在体外具有优异的生物相容性。罗伊氏乳杆菌在5% GL MN贴片中的稳定性对于维持其抗菌活性至关重要,将5% GL MN贴片在4℃和25℃下分别保存,罗伊氏乳杆菌在室温下可在5% GL MN贴片中存活7天,超过40%的活菌保留在贴片中;将贴片置于4℃时,罗伊氏乳杆菌在60天后仍保持高活力(>80%),这表明罗伊氏乳杆菌在5% GL MN贴片中具有长期稳定性。图7. 5% GL MN贴片的细胞毒性和稳定性。(a)接受不同处理后NIH-3T3细胞的活/死测定。(b) 接受不同处理后 NIH-3T3 细胞和 HUVEC 细胞的活力分析。MRS琼脂平板的明场图像显示0%和5% GL MN贴片中罗伊氏乳杆菌在25℃(c)或4℃(e)下储存时细菌活力随时间变化情况。在25℃(d)或4℃(f)下储存不同时间后,0%和5% GL MN贴片中罗伊氏乳杆菌的菌落计数。每个点表示平均值±SD(n = 3)。然后,在小鼠身上建立全层皮肤伤口模型,将5% GL MN贴片施用于伤口处,可以看到5% GL MN贴片可以促进伤口的愈合,并且对伤口处的金黄色葡萄球菌有持续的抑制作用。图8. 5% GL MN贴片在体内的抗菌作用。(a)体内实验的时间方案。(b)小鼠接受不同治疗后第0、3、5、7、9天皮肤伤口的代表性图片。黑色虚线圆圈表示原始伤口区域(直径:1厘米)。(c)9天内不同组的伤口形态变化示意图。(d)不同组在第 0、3、5、7和9天从伤口组织中分离出的金黄色葡萄球菌菌落的代表性图像。(e)不同处理的小鼠皮肤伤口剩余面积比例-时间曲线。(f)不同组在第 0、3、5、7 和9天从伤口组织中分离的金黄色葡萄球菌菌落计数。(g)小鼠接受不同治疗后的体重变化。每个点表示平均值±SD(n = 7),*P 最后,对小鼠伤口处皮肤进行病理学切片染色,H&E、Masson、IL-6、CD31染色表明,5% GL MN贴片具有良好的促进伤口愈合、减少炎症反应、促进血管生成的作用。图9. 不同治疗后的组织再生、炎症反应和血管生成。第9天不同处理后(a)H&E染色(b)Masson染色和(c)IL-6免疫组化染色的代表性明场显微图像。(a)中的蓝色箭头表示伤口长度,黑色箭头表示伤口厚度。(d)在第9天不同治疗后用CD31(红色)和DAPI(蓝色)染色后伤口组织新生血管形成的免疫荧光图像。第9天不同治疗组的H&E染色显示的伤口长度(e)和伤口厚度(f)分析。(g)第9天不同治疗组的胶原蛋白体积分数(CVF)。(h)在第9天不同治疗组IL-6的阳性细胞数。(i)第9天不同治疗的CD31阳性细胞数。每个点表示平均值±SD(n = 7),*P 结论:综上,研究团队开发了一种新型且生物相容性良好的益生菌微针贴片,具有长效抗菌作用,可促进感染伤口的愈合。微针贴片为益生菌提供了良好的保护,在4℃下,它在微针贴片内保持高达80%的活力超过60天。插入皮肤后,微针贴片迅速溶解并实现益生菌在深层伤口组织中的快速递送,益生菌能够在伤口中存活约一周,并不断将共同递送的甘油转化为抗菌物质,从而在感染的伤口中实现长效抗菌作用。在金黄色葡萄球菌感染伤口的小鼠模型中,与对照组相比,一次施用益生菌微针贴剂在消除有害细菌和促进伤口闭合方面表现出更好的效果,同时减少炎症、增强组织再生和血管生成,这对慢性感染伤口的治疗具有巨大潜力。

应用实例

2024.05.15

大咖云集!摩方牵头“十四五”国家重点研发计划项目正式启动!实施方案论证会在京召开

近日,由摩方精密牵头的国家“十四五”重点研发计划重点专项“极薄强韧陶瓷义齿微立体光固化增材制造技术与装备”项目实施方案论证会及项目启动大会在北京大学口腔医院召开。该国家重点研发计划项目于2023年12月获科技部批准立项,由摩方牵头,联合北京大学口腔医院等9家单位,以摩方精密独有的“面投影微立体光刻技术”为切入点,全面系统研究极薄强韧陶瓷义齿增材制造系统共性关键技术。此次项目论证及启动会,旨在为该项目的顺利开展打下基础。首都医科大学王松灵院士、清华大学林峰教授、清华大学附属北京清华长庚医院余家阔教授及来自项目方相关领导、代表和数十位口腔行业相关专家共同出席了会议。图:摩方牵头国家重点研发计划项目启动现场数十位口腔行业专家就国家重点研发计划项目进行讨论启动会上,北京大学口腔医学院院长邓旭亮在致词中表示,由摩方精密牵头的国家重点研发计划“极薄强韧陶瓷义齿微立体光固化增材制造技术与装备”项目,对我国数字医学领域乃至国内外口腔修复技术的发展,都将起到非常重要的推动作用。北大口腔在科研条件配套和人员保障方面,提供全力支持,以确保项目各项任务顺利完成和相关成果的有效转化。北京大学口腔医院党委书记周永胜作为此次国家重点研发计划项目负责人,从项目概要、项目整体实施路线图、项目进度安排、组织管理、项目经费与落实情况、项目进展情况等六个方面对项目整体实施方案进行了汇报和论证。专家组对项目整体实施方案进行了认真讨论与点评。专家组认为,该项目立项意义极大,解决的是国际上特别有代表性的难题。总体认为方案符合任务书确定的目标和任务安排,项目课题工作安排比较合理,同时,专家围绕实施细节交换了各自的想法和建议。图:专家组对项目整体实施方案进行了认真讨论与点评论证及启动大会现场,香港大学机械工程系教授方绚莱以“光固化精密制造”为题进行了主题演讲,探讨了设计和制造具有组合功能的复合材料所需的三维微制造技术和专业知识。他介绍,以增材制造为代表的数据驱动和互选先进制造正在以前所未有的精度和集成功能彻底改变原件的设计和加工。增材制造已广泛应用至药物筛选、疾病研究、组织工程、中枢神经系统再生和细胞接种支架等生物医学领域。图:专家组就“光固化精密制造”主题报告进行交流探讨论证及启动大会结束,全体嘉宾对北大口腔-摩方联合实验室北京研发中心进行了参观,深入了解了摩方精密的发展历程及科研成果,并对摩方面投影微立体光刻(PμSL)技术的应用及发展等方面进行了了解。同时,专家一行参观了摩方精密的设备和包括超薄牙齿贴面在内的精密样件。摩方的超精密3D 打印设备展现出来的能力让参观者们的印象深刻,专家们现场与摩方工作人员展开了长时间的讨论与对话。图:口腔行业专家组集体参观北大口腔-摩方联合实验室北京研发中心用3D打印技术实现超薄、强韧牙齿贴面制造此次国家重点研发计划重点专项于2023年12月获科技部的批准立项,由摩方牵头,北京大学口腔医院专家担任项目负责人,同时联合清华大学、中国科学院物理研究所、中国人民解放军第四军医大学、中国科学技术大学、南方科技大学、北京大学口腔医学院口腔医疗器械检验中心、南京前知智能科技有限公司、吉林大学口腔医院等单位,以摩方精密独有的“面投影微立体光刻技术”为切入点,全面系统研究极薄强韧陶瓷义齿增材制造系统共性关键技术,以进一步推动我国口腔医学领域基础技术和临床研究水平不断提升。该重点项目周期为三年,共有120余人参与,其中,逾1/3为博士,高级职称人员有20位,团队各方此前均有良好的合作基础。项目深度融合超精密增材制造、齿科材料仿生设计、精细陶瓷工艺和人工智能等交叉学科,依托多个国家级实验室和国家重点学科,协同攻关,重点突破陶瓷义齿增材制造技术,推动义齿修复从“有创”到“无创”的质变,显著提升齿科修复治疗水平。作为全球领先的超精密增材制造解决方案供应商,摩方是全球唯一能够制造打印精度达到2微米,并投入实际工业应用的3D打印装备制造科技企业。截至当前,摩方与全球35个国家的逾2000家客户建立了合作,创造了我国创新工业母机将高端精密制造设备出口到包括日本、德国、美国等工业强国的罕见案例。摩方此次牵头的国家重点研发专项获批,显示了国家层面对摩方精密的行业地位、科技实力和原创研发示范效应的进一步认可。也是摩方作为新质生产力的代表,赋能各行业应用创新的突破性代表案例之一。带来牙齿贴面市场的革新上海交通大学口腔医学院副院长孙健全程参加了此次项目论证及启动会,他在接受采访时表示:“作为临床医生,我认为这个项目是一项非常有意义的开创工作。因为从临床角度,微创修复是主流方向,对于患者牙组织的保存很有意义。另外结合数字化、智能制造,通过高精度、高精密的修复体,能够达到更好的效果。尽管当前‘少磨牙、不磨牙’的修复也在做,但是现有技术制造的修复体,在精度上还是没有达到要求,可能会造成临床组织的继发龋齿或其它问题。这次应用高精密3D打印技术研发的修复体,可以说能为修复体精度带来级别上的提升,是对现有方法的颠覆性的超越,在国际上也是达到领先水平的。此外,项目是多部门联合,对国产化产业落地,医疗器械自主产权研发和提升,都很有意义。最终为老百姓口腔健康带去福音。”北京大学口腔修复科主任刘云松教授在接受采访时表示,从医生的角度,全球口腔修复界追求的都是微创和高精密度,微创能少磨患者的牙齿,这在全世界都是难题。目前国外都没有在这方面取得突破。但是随着该项目的完成,我们将可以做到少磨牙、不磨牙,就能够给患者完成贴面修复。另外,我们带来精密度量级上的提升,能非常好地预防边缘的微渗漏、继发龋的产生,这在世界范围内都是非常重要的突破。论及此次国家重点研发计划项目对口腔修复行业的意义,浙江大学医学院附属口腔医院修复科主任何福明教授表示,首先从制造上看,此项目采用的是过去减材制造做不出来的增材制造技术,精密度可以达到比较高的要求。其次,过去切削制造方法,容易导致修复体边缘破碎,容易带来远期微渗透和边缘继发龋。增材制造则完整性很高,同时,增材制造极薄牙贴面能带来微创“不磨牙“的优势,边缘密合度更高,能给患者带来更好的远期效果。图:摩方精密制造的极薄强韧牙齿贴面精密度大幅提升,最低厚度可达40微米此外,极薄强韧牙贴面产品,还可以让牙贴面技术降低对医生的依赖,减少对材料的浪费,同时带来更高的设计自由度,并将极大扩大这一技术应用的市场规模。根据华泰证券研究,2020年中国口腔保健消费支出总额达1900亿元,其中牙贴面需求占比约为7%,达133亿元。与发达国家相比,中国人均口腔医疗保健支出依然较低,仅为美国的1/10,韩国的1/20,有较大发展空间。预计极薄强韧牙贴面产品全面上市后,这一市场规模将进一步扩大。搭建“产、学、研”桥梁推动应用转化事实上,不至于牙科领域,摩方的技术还被海内外顶级高校、科研机构大量应用于仿生学、微机械、微流控、超材料、生物医疗以及太赫兹等的科研究探索和创新。摩方利用自身独特的技术优势,丰富的产业化资源与管理经验,积极搭建从原始创新到产业化应用全过程的桥梁,为众多高校、科研机构不同学科/产业链提供新的技术支持和解决方案,协调促进技术与产业链深度融合,推动国产化落地和地方经济高质量发展。例如,摩方携手北大口腔医院及其余8家单位,联合攻关“极薄强韧牙齿贴面”产品从技术到应用的关键点,推动产品从实验室到市场的批量化生产应用,就是典型案例。此外,摩方还与北京大学南昌创新研究院合作,依托后者在力学、控制科学与工程、航空航天等领域的多学科优势,联合开展先进增材制造技术攻关和场景应用拓展,重点突破了一批包括卫星陶瓷发动机点火装置、超均一载药微球制造、微通道超薄散热芯片、心血管介入医疗器械等在内的微纳米制造的重大基础前沿应用,促进了航空航天太空星链、精密医疗等相关学科/产业的发展。摩方还与东华大学材料科学与工程学院联合建设高端技术联合产业孵化基地,开展紧贴市场需求的新材料研究和开发工作,进一步提高高校的教学和科研水平,推动科研成果转化,加速企业技术进步和产品迭代。未来,摩方精密将继续坚持自主研发,协同“产、学、研”力量,强化基础应用研究和技术创新,瞄准中国高质量发展中的高端精密制造需求,发挥创新主体作用,为中国制造产业转型升级、国产化替代和产业链自主可控持续供给能力和效率。

企业动态

2024.05.13

创新寻机遇,蓄势迎未来,TCT Asia 2024圆满落幕!

5月7日-5月9日,为期三天的全球3D打印盛会,第十届亚洲3D打印、增材制造展览会(以下简称TCT Asia 2024)在上海国家会展中心7.1-8.1号馆正式落下帷幕。此次盛会汇集了全球400+展商,覆盖增材制造产业链从设计至成品的完整流程,深入挖掘并展示了增材制造技术的全面潜力,集聚行业力量以增材制造全产业链的优势,为企业提供决策依据和对接渠道,吸引了来自全球各地的专业观众纷至沓来。摩方精密携多款设备、样件及终端应用成功亮相TCT Asia 2024,展会期间,摩方精密展位客商云集,吸引了众多行业专家、科研学者、企业客户、行业资深媒体的洽谈交流,以创新性、自主化、国产化的全能超高精密解决方案,引起业界的广泛关注。直击现场,创新技术领航展会首日,摩方精密以“为极致,为创新”为主题,举行了新品发布会,向在场的观众以及行业媒体分享了最新的技术、设备、材料和解决方案,展示了摩方精密在技术领域的重大突破和显著成就。(点击下方快速了解摩方新品▼)本次新品发布会推出了极致创新性的复合精度光固化3D打印技术和全球首发的Dual Series,以多精度的自由切换能力和全新升级的自动化操作系统等创新技术,为精密电子、生物医疗、高端通讯、半导体等高精密行业的创新应用带来高速灵活、降本增效的全新解决方案。多元应用,精密制造能力本次展会,摩方精密划分了新品Dual Series 应用、新材料应用、精密电子应用、科研应用、创新领域5大区域展示微纳3D打印技术最前沿的样件。摩方精密通过对超复杂结构的处理、打印参数的开发及优化、自动化操作系统的升级、以及加工平台稳定性验证,突破了工业级微纳3D打印设备在高精密、精细化、自动化、稳定性等方面的难题。在精密电子、生物医疗、半导体、仿生等工业和科研领域不断创新应用,吸引了众多参展商及观众的关注与驻足,与来自世界各地的产业伙伴同台交流,共同探讨最新的增材制造技术、趋势和解决方案。聚力合作,携手共创未来TCT现场,摩方精密以复合精度光固化3D打印技术、双精度面投影光固化3D打印系统,和多元化应用展品吸引了海内外资深观众、行业精英、专业媒体参观了解,与现场专业技术人员交流互动,深入探讨多行业、跨领域微纳3D打印解决方案。摩方精密将持续致力于自主技术研发,与社会各界加强合作,推动产学研一体化进程,加速产业融合与发展。公司也非常期待与各方领域产业用户展开合作,不断推动前沿微纳3D打印技术的应用和落地,为客户提供更加优质的解决方案与专业服务。同时,摩方精密将紧扣大力发展增材制造产品和材料的产业发展规划,推出具有创新性和技术含量的产品应用,助力制造业规模化、产业化、智能化转型升级,为新质生产力产业蓄势赋能。

企业动态

2024.05.13

香港大学《JMPS》:受皇后海螺壳启发的异质结构力学超材料

软体动物的壳尽管高度矿化,仍展现出卓越的强度和韧性,这得益于其结构设计能有效控制裂缝及其他类型的局部变形(如剪切带)的扩展。以皇后海螺为例,其壳内部的交叉层状结构由四个不同层级的层状特征组成,并以三维排列方式组装,使其因卓越的强度和韧性而闻名。基于皇后海螺壳的几何设计原理,改良后的超材料有望规避强度-传导性和强度-密度之间的典型权衡。受皇后海螺壳交叉层状微结构的三维分层和交互式结构概念的启发,研究人员设计了一种新型的生物启发力学超材料。这种创新设计允许采用一种优美的失效机制,即允许出现大量受控剪切带并将其限制在有限的空间域内,从而大大增强了超材料的机械完整性和整体的应变均匀性。这些结果为设计强韧的超材料提供了新的视角。图1.交叉层状结构示意图。(a)生物启发交叉层状设计示意图。(b)皇后海螺样品的电镜图。(c)皇后海螺壳的五级分层结构。(d) 生物启发超材料的五级分层结构。比例尺从上到下分别为50μm、25μm和200nm。皇后海螺的微观结构图展示了其内部的交叉层状结构。其整体结构由一个 0o- 90o - 0o的片层组成,每一层又由方向为 +/-45o 的更小的子层组成,而每个子层都是更小的子层的集合体,最终这些子层又是单个文石晶体的集合体。因此,其内部多级结构包含了从几十纳米到几厘米的四个不同尺度的特征结构。受此结构启发设计的异质结构超材料也具有从基本元胞单元延伸到薄片,再到板、层,最后到体的多级结构。具有不同交叉片层取向的片层在结构中交替排列,创造了一种将整体周期性与区域特异性相结合的新构型。这与通常具有均匀内部结构的传统点阵超材料有很大不同。这种片层间的旋转模拟了交叉层状结构,这是剪切带抑制的关键特征。实验人员建立了七种不同的异质结构超材料构型,利用摩方精密研发的面投影微立体光刻(PμSL)3D打印技术(nanoArch® S140,精度:10 μm),实现了超材料样品的高分辨制备。根据实验结果显示,交叉层状设计的生物启发超材料在压缩试验中表现出显著的力学性能提升。例如,Hex(六层)样品在力学性能方面相比于Mono样品有显著改善;其模量、屈服强度、流动应力(在30%应变时)和比能量吸收分别提高了64%、25.9%、35.8%和36.4%。这些实验结果显示,交叉层状设计的超材料在压缩试验中表现出显著的力学性能提升,其中对于内部剪切带的间隔分布和空间域限制是实现这些性能提升的关键。通过引入无量纲化参数无量纲化参数1/√(h/L)进一步对描述这种力学性能的提升(其中L为样品的特征长度,即样品在原位压缩实验中的标距;h为样品最大单层厚度),发现了该无量纲化参数与弹性模量、屈服强度、流动应力和韧性之间的线性相关性。这些参数的关联性表明了设计的交叉层状微结构对于生物启发材料的力学性能提升起到了重要作用。图2.具有不同结构离散性的生物启发超材料的剪切带分布。(a)五种具有想等分层厚度的生物启发超材料的结构示意图。(b)Mono样品在两个给定应变下的原位变形和相应的数字图像相关(DIC)结果。(c)Tri样品在两个给定应变下的原位变形和相应的DIC结果。(d)Hex样品在两个给定应变下的原位变形和相应的DIC结果。比例尺为5mm。随后,作者对超材料进行了系统的实验与有限元仿真(FEM)对比研究。随着交错层数的增加,超材料内部的剪切带数量显著增加且分布更加均匀。具有不同方向的结构交替排列有效地约束了各层级结构内的剪切带,这些交叉片层和异质排列对剪切带的限制增强了超材料的力学性能,体现为强度和韧性的增加。这种自增强响应不以提高结构的相对密度为代价。数字图像相关分析进一步验证了交叉片层和异质排列带来了大量受控于有限空间域的剪切带。这些结果表明,交叉片层和异质排列可以带来屈服强度、流动应力、弹性模量和韧性的显著提高。图3. 生物启发超材料的模拟结果。(a)在两个给定应变下,Bi和Quad样品的原位变形行为和最长单剪切带以及相应的模拟结果。(b)Tri样品的原位变形行为和相应的模拟结果。(c)Tri样品截取部分的模拟结果。(d)截取部分的位置示意图。(e)板间区域和板间单元的模拟结果。(f)层间部分的模拟结果。(g)元胞间部分的模拟结果。比例尺为5mm。该项成果获得了香港研究资助局项目,四川省科学技术厅项目,香港创新科技署项目及休斯顿大学Thomas and Laura Hsu教授席经费支持,以“Heterostructured mechanical metamaterials inspired by the shell of Strombus gigas”为题发表于固体力学顶级期刊《Journal of the Mechanics and Physics of Solids》上。

应用实例

2024.05.11

< 1 2 3 4 ••• 21 > 前往 GO

深圳摩方新材科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 摩方新材

公司地址: 广东省深圳市龙华区红山6979商业区26栋5楼 联系人: 黄先生 邮编: 518110 联系电话: 400-860-5168转4666

友情链接:

仪器信息网APP

展位手机站