您好,欢迎访问仪器信息网
注册
深圳摩方新材科技有限公司

关注

已关注

银牌5年 银牌

已认证

粉丝量 0

400-860-5168转4666

仪器信息网认证电话,请放心拨打

当前位置: 摩方精密 > 公司动态
公司动态

摩方精密助力欧洲声学巨头Sonion加快研发效率,实现跨越式进步

       近日,欧洲声学巨头Sonion 公司购置了摩方精密microArch S240 3D打印机系统,通过设备的使用,不仅从根本上降低了产品开发的成本、缩短了时间周期,更是实现了新产品的小型化和功能化跨越式进步。图丨microArch S240设备安装现场       Sonion是一家全球领先的听力健康技术和配件研发公司,致力于通过开发最新的听力仪器,为客户提供可听设备解决方案。近年来,Sonion的产品不断更新换代,给顾客带来的体验感也在不断优化,自2021年使用摩方精密打印服务以来,生产测试样品原型的成本不断降低,交货周期也在不断缩短。       2021年底,Sonion决定对自己的产品研发投入资金进行内部升级,购置摩方精密microArch S240设备。该设备节省了Sonion研发团队模具制造设计的成本,缩短了测试时间,在有限的时间内完成更多研究,不论是员工工作效率、客户满意度、市场竞争力都得到大幅提升。研发部门负责人Sally van der Most说:“摩方精密的面投影微立体光刻(PμSL)技术可以针对昂贵的微型零部件进行精准的打样,使研发测试的周期从1-2个月缩短至1-2天,减少了研发过程中所需的大量人力成本、时间成本和资金成本。随着新产品的发展,我们还可以探索更多可能。目前,我们的主要重点是从产品质量和研发速度入手,尽快将产品的功能提升到更高的水平,摩方精密有利于帮助我们实现这一目标。”图丨摩方第二代超高精密3D打印系统microArch S240       接下来,摩方精密也将加强与Sonion公司的合作,提供更加优质服务帮助Sonion的产品实现研发速度更快、质量更优、功能更完善的目标。关于SonionSonion总部位于丹麦Roskilde,是开发和生产用于助听器、高端听觉器和入耳式耳机的微声学和微机械解决方案的全球领导者。公司主要开发和制造创新、高效和高质量的微声学解决方案,包括面向消费类,专业音频,可穿戴设备和通信市场的平衡电枢驱动器、MEMS麦克风、(生物计量)传感器和无线线圈。关于摩方精密重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)成立于2016年,专注于高精密3D打印领域,是全球高精密3D打印技术及精密加工能力解决方案提供商。目前,摩方在新加坡、波士顿、深圳、东京和重庆均设有办事处,拥有来自全球29个国家近850家合作客户。

企业动态

2022.02.24

摩方精密携手花王制作世界上最小的3D打印公告牌,获吉尼斯世界纪录认证

日常烹饪的煎炒煮炸使厨房的油污累增,厨房中的重油污清洗已然成为了许多人的日常生活中的一大烦恼。在日常生活中的清洁工作,你是否只是在乎物表的脏污清洁,而忽视了那些看不见的细菌呢?实际上在我们看不见的微观世界里,物表脏污清洁过后,许多细菌可能依然活跃着,甚至对人们的健康造成隐患。为引起人们对微观世界里那些平时容易被忽视的细菌的重视,花王与摩方精密(BMF)携手制作了这款小到必须使用显微镜才能看清的公告牌。公告牌(面板展示区域,nanoArch S130,摩方精密)长度仅为1.44毫米,需要通过高倍显微镜才能看清上面的文字。显微镜视野下的公告牌(右,整体尺寸特征:长2.13mm宽1.35mm高1.80mm,其中字内最小缝隙尺寸为17μm,笔画宽度为29μm)*试验菌种为大肠杆菌和金黄色葡萄球菌,按规定实验条件进行微生物杀菌试验,检验报告显示,『花王厨房重油去污清洁泡沫』产品作用5分钟杀菌率>99.9%。『花王厨房重油去污清洁泡沫』的公告牌虽然微小,却引发了不小的关注度,获得了吉尼斯世界纪录的官方认证,创下“世界上最小的3D打印公告牌”纪录称号。吉尼斯世界纪录官方认证仪式『花王厨房重油去污清洁泡沫』突破传统视角,将微观世界形象化,通过以小见大的方式,让人们更加关注在日常清洁工作中容易被忽视的地方,助您与家人净享洁净安心。原文标题:吉尼斯世界纪录认定“世界上最小的3D打印公告牌”——『花王厨房重油去污清洁泡沫』用最小的公告牌引起你对看不见的细菌的重视

企业动态

2022.02.23

周光敏/丘陵AFM:亲锂设计+3D打印,实现50C倍率的锂金属电池

第一作者:Shuyan Ni,Jinzhi Sheng通讯作者:周光敏,丘陵  通讯单位:清华大学深圳国际研究生院背景介绍:锂金属是下一代高能量密度可充电电池负极的终极选择而备受关注。然而,不可控的枝晶生长、死锂的形成以及锂金属负极的大体积变化会导致严重的安全隐患,例如短路、起火甚至爆炸。引入锂宿主材料可能是缓解上述问题的优异策略,氧化石墨烯(GO)薄膜具有优异的亲锂性,这对于在合成过程中实现均匀的熔融锂注入和电池循环中的低锂成核势垒至关重要。然而,用作锂宿主的全致密GO薄膜存在许多问题。金属锂倾向于在电极的上表面沉积和剥离,且沉积的锂金属会阻碍电解液的进入和离子传输,导致枝晶生长、SEI破裂和内部电极表面的损失。值得关注的是,电极中不那么曲折的离子传输路径会在电解液中产生低的锂离子浓度梯度和均匀的电极电流密度。成果介绍:鉴于此,清华大学深圳国际研究生院周光敏副教授和丘陵副教授等人采用连续离心铸造法制备了大面积氧化石墨烯(GO)作为锂金属的宿主,然后使用3D打印模板通过简单的冲压方法在其中制造对齐的微通道。GO基体有效地调节了锂的沉积/剥离行为,而对齐的通道均匀地分布了锂离子通量并提供了短的锂离子扩散路径。同时,Li/多孔GO复合材料具有柔韧性,其可控厚度为50至150µm,对应的容量为9.881至27.601 mAh cm-2。结果表明,所制备的负极在循环100小时后具有30 mV的低过电位,≈3538 mAh g-1的高容量(理论容量的91.4%),以及匹配LiFePO4正极在高达50 C的倍率下展现出优异的循环性能。此外,多孔GO/Li电极还与其他正极配对并用于软包电池,表明其适用于各种高能电池系统。相关论文以“Dendrite-Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries”为题发表在Adv. Funct. Mater.。研究亮点:1. 耦合亲锂和结构设计,得到的电极具有柔韧性,可以多次折叠和展开,厚度可控。GO中排列的通道能够均匀分布锂离子通量,提供更短的扩散路径;2. 复合负极具有低于30 mV的低过电位和超过400小时的长寿命。组装了与 LiFePO4正极匹配的电池,在20 C的高倍率下具有93 mAh g-1的容量和超过600 次的长循环寿命;3. 与LiNi0.8Co0.1Mn0.1O2正极配对时,其容量为117.9 mAh g-1,并在150个循环后保持稳定;图1. GO致密薄膜的制备及表征图2. GO/Li电极的锂沉积/剥离过程图3. 循环过程中的极化测试图4. 循环前后的形貌和阻抗演变图5. 全电池测试Shuyan Ni, Jinzhi Sheng, Chang Zhang, Xin Wu, Chuang Yang, Songfeng Pei, Runhua Gao, Wei Liu, Ling Qiu,*Guangmin Zhou*,Dendrite-Free Lithium Deposition and Stripping Regulated by Aligned Microchannels for Stable Lithium Metal Batteries,2022来源:顶刊收割机,转载目的在于传递更多信息,如涉及作品内容、版权或其它问题,请于我司联系,我们将在第一时间删除内容!

企业动态

2022.02.23

北航冯林课题组《Journal of Applied Physics》:具有全方位自适应移动性的可变形磁流体微型机器人

磁活性流体或铁流体在外部磁场作用下可以改变其形状和粘度。它可以在较高浓度的磁性粒子中获得高的磁驱动力。由于其独特的性能,铁流体在众多领域有较为广泛的应用。当铁流体的载体液体和环境液体不相容时,前者因其高度的自聚性并不会在小体积中迅速分散。这一特性可以有效地防止磁性纳米粒子扩散过快。同时,基于其流体特性,铁流体具有较高的可变形性,并能通过狭窄的通道和障碍物。此外,铁流体在磁场中也具有高输出力。然而控制铁流体机器人在三维空间的运动,并使用机器人进行药物输送仍有待研究。近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种四线圈梯度磁场控制系统,该系统可以实现磁流体微型机器人在三维空间中的运动控制。同时,使用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密),研究团队依据在药物递送的实际应用环境中可能出现的复杂环境进行设计并打印相关模型,并对磁流体微型机器人在药物递送相关领域的性质和优势展开了进一步的研究。相关成果以“Deformable Ferrofluid Microrobot with Omnidirectional Self-adaptive Mobility”为题发表在《Journal of Applied Physics》期刊上。图一 由电磁线圈系统控制在血管模型中移动的铁流体机器人的概念图及系统图。经过数值模拟和实际测量,该系统产生的磁场梯度可以达到4.14T/m,并可以实现对磁流体机器人的三维控制,最大的控制误差不超过0.3mm。最后,线圈系统控制铁流体液滴在最大内径为3毫米的三维血管模型中实现自主运动。控制效果的实现使得铁流体机器人在通过血管导航进行药物输送方面具有技术潜力。图二 (a) 磁流体机器人运动的示意图。(b)不同时刻的磁流体机器人的位置和状态。比例尺:5毫米。(复杂环境尺寸特征:长38mm宽22mm高5mm,其中折线和曲线通道直径为1.5mm,左下角圆柱阵列援助直径0.5mm,间距0.5mm。)通过对磁流体机器人的变形能力的研究,发现机器人可以通过比其直径小四倍的缝隙(图二)。同时 ,基于有限元模拟,磁流体机器人的变形可以使流场中的阻力减少43.75%,这使得磁流体机器人在人体血管高流速环境中运动成为可能。此外,利用3D打印的血管模型,对磁控系统控制微型机器人在三维血环境中运动能力进行了验证(图三)。图三  (a) 血管模型中磁流体运动的控制示意图。(b)三维血管模型中不同时刻铁流体机器人的真实位置和状态。比例尺:5毫米。该项研究成果获得国家重点研发计划(No. 2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持。 原文链接:https://doi.org/10.1063/5.0076653  作者: 纪易明

企业动态

2022.02.17

阿联酋哈利法大学张铁军课题组《EcoMat》:3D打印功能性水凝胶实现超高效太阳能水蒸发

水凝胶是一类能保持大量水分且具生物相容性的三维结构凝胶,部分水凝胶还可对 pH 值、温度、电场和光有独特响应并产生物理化学结构的变化,从而在智能传感器、生物工程和软体机器人等领域广泛应用。[penny1] 近年来,水凝胶也开始应用于太阳能驱动的水蒸发、脱盐、水净化和消毒以及太阳能驱动的水-电-氢发电等领域。有报道指出,通过调节聚合物网络与水分子之间的相互作用,水凝胶太阳能蒸发器(SVG)可在一个阳光下[penny2] (光强度约1000 w m-2)达到相当高的水蒸发速率。由于蒸发发生在水凝胶界面,合理设计蒸发材料表面微结构对于太阳能水蒸发尤为重要。为了制造出复杂三维结构的水凝胶功能器件,基于立体光刻的微型 3D 打印方法越来越受欢迎。近期,哈利法大学的张铁军教授团队提出了一种新型的三维功能化水凝胶器件制备方法。该团队利用新型微立体光刻技术(nanoArch S130,摩方精密)实现了水凝胶的高精度3D打印,并将金属盐离子引入到水凝胶单体混合物p(NIPAm-co-PEGDA)中,最终获得具有高吸光性能的含氧化铁纳米颗粒 (Fe3O4 NPs)水凝胶太阳能蒸发器。该制备方法成功解决了3D打印复合材料中的多重问题,例如不均匀的颗粒分布、团聚、固化光的散射及其带来的打印质量和分辨率恶化。利用该方法制成的复合水凝胶结构表现出了优异的光吸收性能和快速毛细力水传输性能,在非聚光情况下实现了 5.12 kg m-2 h-1 的超高水蒸发率。相关成果以“Direct solar vapor generation with micro-3D printed hydrogel device”为题发表在《EcoMat》期刊上。 图1. (a)基于3D 打印的含金属纳米颗粒水凝胶NPH复合材料的 SVG 装置示意图。(b)在水凝胶PEGDA泡沫和互连的微通道网络内毛细力驱动的水输运。 (c) 用 Fe3O4 纳米颗粒加强SVG蒸发表面的光吸收能力。 该研究中,含金属纳米颗粒的水凝胶(NPH)太阳能水蒸发器装置如图 1(a) 所示,它包含两个主要组件:(i) 3D 打印的NPH各向异性结构,蒸发表面具有 Fe3O4 纳米颗粒,用以增强太阳能吸收,而底部层则嵌入了使用 NPH 打印的互连微通道; (ii) 作为毛细材料的超亲水 PEGDA 泡沫和微通道网络(微通道宽为250 µm)。团队成员使用面投影微立体光刻技术(nanoArch S130, 摩方精密)完成器件的制备。为了通过微型 3D 打印技术制造 NPH 太阳能水蒸发器,该团队制备了两种打印材料配方。基础配方是一种光固化/温度响应型 NPH 水凝胶。一旦固化后,单体会交联产生一个微型多孔表面 (孔径为 5±0.8 µm),如图 2 中的扫描电子显微镜 (SEM) 图像所示。为了将 Fe3O4 纳米颗粒混入水凝胶交联网络中,团队首先将金属盐 Fe(NO3)3 和 FeCl2 混入水凝胶打印材料的基础配方中,打印完成后,将器件置入碱性条件下, Fe3+ 和 Fe2+ 会共沉淀形成Fe3O4 纳米颗粒。由此,最终制备的NPH器件表面呈漆黑色,反映了薄膜较强的光吸收能力。在日常阳光照射下,该NPH器件的水蒸发速率约为 5.12 kg m-2 h-1。这种超高的蒸汽生成率与 Fe3O4 纳米颗粒诱导的水凝胶网络内的润湿性转换和水活化能力有关。为了进一步研究该装置的整体稳定性,该团队还在不同强度的太阳辐射和盐水(3.5 wt% NaCl溶液)下进行了一系列实验。与最初的实验结果一致,3D 打印的 NPH 水凝胶装置在 500、1000 和 1500 W m-2 的模拟太阳强度照射下表现出了显著的蒸发速率,分别为 3.96、5.12 和 6.48 kg m-2 h-1 ,分别如图 3 所示。与先前报道的基于水凝胶的材料相比,该工作提出的NPH蒸发器表现出超高效的太阳能水蒸发能力,在太阳能污水处理和海水淡化方面具有巨大应用潜力。 图2 3D 打印的NPH水凝胶的微观形貌表征。(a-b) NPH 水凝胶和 Fe3O4 纳米颗粒的低倍和高倍 SEM 图像。 (c) 纯 NPH 水凝胶和具有 Fe3O4 纳米颗粒 的 NPH 水凝胶的 FTIR光谱。 (d) NPH水凝胶内 Fe3O4 纳米颗粒的 XRD 谱。 图 3. (a) 在 120 µm 和 1 mm 的薄膜厚度下,含 Fe3O4 颗粒的 NPH 水凝胶的 UV-Vis-NIR 吸收光谱。 (b) 当水凝胶周围的水被加热时,用光学显微镜捕获的 3D 打印的 NPH 水凝胶的温度响应。 (c) 纯NPH水凝胶和含Fe3O4 颗粒的 NPH 水凝胶的接触角及其温度的影响。 (d) 水在含Fe3O4 颗粒的 NPH 水凝胶内的 DSC 热流信号图 4. 3D 打印的 NPH 水凝胶器件的太阳能水蒸发性能。 (a-b) 在非聚光情况下, 3D 打印的 NPH 水凝胶装置的水蒸发速率。 (c) 3D 打印的 NPH 水凝胶装置在不同太阳强度照射下的水蒸发速率。插图为相应的红外图像,显示了太阳能吸收表面的温度分布。 (d) 3D 打印的 NPH 水凝胶器件的性能稳定性实验。 (e)  3D 打印的 NPH 水凝胶器件用于太阳能海水(3.5 wt% NaCl 水溶液)蒸发时的蒸发速率。 (f) NPH水凝胶器件 的蒸发速率与已有文献报道的数值比较。 原文链接:https://onlinelibrary.wiley.com/doi/full/10.1002/eom2.12157

企业动态

2022.01.26

香港中文大学《ACS Nano》:3D打印小尺度机器人及其在血栓定位与加速溶栓的应用

血栓症是一种常见的血管内疾病,具有多种临床表现和并发症,例如心梗、中风及肺栓塞等,严重危害病人的生命健康及生活质量。传统治疗方案常先通过注射溶栓药物或导管介入技术去除血栓,接着使用抗凝药物预防二次堵塞。然而溶栓药物缺乏靶向性,无法主动在血栓部位富集,且高浓度的药物易引发内出血和血压波动,因此难以高效安全地完成去除血栓的任务。导管介入技术则对操作者的经验和判断能力要求较高,操作不当容易损伤血管,甚至造成二次堵塞。近年来,小尺度机器人系统在狭窄闭塞的生物环境中展现出令人瞩目的应用前景,已有研究人员开发出可破坏血栓结构的微型机器人。然而,如何在动态血流环境中实现小尺度机器人的可控靶向递送和实时状态监测仍是一个巨大挑战,这极大地限制了它们在血栓治疗中的进一步应用。 近日,香港中文大学张立教授课题组王乾乾博士、杜星洲博士、金东东博士提出一种基于小尺度机器人的血栓定位及加速溶栓方案。螺旋形微机器人采用3D打印工艺制造,采用动态磁场进行自动化递送,同时采用超声成像进行实时的机器人定位及环境监测。机器人能够实时定位血栓位置,并加速血栓的溶解。这项研究有望为血栓症的监测和治疗提供新的思路,同时也为小尺度机器人在生物医学领域的应用开辟道路。相关研究结果以“Real-Time Ultrasound Doppler Tracking and Autonomous Navigation of a Miniature Helical Robot for Accelerating Thrombolysis in Dynamic Blood Flow”为题发表于国际著名期刊《ACS Nano》。 该工作使用面投影微立体光刻技术(nanoArch S130, 摩方精密)打印了螺旋形微机器人,并预留磁性物质的嵌入空间。微机器人整体结构采用摩方精密提供的polyethylene glycol diacrylate(PEGDA)材料,机器人尺寸为直径2.15 mm、长度7.30 mm。实验结果显示,螺旋形机器人在血液环境及血流环境中表现出极好的结构稳定性,在溶除血栓任务结束后能保持完成的整体结构并被回收。该打印设计方案可根据需求进行尺寸缩放,以期应用于不同的狭窄生物环境中。 在机器人系统搭建完成后,研究人员在测试平台中验证了医学图像引导机器人递送、溶栓方案的可行性。通过实时监测机器人的运动状态以及机器人诱导产生的多普勒超声信号,研究人员在类血管复杂动态环境中成功实现血栓堵塞部位的定位。机器人在磁场驱动下能够产生强对流加速溶栓因子的物质交换,同时对血液-血栓界面施加剪切力促进溶栓产物的去除。实验结果表明,相对于单纯使用溶栓药剂,该方案可大幅提高血管的疏通效率(约4倍),完全溶栓率提高至350%,且不产生明显的血栓碎片,降低了二次堵塞的风险。配合不同尺寸的小尺度机器人,该方案可根据需要应用于不同直径的血管中,有望为外场驱动的小尺度机器人在生物医学领域的应用提供新的思路。 图 1.螺旋形机器人在动态、类血管环境中的自动化导航整体方案。 图 2.螺旋形机器人在血流环境中的受力分析及磁控。 图 3.  机器人诱导的多普勒信号的仿真分析及实验验证。 图 4. 机器人在类血管系统中的自动化导航(逆流而上及顺流而下)及实时定位。 图 5. 多普勒信号引导的血栓定位及加速溶栓应用。 文章链接:https://pubs.acs.org/doi/abs/10.1021/acsnano.1c07830

企业动态

2022.01.21

哈工大深圳马星课题组《ACS Nano》:可操作的免疫分析探针磁性纳米机器人用于自动化和高效的酶联免疫吸附检测

 基于抗体抗原“特异性结合”的免疫分析已被广泛用于实验室研究和临床诊断中。其中,酶联免疫吸附试验(ELISA)是一种经典且功能强大的生化传感技术,可通过生物酶反应和化学比色法对超低浓度分析物进行定量。ELISA已广泛应用于医疗诊断、环境分析和食品安全等领域。然而,在传统ELISA检测中,抗原或抗体被包覆到多孔板(例如,96孔板)的孔壁上,这导致了三个主要缺点:(ⅰ) 由于所有步骤都在同一槽内进行,因此在每步反应前后需要多次清洗,以去除未结合的残留试剂和非特异性相互作用的分子,这给检测人员造成了繁重的体力劳动;(ⅱ) 此外,由于操作中存在的差异性也可能为检测结果带来误差。(ⅲ)检测物与抗原抗体是通过被动的扩散来实现结合,因此传统的ELISA检测需要较长的孵育时间。以上原因都造成了传统ELISA检测效率低的问题。 近日,哈尔滨工业大学马星课题组提出了棒状磁驱动纳米机器人(MNR)作为可操作的免疫分析探针,实现自动高效的ELISA分析方法,称为纳米机器人激活ELISA(nR-ELISA)。为了制备MNR,研究人员利用外部磁场辅助实现Fe3O4磁性颗粒的自组装以及在其表层原位生长一层刚性氧化硅(SiO2)。紧接着将捕获抗体(Ab1)通过法学法修饰到其表面,最终成功制备了磁性可操作免疫分析探针(MNR-Ab1)。通过数值模拟研究了微尺度下MNR周围的流体速度分布,并通过实验结果验证了主动旋转MNR能够提高混合效率。为了使传统的ELISA检测过程实现自动化,研究人员通过三维打印设计并使用面投影微立体光刻技术(nanoArch P150, 摩方精密)制造了一个由三个功能槽成的检测单元。MNR-Ab1在外部磁场的作用下,通过微通道实现在不同的功能槽间运动,参与不同的阶段的生化反应。主动旋转的MNR-Ab1s可以在微尺度下,通过加速物质交换实现抗原/抗体与待检测物的快速结合,从而达到缩短培养时间的目的。该工作实现了ELISA检测的自动化。在未来,为了实现ELISA的高通量检测,研究人员拟采用亥姆霍兹线圈来替代目前磁场发生器。并且通过数值模拟的方法证明了:亥姆霍兹线圈不仅可以提供足够大的操作空间,同时空间内的磁场偏差较小(1.6%),是未来发展高通量自动化ELISA检测理想的选择。该工作将磁性微/纳米机器人应用到自动高效ELISA的检测中,不仅在未来的即时检测(POCT)中具有巨大的潜力,而且将具有自驱能力的微/纳米机器人的实际应用扩展到分析化学领域。相关研究结果以“Magnetic Nano-Robots as Maneuverable Immunoassay Probes for Automated and Efficient Enzyme Linked Immunosorbent Assay”为题发表于《ACS Nano》。图1 磁性纳米机器人实现了自动化和高效的ELISA(nR ELISA)分析示意图。图2 MNR的制备和运动特性表征。图3 MNRs实现了自动化ELISA检测。采用摩方精密P150面投影微立体光刻技术打印了检测单元。如图b所示,微通道的狭缝宽度为200 μm,狭缝间距为300 μm。  文章链接:https://doi.org/10.1021/acsnano.1c05267

应用实例

2022.01.14

摩方精密和瑞士Exaddon AG微纳金属3D打印达成合作

2021年12中旬,瑞士Exaddon AG公司与重庆摩方精密科技有限公司(以下简称“摩方精密”)正式签署了战略合作协议,摩方精密将为Exaddon AG在中国区的微纳金属3D打印设备提供服务和推广。 重庆摩方精密科技有限公司于2016年成立,6年来一直致力于微纳3D打印领域的技术创新和应用转化,有着专业的团队和成熟的技术,以及丰富的微纳3D打印行业资源,得到客户的广泛认可。目前,摩方精密已拥有来自全球29个国家近850家合作客户。作为微纳3D打印的龙头企业,摩方精密主营业务是基于光固化的树脂及陶瓷浆料的打印设备,而在多年的经营中发现越来越多客户提出了更多更高的需求,例如需要更加精密的金属打印能力。因此,为了更好的服务更多的中国用户,摩方精密基于6年来的经验积累,在众多金属打印设备中选择了Exaddon AG的CERES,该系统是Exaddon AG公司基于电化学沉积(Electrochemical Deposition)技术推出的微纳金属3D打印机,可以打印超高精密金属器件,该系统非常适用于生物传感、高频通讯器件、微流控、传热和微机械等领域的创新研究,也有望在工业功能性器件的生产制备中发挥巨大潜力。 CERES 3D打印系统 “摩方精密是我们在微纳3D打印这个独特领域的一个非常理想的合作伙伴,摩方精密在亚太的微纳树脂及陶瓷浆料打印市场有着特别丰富的经验和积累,他们有着非常强大的市场销售团队及优质客户群体,现在与我们微纳金属3D打印相结合,相信未来可以更好地拓展微纳3D打印的市场!”Exaddon AG公司CEO Edgar Hepp说道。关于Exaddon AG瑞士Exaddon AG公司,致力于提供高精度和创新的微纳金属3D打印解决方案,力求在创新的前沿,基于电化学沉积技术的金属微增材制造技术,CERES可以在室温下以亚微米级分辨率打印复杂的微金属结构,尺寸从1 μm到1000 μm(人类的头发一般为80~90微米),并且无需进行后处理。 关于摩方精密重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)成立于2016年,专注于高精密3D打印领域,是全球高精密3D打印技术及精密加工能力解决方案提供商。目前,摩方在新加坡、波士顿、深圳、东京和重庆均设有办事处,拥有来自全球29个国家近850家合作客户。有关BMF的更多信息,请访问www.bmftec.cn网站。

企业动态

2022.01.14

北航常凌乾等《Advanced Functional Materials》:具有微纳电穿孔功能的微通道微针阵列用于实体肿瘤药物高效递送

基于全身循环的静脉注射给药模式是癌症化疗最常见的方式。在临床上,化疗药物作用剂量与全身毒性之间存在矛盾关系。局部给药策略可以提高药物在靶部位的积累,但在促进药物在肿瘤内高效递送和在细胞内高效转运的效果方面较为欠缺;而仅依靠被动扩散的药物递送常导致肿瘤细胞内化疗药物含量低,肿瘤杀伤效果欠佳。针对这一问题,北京航空航天大学常凌乾等人在《Advanced Functional Materials》 (IF: 18.8)期刊上发表了题为 “Multimicrochannel Microneedle Microporation Platform for Enhanced Intracellular Drug Delivery” 的研究论文。该工作设计了一种3D 高精度打印的(nanoArch S130,摩方精密)、具有中空微通道的微针阵列(图1)。 图1.多微通道微针微穿孔平台靶向给药原理及制备示意图(平台直径8mm,平台分布间隔500μm的21个微针,微针底部直径300μm,高度500μm,每个微针均含8个贯穿孔道,孔道直径40μm)该生物芯片利用微通道装载药物,并在低电压直流电场的作用下,实现药物分子的快速递送;通过微通道聚焦电场的作用,在微针周围的肿瘤细胞膜发生电穿孔,进一步提高药物递送进细胞的能力。在活体实验中,该技术与周身送药、实心微针和局部板电极电穿孔系统进行了在体对比,在药物递送能力、肿瘤抑制、其他器官毒副作用等方面其优势显著(图2)。图2.试验设计的4M Platform介导化疗药(DOX)体内递送及对肿瘤的抑制作用。 该研究第一单位为北京市生物医学工程高精尖创新中心和北航生物与医学工程学院;常凌乾教授为主要通讯作者;南方科技大学郭传飞教授和北京化工大学庄俭副教授为共同通讯作者;研究生林龙、博士后王玉琼和研究生蔡旻堃为论文的第一作者。 文章链接:https://onlinelibrary.wiley.com/doi/full/10.1002/adfm.202109187 

应用实例

2022.01.13

中国计量大学严德贤课题组《Results in Physics》:基于太赫兹波段的负曲率轨道角动量光纤

        随着通信技术的快速发展,近些年的通信容量实现了快速增长,传统的光纤通信网络已经难以满足当前高速通信的需求。增大通信网络的容量和提高通信速度的一种方法是开发太赫兹(Terahertz, THz)波段的光纤通信空间维度。太赫兹波是介于微波和红外光之间的一种电磁波,频率介于0.1THz到10THz之间,由于它带宽大和传输速度快以及可以提供点对点的网络拓扑结构而备受关注。而在空间维度资源中,基于轨道角动量(Orbital Angular Momentum,OAM)的模分复用技术由于携带不同拓朴荷数的相互正交的轨道角动量模式成为扩大通信容量的一种非常有潜力的方案。轨道角动量具有全新的电磁波自由度特性,具有轨道角动量特性的电磁波可以在常用的信息传输方式,如波分复用(Wave Division Multiplexing,WDM)、偏振复用(Polarization Multiplexin,PM)、时分复用(Time Division Multiplexing,TDM)等信息传输方式上成倍的提高信息传输容量。近日,中国计量大学严德贤课题组提出了基于太赫兹波段的负曲率轨道角动量光纤。该光纤以重庆摩方精密科技有限公司提供的HTL聚合物材料(耐高温树脂)为基底,采用两层倾斜椭圆管的结构设计,通过引入环芯区域在0.4-0.8THz波段成功产生50-52个OAM模式,且在所研究的波段内获得了高模式纯度、低限制损耗和低波导色散等传输特性,相关研究成果以“Design of negative curvature fiber carrying multiorbital angular momentum modes for terahertz wave transmission”为题发表在《Results in Physics》。图1.3D打印负曲率轨道角动量光纤结构图图1展示了基于摩方精密nanoArch S140打印技术的3D打印光纤样品图。光纤整体尺寸为6.57mm,靠近纤芯区域的第二层倾斜椭圆管结构最小尺寸为0.051mm。光纤结构设计完成后,在Comsol Multiphysics有限元仿真软件中选取光纤结构的任一截面进行仿真研究。在研究频段内给定相应的太赫兹频率后,可以获得相应的模场分布,针对相应的模式进行数据收集和处理可以得出所需传输特性。在光纤中产生OAM模式的前提条件是有效生成HE和EH模式,且HEl+1,1与EHl-1,1有效模式折射率差异高于10-4。光纤中的OAM模式合成规则可由公式1表述:                   (1)根据公式1,在图2中给出了和在0.5THz的线性叠加过程以及相位分布图。图2.和在0.5THz的线性叠加过程以及相位分布如图2所示,和在模式合成后环芯区域有效产生OAM模式的模场分布,并获得[-ℼ-ℼ]的相位分布效果,满足在光纤中产生OAM模式的合成规则。图3是OAM光纤各种传输特性随频率的变化趋势。由图3(a)和(b)可知,光纤产生的所有HEl+1,1与EHl-1,1之间的折射率差异均高于10-4,表明HE和EH模式均可以有效合成OAM模式。图3(c)是光纤的限制损耗特性,限制损耗与光纤的有效传输距离密切相关,由图可知光纤的限制损耗在0.55-0.8THz区间可以达到10-15(dB/cm)量级。图3(d)表示了OAM光纤的低平坦色散趋势,在0.4-0.8THz区间有近零的波导色散参数,有利于太赫兹波在光纤内部的快速传输。OAM模式的高模式纯度特性表明了光纤可以有效携带信息进行传输,由图3(e)所示结果,在0.55-0.8THz区间光纤的OAM模式纯度均高于80%。图3(f)是OAM光纤的有效模场面积特性,一般来说具有较高的有效模场面积可以产生较小的非线性特性,可以进一步提高信息的传输质量。图3.(a)有效模式折射率,(b)有效模式折射率差异,(c)限制损耗,(d)波导色散,(e)OAM模式纯度,(f)有效模场面积随频率的变化趋势 文章链接:https://doi.org/10.1016/j.rinp.2021.104766 

应用实例

2022.01.12

摩方推出microArch® S230:工业级超高精度微尺度3D打印系统

  北京时间2021年12月13日,超高精密3D打印系统的先行者——摩方精密(BMF,Boston Micro Fabrication)推出了其第二代2μm精度工业级3D打印系统microArch® S230。摩方精密新一代的超高精度3D打印系统为来自各个领域需求超高精度及严格公差的客户而设计。图一 microArch® S230打印系统 第二代2μm 精度3D打印系统microArch® S230,在产品设计上,兼顾用户对打印精度与打印速度的更高要求,在实现2μm的超高精度的基础上,提升了打印速度和打印体积。为了满足客户在精密样件加工尺寸、加工效率及加工材料等方面的需求,S230具备更大的打印体积(50mm×50mm×50mm),打印速度提升最高5倍,打印材料可兼容树脂和陶瓷材料。 图二 S230打印典型样件(内含:点阵-50μm杆径,巴基球-50μm杆径,埃菲尔铁塔-高度20mm、最小杆径30μm,微针阵列-尖端10μm) microArch® S230还配置了激光测距系统,便于打印平台和离型膜的调平;同时,配置了滚刀涂层技术后,加快了液面流平时间,拓宽了支持打印的树脂种类,可支持粘度范围(30~5000cps@25℃)的耐候性工程光敏树脂、韧性树脂、生物兼容性树脂和陶瓷浆料(氧化铝、钛酸镁)等功能性复合材料,材料的多元化也拓展了新的应用领域,如毫米微波应用(5G天线,波导,太赫兹,雷达等电子元器件)、新能源器件、精密零件等,极大满足了工业制造对终端产品功能性和耐用性的需求,也为科研领域开发新型功能性复合材料提供支持。 摩方精密也宣布推出两款新材料:l  AL(氧化铝)陶瓷 – 一款生物兼容性和耐化学腐蚀性的陶瓷材料,目前应用最广泛的工业陶瓷,其耐受的温度高达1700℃,并且在高温下性能依然良好。广泛应用于精细滤芯、磨轮、球阀轴承等。l  HT 200 - 一款耐候性高、耐高温(耐温200℃)和高强度的树脂,适用于电子连接器和其他电子元器件等。 图三 精密陶瓷样件图四 精密连接器样件 microArch® S230基于BMF摩方的专利技术——面投影微立体光刻技术(PµSL)构建,并融入了摩方自主开发的多项专利技术。摩方PµSL是一种微米级精度的3D光刻技术,这一技术利用液态树脂在UV光照下的光聚合作用,使用滚刀快速涂层技术大大降低每层打印的时间,并通过打印平台三维移动逐层累积成型制作出复杂三维器件。因其复杂精密零部件快速成型的特点,摩方PμSL技术成为众多领域原型器件开发验证和终端零部件小批量制备的最佳选择。这些领域包括:电子通讯、微电子机械系统、医疗器械、生物科技和制药、仿生材料、微流控、力学等众多领域。 图五 microArch® S230打印系统 “作为摩方microArch® S130的老客户,我们对其性能感到非常满意,它可以在保证了打印精度和公差的基础上,帮助到我们微纳陶瓷打印的研究工作。同时,我们很荣幸成为了第二代(2μm打印系统)microArch® S230的首位客户,体验到了该系统新增的强大功能,可以打印更大体积的样件,也加快了我们的打印时间。我们期待与摩方的长期合作,以支持我们的微纳3D打印需求。” 休斯研究实验室(HRL Laboratories)建筑材料与结构部经理Toby Schaedler说道。 “摩方精密作为全球微尺度3D打印领域的领导者之一,公司成立6年来,一直致力于微尺度3D打印领域的技术创新和应用转化,在2018年推出第一代的产品S140和S130,受到全球市场众多用户的肯定,近几年的用户数量增长率保持在90%以上。”摩方精密亚太区总经理周建林说道,“摩方精密与数十家世界500强公司达成合作,在通讯、消费电子、连接器、医疗等领域做了大量应用,同时摩方也支持科研用户产出大量的优秀成果,一些成果已公开发表在Science、Science  Advances、Nature communications等顶尖期刊上。为满足全球用户对微尺度打印精度、打印速度、打印材料的更高要求,摩方精密推出了2μm精度的新产品microArch S230,这款产品配置了摩方自主开发的滚刀涂层、激光测距、液面平衡等新技术,可极大提高微尺度打印的速度,解决高粘度工程树脂、复合树脂、陶瓷浆料微尺度3D打印的难题。” 有关microArch® S230的更多信息,请访问www.bmftec.cn/S230网站。 有关摩方重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)成立于2016年,专注于高精密3D打印领域,是全球高精密3D打印技术及精密加工能力解决方案提供商。目前,摩方在新加坡、波士顿、深圳、东京和重庆均设有办事处,拥有来自全球29个国家近850家合作客户。有关BMF的更多信息,请访问www.bmftec.cn网站。

新品

2021.12.13

上海理工《Nature Communications》:基于微流体辅助3D打印技术制造仿生复眼

历经5亿年的演化,节肢动物的复眼已经进化成了一套结构复杂、功能卓越的成像系统,节肢动物可以通过复眼,以极大视场角的全景模式,结合深度感知的能力全方位洞察周边的事物。由于复眼在成像方面的诸多优势,研究人员不断提出各种制备仿生复眼的方案,但是,自然复眼的结构过于复杂,传统微加工工艺无法实现自然复眼的真实结构,过去所研制的仿生复眼无法适用于普通光学元件及图像传感器,这使得仿生复眼的应用受到了极大的限制。近日,上海理工大学长江学者张大伟教授领衔的超精密光学制造团队在庄松林院士的领导下,戴博教授及同事、张良等硕士研究生与美国杜克大学Tony Jun Huang教授课题组、戴顿大学赵乘龙教授课题组、南加州大学John Mai研究员合作,提出了一种基于微流体辅助3D打印的微结构加工技术,并将该技术用于制备仿生复眼。图一左图:蚂蚁的复眼,右图:基于微流体辅助3D打印技术制备的仿生复眼仿生复眼的具体加工工艺如下:利用面投影微立体光刻3D打印技术(nanoArch S130,P140,摩方精密)制备出超高精度的复眼模具及基底。模具为一个半球形凹坑,在坑内密布了圆柱阵列;基底为一个半球体,内部含有与圆柱阵列等量的微管道。然后,对模具进一步处理,在凹坑内填上光敏树脂,利用匀胶机作甩胶处理。当适度控制匀胶机转速时,凹坑中的胶会被完全甩出,而圆柱阵列中会残留部分光敏胶。静止一段时间后,圆柱阵列中的胶由于受到毛细力的作用,液面会下凹。经UV固化后,复眼模具便完成了。最后,将半球体基底倒扣在凹坑中,注满弹性树脂,经热固化后,取出半球体,便能获得一颗仿生复眼。在此工作中,研究人员实现了高度仿生的复眼,5毫米直径半球状的仿生复眼拥有多达12,000多颗子眼。结构与自然复眼高度相似,具有角膜(cornea lens)、晶锥(crystalline cone)、感杆束 (rhabdome)等核心元素。除了结构,所制得的仿生复眼在功能上也能与自然复眼媲美。研究人员将仿生复眼结合传统二维图像传感器,即可实现超大视场全景、全彩成像,还演示了在三维空间内对光源精准定位。图二仿生复眼的制备流程图图三利用仿生复眼观察发红光的X标记以及跟踪发蓝光的三角标记该成果以“Biomimetic apposition compound eye fabricated using microfluidic-assisted 3D printing”为题发表在Nature子刊Nature Communications上。 文章链接:https://www.nature.com/articles/s41467-021-26606-zNatureCommunications volume 12, Articlenumber: 6458 (2021)

应用实例

2021.11.11

中山大学王山峰教授团队《Addit. Manuf.》:一种可超快打印组织工程支架的光固化树脂

近日,中山大学材料科学与工程学院王山峰教授团队创新地使用超支化反应型稀释剂去优化聚富马酸丙二醇酯(PPF)树脂,充分利用了面投影微立体光刻技术(nanoArch P140,摩方精密)的快速制备优势,实现了可降解、无细胞毒性组织工程用多孔支架的超快、高精度打印,同时显著提高支架结构的模量、韧性、和形变回复率。相关成果以“Projection printing of scaffolds with shape recovery capacity and simultaneously improved stiffness and toughness using an ultra-fast-curing poly(propylene fumarate)/hyperbranched additive resin”为题发表在国际著名期刊《Additive Manufacturing》上(Doi:10.1016/j.addma.2021.102446)。该期刊的影响因子为10.998,在工程-制造领域中排名第一。PPF是一种可注射、可光固化、可降解不饱和聚酯,在骨组织工程上具有优异应用前景。在以往使用PPF树脂和立体光刻技术打印组织工程支架的报道中,富马酸二乙酯(DEF)是作为反应型稀释剂来调节树脂粘度以获得流动性和可打印性,然而在固化速度和所制备支架结构的力学性能上需要提高。在此论文中,经筛选后超支化聚酯丙烯酸酯(HPA)作为反应型稀释剂与PPF形成新型光固化树脂,并与PPF/DEF树脂在流变性质、热性能、固化速度、固化深度、临界固化能量、打印速度、打印精度,以及打印出的多孔支架结构的力学性质上进行全面的对比研究。实验结果表明HPA可有效降低PPF的玻璃化转变温度和粘度,以获得打印时的流动性,同时,HPA极大加速了PPF的光交联过程。PPF/HPA树脂固化需要的临界能量极低,仅为2.1 mJ/cm2,低于PPF/DEF树脂的六分之一。在保证高精度的前提下,使用面投影微立体光刻3D打印技术快速成型的特性最为亮眼。对于PPF/HPA树脂,每打印一层曝光时间仅为0.1-2 s,比目前已公开报道的使用紫外光交联方法的3D打印技术至少缩短了一半。在50微米的分辨率下,PPF/HPA树脂的打印速度可达18 cm/h,而PPF/DEF树脂的打印速度仅为其五分之一。得益于更完善的交联网络,使用PPF/HPA树脂打印的支架结构比PPF/DEF树脂支架具有更低的收缩率、更高的刚度和韧性,以及更好的形变回复能力,具有4D打印的特性。初步体外细胞实验也证明这些支架的细胞相容性好,为在支持骨组织修复上使用奠定了基础。图1 面投影微立体光刻技术(nanoArch P140,摩方精密)快速制备PPF/HPA支架图2 PPF/HPA、PPF/DEF两种树脂的打印速度对打印分辨率和光强的依赖关系图3 PPF/HPA支架结构的优异力学性能论文为中山大学材料科学与工程学院独立完成,第一作者为硕士研究生利文杰,第二作者为博士研究生成肖鹏,其导师王山峰教授、王苑讲师为共同通讯作者。该研究得到中国国家自然科学基金(51973242)、中山大学“百人计划”启动经费、广州市科技计划重点项目(201704020145)、和广东省基础与应用基础区域性联合研究计划(2020A1515110674)的支持。原文链接:https://doi.org/10.1016/j.addma.2021.102446

应用实例

2021.11.10

厦大孙道恒教授课题组《Small》:在超材料制造领域取得新进展

当前,超材料制造工艺主要有印刷电路板(PCB)、光刻、电子束刻蚀等,然而这些工艺在3D超材料结构制造方面普遍存在步骤繁琐、成本高、耗时长等问题,不易与曲面共形,难以满足实际应用条件。3D、曲面共形一体化超材料的制造仍然是一项重大挑战。近日,厦门大学航空航天学院孙道恒教授课题组基于面投影微立体光刻(PµSL)3D打印技术(microArch S240,摩方精密)结合液态金属填充方法制备了3D正交开口谐振环及曲面共形超材料结构,其嵌入式结构特征可有效保护金属谐振层免受外部环境影响,且具有宏-微、结构-功能一体化成型的优势。图1 3D打印嵌入式超材料制备流程图2 正交开口谐振环超材料结构及尺寸:(a) 平面型;(b) 半球形仿复眼超材料 (单元尺寸为1.25mm)工艺流程如图1所示,首先使用精度为10μm的3D打印机(microArch S240,摩方精密)制备带有超材料微结构空腔的模型,再利用液态金属真空填充方法制备超材料金属微结构。超材料结构尺寸如图2所示,开口谐振环截面尺寸为0.1mm×0.2mm,顶部开口尺寸为0.3mm,谐振环外径为1mm。图3 液态金属填充及超材料性能测试:(a-b) 平面型及仿生复眼曲面共形超材料液态金属填充前与填充后;(c-d) 超材料传输性能测试图3(a)为3D打印的3D正交开口谐振环、仿复眼曲面共形超材料及局部放大图,图3(b)为填充液态金属后的超材料结构及其局部放大。在液态金属填充满超材料结构空腔后,采用光敏树脂涂覆在液态金属填充入口处并用紫外灯照射固化以密封入口。图3(c-d)为平面型及曲面共形超材料测试结果。该研究将3D打印的灵活性与液态金属的易流动、易填充性相结合,使超材料制造不再受限于复杂结构,开辟了一类复杂超材料结构制造新方法。为超材料的结构创新、功能创新及应用创新奠定工艺基础,拓展了共形超材料的应用范围,如3D光学/电磁隐身衣、智能蒙皮、超透镜等。该成果以题为“3D Printed Embedded Metamaterials”发表于国际期刊《Small》(IF = 13.281)上,论文通讯作者为厦门大学航空航天学院孙道恒教授和陈沁楠助理教授,第一作者为厦门大学航空航天学院博士生张昆鹏。该研究得到了国家自然科学基金(51975498、U1505243、U2005214)和深圳市科技创新委员会技术攻关面上项目(JSGG20201102165202007)的支持与资助。原文链接:https://doi.org/10.1002/smll.202103262

应用实例

2021.11.03

北理工陈少华教授、刘明博士后《CHEM ENG J》:液滴无损转移仿生功能表面的设计与制备

液滴的高效抓取和无损释放在医学中的药物融合或靶向转移、冷凝器表面或芯片实验室热耗散等领域有着重要的应用。目前,液滴转移往往由两个具有不同粘附性的表面去实现,即将液滴从低粘附浸润表面转移至高粘附浸润表面,且液滴的无损、自由释放较难实现。最近,北京理工大学先进结构技术研究院陈少华、刘明课题组设计并制备了一种新型的多级微结构仿生功能表面,可利用同一表面实现液滴的高效抓取和无损释放。该表面由磁颗粒填充的微尺度平板阵列结构组成,微平板尺寸为5mm×0.12mm×1mm,每个微平板左右两侧分别分布有尺寸为60μm×60μm×50μm的矩形凹槽阵列结构和尺寸为0.1mm×0.05 mm×1mm的矩形条带阵列结构,如图1所示。该研究首先使用精度为10μm的3D打印机(nanoArch S140,摩方精密)制备实验模板,再结合倒模法制备出具有磁响应特性的多级微结构阵列表面。图1 微平板阵列功能表面的 (a)结构示意图及其(b)实验制备简图磁场作用下,操控微平板产生定量的弯曲大变形,使含矩形凹槽阵列的表面完全暴露,其粘附力高达252μN,接触角为151º,呈现类似玫瑰花瓣的高粘附浸润特性,可有效抓取体积较大的液滴;旋转磁场使其形变恢复,表面粘附力降低至57μN,呈现类似荷叶的低粘附浸润特性。进一步对微平板阵列结构的几何特征参数进行优化设计,结合表面在类玫瑰花瓣高粘附状态和类荷叶低粘附状态之间自由切换的特性,可将此多级仿生表面有效地作为液滴无损转移的“机械手”,液滴无损释放及其转移过程见图2-3所示。图2液滴的无损、自由释放行为图3 液滴无损转移过程该成果以“Amechanical hand-like functional surface capable of effciently grasping andnon-destructively releasing droplets”为题发表在国际顶级期刊ChemicalEngineering Journal (IF = 13.273,中科院工程技术类分区一区)上。北京理工大学先进结构技术研究院和机械与车辆学院博士后刘明为文章第一作者,陈少华教授为通讯作者,彭志龙教授、姚寅副教授和博士研究生李程浩参与了该工作,此工作得到了国家自然科学基金(No.12032004, 11872114, 12102041)和中国博士后科学基金(No. 2021M690401)的支持与资助。原文链接:https://authors.elsevier.com/c/1dtwc4x7R2YpjE

应用实例

2021.10.20

《Smart Materials and Structures》:用于毫米尺度3D物体操纵的喇叭状粘附结构

对于毫米尺度3D物体的操纵技术在电子转印、精密装配、微机电系统等领域具有重要的应用前景。传统的基于机械夹持的抓取方案(如镊子等)需要针对不同特征的物体进行专门的设计和定制。例如,普通的尖头镊子难以夹持球体,需要在镊子末端设计专门的环形结构,并且具有环形结构的镊子无法夹持直径小于环形的球体。此外,对于平放在基底表面上的薄片状脆性物体(如硅片等)来说,因其无特殊的可夹持特征,使用镊子等工具难以将其从基底表面夹持住。目前,对于毫米尺度的不同形状和尺寸的3D物体进行可控抓取操纵的通用性技术方案仍然面临挑战。近日,清华大学机械工程系摩擦学国家重点实验室的田煜教授课题组提出了一种毫米尺度的喇叭状可控粘附结构及其力学调控方法。喇叭状粘附结构由面投影微立体光刻技术(nanoArch S130,摩方精密)和多步浇铸的工艺方案制备而成,对于多种曲率表面具有良好的自适应接触性能。喇叭状可控粘附结构能够通过接触界面的范德华力作用和负压作用达到~80 kPa的粘附强度,通过外力调控屈曲失稳与基底表面主动脱附,从而实现对于多种三维物体的可控抓取和操纵。该项研究成果以“Trumpet-shaped controllable adhesive structure for manipulation of millimeter-sized objects”为题发表在国际知名期刊《Smart Materials and Structures》上。该研究工作由清华大学机械工程系摩擦学国家重点实验室的博士生李小松完成。原文链接:https://iopscience.iop.org/article/10.1088/1361-665X/ac262f图1 喇叭状可控粘附结构制备工艺流程图。(a)由面投影微立体光刻技术直接制备得到的蘑菇状结构;(b)通过浇铸得到阴模模具;(c)阴模模具浇铸PU并脱泡;(d)将PDMS球面按压模具得到凹面结构;(e)脱模后的喇叭状结构(dp = 1 mm, h = 1 mm, dt = 1.8 mm, θ =60º);(f)喇叭状结构的扫描电镜照片。图2 喇叭状粘附结构的粘附性能典型测试力曲线和对应的接触状态演化规律。(a)附着测试模式和(b)脱附测试模式对应的典型法向力测试曲线;(c)附着测试模式和(d)脱附测试模式对应的接触界面状态演化过程;(e)附着测试模式下喇叭状粘附结构的粘附力和预载荷之间的关系;(f)脱附测试模式下喇叭状粘附结构的粘附力和剪切距离的关系。图3 基于内聚力模型的喇叭状可控结构的有限元仿真与界面法向应力演化规律机理。(a)接触-脱附测试过程;(b)接触-卸载-剪切测试过程;(c)接触-卸载-扭转过程中喇叭状粘附结构的变形行为;(d)附着测试过程和(e)脱附测试过程中接触界面法向应力的演化规律,其中紫色的箭头表示法向应力分布的变化方向。图4 喇叭状可控粘附结构对不同大小、不同形状、不同质量、不同材质物体的操纵效果。(a)集成喇叭状粘附结构的操作器;(b)喇叭状粘附结构抓取、转移和释放物体的典型操作步骤;喇叭状粘附结构用于转移多种毫米尺度(c)平面物体和(d)曲面物体的展示;(e)喇叭状粘附结构用于操纵LED灯珠完成THU字样柔性电路装配的展示;(f)喇叭状粘附结构用于水下环境操纵曲面物体的展示。

应用实例

2021.09.24

Science:仿南洋杉3D毛细锯齿结构表面流体自主择向

流体可控输运广泛存在于各种自然系统和实际工程中,在微流控、冷凝换热、抗结冰和界面减阻等领域具有广阔的应用前景。自从表/界面科学润湿性基础理论建立以来,国内外学者普遍认为,液体倾向于自发向系统能量降低的方向运动,其运动方向主要取决于表面结构特征和化学组成,与液体的性质无关。然而,液体能否决定其命运,在不改变表面结构和无能量输入的前提下实现运动方向的自主选择是长期以来困扰学者们的科学难题。近日,香港城市大学王钻开教授及其合作者借鉴南洋杉叶片多重悬臂结构特征,制备了仿南洋杉3D毛细锯齿结构表面,通过建立3D固/液界面交互作用,实现流体运动方向的自主选择。该研究以“3D capillary ratchet-induced liquid directional steering”为题发表在国际顶级期刊Science上。大连理工大学冯诗乐副教授和香港城市大学朱平安助理教授为该论文共同第一作者,香港城市大学王钻开教授为该论文通讯作者。图1 南洋杉叶片及其仿生表面多悬臂结构特征。A 南洋杉叶片表面双重曲率结构特征,包括横向和纵向曲率。B仿南洋杉3D毛细锯齿结构表面双重悬臂结构特征,单个锯齿厚度80 μm。要点:研究者借鉴南洋杉叶片结构特征,使用PμSL 3D打印技术(nanoArch® S140,摩方精密),设计并制备了由平行排列的具有横向和纵向曲率的双重悬臂结构的锯齿阵列组成的仿南洋杉3D毛细锯齿结构表面、具有对称垂直平面叶片结构的表面、具有倾斜平面叶片结构的表面和具有平行沟槽结构的表面。3D打印技术所使用树脂为丙烯酸光敏树脂,固化紫外光波长为405 nm,能量密度、曝光时间、曝光分辨率、打印层厚分别30 mW/cm²,1 s,10 μm,10 μm。叶片间距p为750 μm,列间距w为1000 μm,叶片倾斜角度为15 – 90°,纵向和横向的曲率半径R1和R2分别为~400 μm和~650 μm。图2南洋杉叶片及仿南洋杉3D毛细锯齿结构表面流体输运性能。A酒精(红色)和水(蓝色)在南洋杉叶片上的运动行为。其中,酒精沿着锯齿结构倾斜的方向运动,而水沿着相反的方向运动。B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面运动行为。要点:研究者发现,乙醇沿着南洋杉叶片表面锯齿结构倾斜的方向运动,而水沿着反方向运动,这种通过调控液体性质来控制其输运方向的现象尚未报道。受此启发,研究者研究了不同表面张力流体在仿南洋杉3D毛细锯齿结构表面的输运性能。研究表明,该仿生功能表面展现出和南洋杉叶片相似的流体择向性能:低表面能流体沿着锯齿结构倾斜的方向运动,而高表面能流体沿着与锯齿结构倾斜相反的方向的运动。即使在长程输运和圆形表面上,流体依然保持良好的单向输运性能。图3 仿南洋杉3D毛细锯齿结构表面流体自主择向机理。A/B低表面能液体和高表面能液体在仿南洋杉3D毛细锯齿结构表面的铺展行为。C横向曲率结构悬臂效应力学分析模型。D流体打破结构扎钉效应的临界状态。E纵向曲率结构悬臂效应力学分析模型。F流体自主择向现象和表面结构及流体表面张力的关系。要点:研究者观察发现,液体在仿南洋杉3D毛细锯齿结构表面铺展过程中,低表面能液体固/液界面展现自下而上的铺展模式,而高表面能液体展现自上而下的铺展模式。实际上,流体沿着特定方向的自发铺展需要满足两个临界条件:第一,流体能接触到相邻的锯齿结构;第二,流体前端受到的驱动力足够克服结构的扎钉效应。3D毛细锯齿结构的亚毫米尺度双重悬臂结构特征,能够调控不同表面张力流体两个临界条件的阈值,建立3D空间上非对称固/液界面相互作用,进而选择流体的铺展模式和铺展方向,实现液体运动方向的有效控制。这是仿南洋杉3D毛细锯齿结构表面流体自主择向的本质。该论文合作者包括香港城市大学机械工程系郑焕玺、李加乾,大连理工大学机械工程学院詹海洋、陈琛、刘亚华教授,香港城市大学生物医学科学系姚希副教授和香港大学机械工程系王立秋教授。论文链接: https://www.science.org/doi/10.1126/science.abg7552

应用实例

2021.09.22

基于微尺度3D打印制备的仿生功能表面在力场调控下实现黏附自清洁

是什么让蜘蛛侠能够飞檐走壁?又是什么让年逾50的阿汤哥只身一人攀爬世界第一高楼­——哈利法塔?尽管这些是科幻电影中的片段,但现实生活中早已有活生生的例子:壁虎。该生物不仅在洁净基底上具有超强黏附力,同时在沾满灰尘的表面依旧能够自由爬行,表明其黏附系统具有“自清洁”功能。有研究指出,壁虎之所以具有如此优异的功能是因为其脚趾具有成千上万的铲状绒毛。图1.壁虎脚掌黏附系统的结构近日,受壁虎行为启发,北京理工大学先进结构技术研究院的陈少华教授课题组提出了一种仿生微柱功能表面通过力场调控实现自清洁功能的研究。该自清洁功能表面是结合微尺度3D打印技术(nanoArch P140,摩方精密)制备得到,其在颗粒筛选、运输等领域具有重要的应用前景。研究成果以“Self-Cleaning Performance of the Micropillar-Arrayed Surface and Its Micro-Scale Mechanical Mechanism” 为题发表在国际知名期刊《Langmuir》上。该研究工作由北京理工大学先进结构技术研究院博士生安华贞完成。原文链接:https://pubs.acs.org/doi/10.1021/acs.langmuir.1c01398图2. 微柱阵列表面的实验制备工艺如图(a)所示,首先通过微尺度3D打印技术(nanoArch P140,摩方精密)打印出光敏树脂微孔阵列模具,然后倒模获得PDMS微柱阵列表面;(b)微孔模具的激光共聚焦俯视图;(c)微柱阵列表面的激光共聚焦三维结构图,其中,微柱直径、高以及两微柱中心距分别为180μm、550μm、280μm,该微柱的大小与3D打印的微孔模具相同;(d)微柱阵列表面的侧视图。图3.微柱功能表面在Load-Pull接触过程下的自清洁性能通过微尺度3D打印技术结合模板复制工艺制备出微柱阵列表面,在施加Load-pull的加载条件下研究了接触压力、颗粒尺寸等因素对微柱阵列表面自清洁行为的影响,并分析了其中的微观力学机制。研究结果发现,微柱阵列表面实现自清洁的主要微观力学机制为:在接触压力的作用下,颗粒与微柱的接触状态由黏附状态改变为易清洁的沉积状态。此研究不仅有助于深入理解微柱阵列表面的自清洁机理,而且为自清洁功能化表面的设计及微颗粒的可控粘附与输运等提供技术支持。图4.微柱阵列表面对不同尺寸颗粒的自清洁性能及微观机理

应用实例

2021.08.30

最后一周丨超高精度高校建筑模型免费打印

各位朋友,摩方最新超高精度3D打印的高校建筑模型出炉啦!本轮高校建筑模型有1个,来自中南大学,以下为实拍图分享~ 本轮“免费超高精度3D打印高校建筑模型”活动即将到8月底截止,欢迎感兴趣的朋友抓住最后一周机会参与,免费获取超高精度3D打印母校建筑模型! 中南大学门牌坊活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。

企业动态

2021.08.25

磁场驱动微板阵列表面实现定向输运

  设计并驱动微纳米结构表面实现物体的定向输运在微电子、生物医药及防污自清洁等领域具有广泛的应用前景。在这些应用领域中,提高定向输运的速度能进一步提高输运效率。此外,通过对微结构和驱动方式的创新性设计,实现对多种不同形状的物体在不同环境中的定向输运也具有重要意义。  近日,北京理工大学先进结构技术研究院陈少华教授课题组提出了一种通过磁场控制微结构表面快速输运固体物块的方法。该方法能够对厘米级的固体物块进行快速定向输运,其输运速率相对于已有文献中的输运速率有大幅度的提升。微结构表面主要由磁响应微板阵列结构和纯PDMS基底组成,单个微板高度为950微米,厚度为150微米。该研究结合微尺度3D打印技术制备实验样件,所使用的3D打印设备(nanoArch S140,摩方精密)的光学精度为10μm,能实现94×52×45mm大小的三维加工尺寸。基于该设备加工了板状微结构阵列,并通过倒模制备出含有磁颗粒的PDMS微结构试样,然后通过磁场控制微结构的变形储能以及能量的快速释放,实现定向输运的功能。该成果以“Directional Transportation on Microplate-Arrayed Surfaces Driven via a Magnetic Field”为题发表于国际期刊ACS Applied Materials & Interfaces上。该工作由北京理工大学先进结构技术研究院李程浩博士作为第一作者完成。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c09648图1.微结构制备及实验装置示意图图2.固体物块定向输运及驱动过程分析图3.通过磁场控制微结构表面实现不同形状物体的定向输运,及不同重量物体的筛选分离(空气环境和水下)    该研究提出了一种通过磁场控制微结构表面快速输运固体物块的方法,并揭示了输运机理:通过磁场控制微结构变形储存弹性能,然后通过控制微结构逐个回弹,使得储存在微结构中的弹性能依次快速释放,并驱动物体连续向前运动,以此实现固体物块的快速定向输运。此方法具有广泛的适用性,能够在空气和水环境中同时输运不同形状的物块,且能够较好控制输运速度,对于更加智能甚至编程化的定向输运技术具有重要意义。

应用实例

2021.08.23

通知:第一届高精密微尺度增材制造峰会

为了推动微尺度增材制造技术的发展和应用,第一届高精密微尺度增材制造峰会将于2021年8月18日在线上举办,本次峰会旨在搭建一个微尺度增材制造技术及其应用进展的高端交流与分享平台,探讨微尺度增材制造技术的研发进展、应用创新,并展望其未来发展方向。 一、会议名称:第一届高精密微尺度增材制造峰会二、会议时间:2021年8月18日下午1:30 – 5:30三、会议主题:高精密微尺度增材制造峰会四、会议主要方向:探讨微尺度增材制造技术的研发进展、应用创新,并展望其未来发展方向五、会议参与方式:线上直播微信扫码进入,设置“开播提醒”线上链接:https://appqd9qsvik6134.h5.xiaoeknow.com/v2/course/alive/l_61137097e4b054ed7c4ca3de?app_id=appqD9QSViK6134&alive_mode=0&pro_id=&type=2六、组织机构:主办单位:深圳摩方新材科技有限公司峰会主席:葛锜 副教授(南方科技大学)              陈小明 教授(西安交通大学)  七、峰会议程:详见附件一(如主题和时间有调整以最后通知为准)。八、联系我们:联系人:邢羽翔电话:0755-26600689邮箱:tommasxing@bmftec.cn 附件一:会议日程及报告安排峰会嘉宾介绍:主办单位介绍:摩方精密(BMF, Boston Micro Fabrication)于2016年05月03日在深圳成立,专注于超高精密微纳3D打印领域,是全球领先的超高精密3D打印技术及颠覆性精密加工能力解决方案提供商。摩方公司基于面投影微立体光刻技术开发的3D打印系统,能够实现2~25μm的打印精度,5~50μm的打印层厚,宏观成型尺寸,±10~±50μm的样件公差控制能力,在众多领域提供了颠覆性的精密加工解决方案。作为微尺度3D打印的先行者和领导者,在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。目前,已有来自全球25个国家的700多家客户采用摩方精密微纳3D打印技术。摩方公司已与全球众多知名企业展开合作,提供全球领先的精密增材制造技术方案,应用于精密连接器、医疗器械、消费电子产品、通讯等行业、组织支架、过滤膜等领域。国内外大量知名高校和科研机构也已经采用摩方的设备,应用于微纳力学、超材料、仿生学、微流控以及生物医疗等领域,并发表了一系列高水平科研成果。

企业动态

2021.08.16

高校建筑模型打印——南京大学&安庆师范大学

各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自南京大学和安庆师范大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“免费超高精度3D打印高校建筑模型”活动,免费获取超高精度3D打印母校建筑模型! 模型一:南京大学-现代工程与应用科学学院院楼模型二:安庆师范大学-红楼活动主题:免费超高精度3D打印高校建筑模型第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。

企业动态

2021.08.12

西安交大《Physical Review Applied》:3D打印超宽带太赫兹超材料吸波器

    太赫兹波,指频率为0.1-10 THz的电磁波,位于微波和红外之间,属于电子学与光子学的过渡区间。由于具有光子能量低、穿透力强、特征光谱分辨能力好等属性,太赫兹技术在生物传感、无损检测以及高速无线通讯等领域具有重要的应用前景。然而,由于自然界中的天然材料在太赫兹频段没有电磁响应,导致太赫兹频段的功能材料和器件非常匮乏,这也是造成太赫兹技术尚未广泛应用的重要原因。THz超材料,一种新型的周期性人工电磁材料,其性质主要取决于所设计的结构,通过特定的结构设计,可获得与自然界已知材料截然不同的电磁性质,从而实现丰富的功能器件,如吸波器、调制器和偏振转换器等。目前常见的太赫兹超材料,主要由光刻工艺制备得到,存在制备工艺复杂、加工成本高的问题。此外,目前宽带吸波器常采用上下重叠式多层结构设计,其在太赫兹频段所需的多步光刻工艺更是进一步提高了加工难度及成本。因此,探索太赫兹器件的无光刻、低成本、简单高效的制备方法获得超宽带太赫兹吸波器,将有利于促进太赫兹技术的繁荣发展。    近日,西安交通大学张留洋教授课题组提出了一种偏振不敏感的超宽带太赫兹吸波器设计及其制备方法,该超宽带吸波器由叠堆于类宝塔基底表面的多层环形谐振器构成,通过相邻谐振器共振模式的重叠实现带宽的扩展,最终通过叠堆12层圆形和环形谐振器实现1.07-2.88 THz频段的近完美吸收。该研究结合微尺度3D打印技术(nanoArch S130,摩方精密)制备得到实验样件,实验测试结果验证了宽带吸收机理的准确性。该成果以“Three-Dimensional Printed Ultrabroadband Terahertz Metamaterial Absorbers”为题发表于国际期刊Physical Review Applied上,该研究工作由西安交通大学机械工程学院博士生沈忠磊与硕士生李胜男共同合作完成。图1 具有面外形态的太赫兹吸波器结构示意图图2 太赫兹超宽带吸收谱    通过结合微尺度3D打印技术,超宽带太赫兹吸波器可由简单的三步工艺制备得到。其中,周期性阵列的三维类宝塔结构采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)加工得到。实验结果表明:得益于高精度的微尺度3D打印技术,测试所得的宽带吸收谱谐振频率和吸收幅值均与数值模拟结果较为吻合。图3 太赫兹超宽带吸波器实验验证(其中单元周期Px=Py=185μm,顶层圆形谐振器半径r12=10μm, 叠堆环形谐振器宽度w=6μm,叠堆层厚▲t=10μm)    此外,文章进一步证明了该制备方法之于常见太赫兹窄带吸波器制备的适用性。实验结果表明:两种太赫兹窄带吸波器的吸收谱测试结果与数值模拟结果和理论结果均较为吻合,表明基于微尺度3D打印技术的制备方法同样可实现对常见太赫兹窄带吸波器的高质量制备。图4 太赫兹窄带吸波器实验验证原文链接:https://journals.aps.org/prapplied/abstract/10.1103/PhysRevApplied.16.014066

应用实例

2021.08.10

基于高精度3D打印的垂直U型环太赫兹超材料

由于能够对太赫兹电磁波产生有效的调制,近年来,太赫兹电磁超材料受到了科研界极大的关注。太赫兹超材料的单个单元的特征尺寸一般为几十微米,传统的加工主要基于MEMS微纳加工工艺流程。然而,这些工艺流程通常都需要昂贵的实验设备并且是多工序且高耗费的。为了克服这些缺点与不足,西交大张留洋老师课题组提出了一种基于微纳3D打印结合磁控溅射沉积镀膜的太赫兹超材料制造工艺:以基于垂直U型环谐振器的三维太赫兹超材料为原型,采用高精度微纳3D打印设备nanoArch S130(BMF摩方精密)对模型进行加工,随后通过磁控溅射沉积镀金属膜赋予该结构功能性。该成果以“3D-printed terahertz metamaterial absorber based on vertical split-ring resonator”为题发表于Journal of Applied Physics期刊。原文链接:https://aip.scitation.org/doi/10.1063/5.0056276     图1 基于垂直U型环的太赫兹超材料制备工艺示意图。采用面投影微立体3D打印工艺(nanoArch S130,摩方精密)在硅片表面制造树脂超材料模型,然后通过磁控溅射在树脂模型表面沉积覆盖金属铜膜。插图为基于垂直U型环的太赫兹超材料的模型剖视图。图1所示为所提出的基于垂直U型环的太赫兹超材料制造工艺流程示意图。首先,通过三维建模软件建立了超材料的数字模型,将该数字模型转化为STL格式就可以输入3D打印设备进行打印制造。打印所采用的树脂材料为一种耐高温的光敏树脂(High-temperature resistance photosensitive resin, HTL)。为了加强所打印的垂直U型环结构和硅片界面处的粘附性,在U型环和硅片表面之间额外打印了一层树脂基底。在树脂模型制造完成之后,采用磁控溅射镀膜工艺在树脂模型的表面沉积铜膜。所使用的3D打印设备(nanoArch S130,摩方精密)的光学精度为2 μm,最小打印层厚为5 μm。所采用的加工工艺主要依赖于3D打印技术,这使得整个制造过程相当的简单和高效。图2 所制造的垂直U型环太赫兹超材料扫描电镜照片与太赫兹时域光谱系统测量所得吸收谱。(a)垂直U型环局部阵列。(b)单个垂直U型环照片。(c)与(d)分别为测量和仿真所得的分别在x极化和y极化入射下超材料的吸收谱。    制造的超材料阵列的总体尺寸为9.6 ×9.6mm,一共包含了30×30个单元结构。从电镜图中可以看出,所选用的3D打印技术(nanoArch S130,摩方精密)可以很好地完成设计的微结构的成型。THz-TDS测量结果表明,在x极化下,超材料在0.8 THz处达到了96%的近一吸收,而在y极化下没有出现吸收峰,这与仿真所得的结果基本一致。图3 高Q值三维太赫兹超材料传感研究。(a)传感分析物的示意。(b)谐振峰频率随传感分析物的厚度而变化。(c)加载不同折射率分析物时的超材料吸收谱 (d)超材料传感折射率灵敏度。(e)加载乳糖与半乳糖粉末时的测量结果。(f)吸收峰频率的偏移。    通过仿真和实验研究了样品的传感特性。分析得出,随着传感物厚度的增大,频移逐渐加大,当厚度大于100μm时得到了最佳的效果。计算得到传感器的灵敏度为S = 0.5 THz/RIU,品质因数为FOM = 95.9。所制造的垂直U型环超材料的高度为75μm,适用于检测具有一定厚度的分析物。因此,该研究选择了典型的乳糖和半乳糖粉末作为分析物来验证垂直U型环传感器的传感能力。如图3 (e)所示,在样品表面加载乳糖和半乳糖粉末后,吸收峰的中心频率分别变为0.5335 THz和0.7603 THz,频移分别为0.2665 THz与0.0397 THz,获得了有效且明显地频移,验证了样品在折射率传感等领域的应用潜力。

应用实例

2021.08.09

高校建筑模型打印:清华大学&华中科技大学

各位朋友,新一批摩方超高精度3D打印的高校建筑模型出来啦!本轮高校建筑模型有2个,分别来自清华大学和华中科技大学,以下为实拍图分享~ 同时,欢迎感兴趣的朋友抓住机会参与“高校建筑模型征集活动”,免费获取超高精度3D打印母校建筑模型! 模型一:清华大学-大礼堂前日晷模型二:华中科技大学-新光电信息大楼活动主题:征集高校建筑模型图免费超高精度3D打印第一轮征集时间:2021年6-8月征集方式:请将您所提供的高校代表性建筑三维模型图(仅限stl格式文件)通过邮件的方式,发送至bmf@bmftec.cn即可。(请留下您的姓名、单位、联系方式)模型要求:模型整体的最大尺寸和内部最小细节,相差在500倍以内。活动流程:①在模型征集期间,对于您所提供的模型图,摩方精密技术团队将在7个工作日内进行内部技术评审;②通过评审的模型,将由技术团队安排在3周内通过摩方精密3D打印设备打印出来,免费赠送给您,同时,所打印高校建筑模型将在摩方精密的公众号进行阶段性公示;③截至8月31日,本轮模型征集结束后,摩方精密团队将针对所有经过评审打印出来的高校建筑模型,通过公众号或合作媒体进行全国投票活动,最终参考实际票数情况,评选出本轮高校建筑模型征集活动的优胜奖一/二/三等奖。活动奖项:一等奖:华为WATCH GT2 智能手表,价值1400元二等奖:Kindle电子书阅读器,价值658元三等奖:华为FreeLace Pro蓝牙耳机,价值500元 注:①摩方精密技术团队将秉承公平公正公开原则认真对待每一个模型的评审;②高校建筑模型图的版权归提供者所有,摩方精密享有对所打印建筑模型进行宣传推广的权力。感兴趣的也欢迎加小编微信,小编会拉您进群哦!

企业动态

2021.08.03

港中文《Bioinspiration & Biomimetics》:仿生章鱼光磁双刺激响应黏附垫,用于精细电子器件的远程运输

    仿生章鱼吸附在操作精细物体等方面有巨大应用潜力。目前仿生章鱼吸附基于外力、电或热传导等刺激方式调节吸盘内部压强,从而赋予了其黏附性能。然而,目前常见的刺激策略中,粘附垫的强弱黏附能力转换需要以接触方式触发、且大部分存在响应时间长的问题,因此,这些粘附垫难以快速执行在密闭空间内对物体的操作任务。     近日,香港中文大学张立教授课题组提出了一种光磁双刺激响应黏附垫的设计思路。该黏附垫可以通过远程光控方式快速调节黏附强度以拾放物体,并在外部磁场控制下实现运动与递送功能。该成果以“A mobile magnetic pad with fast light-switchable adhesion capabilities” 为题发表于Bioinspiration & Biomimetics期刊。该文在意大利比萨圣安娜高等技术研究大学(Scuola Superiore Sant’Anna)Veronica Iacovacci博士、中国科学院深圳先进技术研究院徐天添研究员和杜学敏研究员的共同合作下完成。图1 光磁双刺激-响应黏附垫的设计与机理(a)章鱼吸盘的结构图(b-c)黏附垫的设计及工作机理描述    光磁双刺激-响应黏附垫是由具有微孔阵列的磁性弹性体基底和孔内温敏水凝胶沉积层组成。通过在弹性体基底内掺杂四氧化三铁与钕铁硼颗粒,赋予其光热效应与磁响应性能。孔内压强的变化可由光热效应引发的温敏水凝胶沉积层收缩与膨胀进行调节。研究团队采用面投影微立体光刻3D打印技术(nanoArch S130,摩方精密)高效、精准地实现了上述微孔阵列模具的制备(微孔直径400μm,高400μm),并通过翻模技术制备了微孔阵列磁性弹性体基底。该黏附垫具有以下优点:快速响应的黏附开关特性图3 黏附性能表征:(a)黏附垫的黏附力测试,(b)图案化弹性体基底黏附力测试,(c)黏附垫与图案化弹性体基底的黏附强度对比,(d)黏附垫重复性测试    快速响应的黏附开关特性。实验结果表明该黏附垫的黏附强度可以通过远程红外激光按需调控,黏附强度最高可达12.2 kPa,并且强弱黏附的转换在30秒内即可完成。精细物体的远程递送图4 黏附垫运输电子芯片通过曲折狭缝到达目的地    精细物体的远程递送。通过外加磁场,该光磁双刺激响应的黏附垫可在狭隘空间内对脆弱的电子芯片进行安全可靠地定向运输,在电子器件装配等领域具有重要的应用前景。综上所述,该光磁双刺激响应黏附垫表现出快速响应的黏附开关特性、显著的黏附性能及对精细物体的远程递送能力。这种新型黏附垫有望广泛应用于电子器件装配等领域。原文链接:https://iopscience.iop.org/article/10.1088/1748-3190/ac114a 张立教授课题组主页:http://www.cuhklizhanggroup.com/徐天添研究员课题组信息:http://people.ucas.edu.cn/~xutiantian杜学敏研究员课题组主页:http://dugroup.siat.ac.cn/index.php?s=/Show/index/cid/7/id/1.html

应用实例

2021.08.02

上海交大《ACS AMI》:通过3D打印制备大尺寸蘑菇状柔性超疏水仿生微结构

近日,上海交大机械与动力工程学院胡松涛副教授课题组设计并制备了具备机械强度的柔性超疏水仿生微结构,兼具抗液性与耐磨性,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。该成果以“Biomimetic Water-Repelling Surfaces with Robustly Flexible Structures”为题发表于ACS Applied Materials & Interfaces期刊。 现有的面向低温冲击液滴的超疏水界面工作遵循刚性和柔性两类设计原则,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队在之前工作中,借鉴跳虫胸壳的蘑菇状仿生结构来抵抗冲击液滴,但将底部立柱状刚性支撑替换为弹簧状柔性支撑来调整结构的整体力学性能,形成了“类皮肤-肌肉”柔性超疏水界面微结构的设计思想。该结构被证实可消除界面润湿性能对液滴冲击定位的依赖,但受限于弱机械强度。因此,研究团队改进了柔性微结构设计,形成了由刚性平板和柔性弹簧组所构成的大尺寸蘑菇状超疏水仿生微结构。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述界面设计的样机制备。界面设计与制备(蘑菇平板阵列,宽度2800μm,厚度100μm,间隔200μm;弹簧支柱:自由高度2000μm,中径500μm,线径90μm,线圈数8个)柔性蘑菇状超疏水仿生界面结构被证明可承受常规的法向挤压和水平剪切行为;在实际摩擦行为中,较刚性结构有更好的耐磨性。界面机械强度柔性蘑菇状超疏水仿生界面结构被证实可以通过触发结构振动来缩短固液接触时间。进一步,研究团队指出液滴在冲击结构自身与相邻结构间隙时存在明显差异,揭示了内在力学机理,并应用于抵抗液滴的斜向冲击。固液接触时间与力学机理瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组、英国帝国理工学院Daniele Dini教授课题组和宁波大学李锦棒助理教授课题组为合作单位。工作得到国家自然科学基金青年科学基金、中国科协青年托举工程、机械系统与振动国家重点实验室重点自主课题的支持。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c10157

应用实例

2021.07.19

上海交大《ACS Applied Materials & Interfaces》:通过3D打印实现刚柔复合超疏水界面的制备

近日,上海交大机械与动力工程学院胡松涛副教授课题组提出了刚柔微结构复合的超疏水界面设计思想,解决了冲击定位要求苛刻的难题,相关研究成果在机械装备抗液防冰等领域具有重要的应用前景。瑞士苏黎世联邦理工学院Andrew J. deMello教授课题组和英国帝国理工学院Daniele Dini教授课题组为合作单位。该成果以“Flexibility-Patterned Liquid-Repelling Surfaces”为题作为封面论文发表于ACS Applied Materials & Interfaces期刊。原文链接:https://pubs.acs.org/doi/10.1021/acsami.1c05243。刚柔复合界面设计与制备(杆径10μm的柔性网格结构及刚性支柱)面向低温冲击液滴的超疏水界面需要递进满足两个条件:1)基于微纳几何结构和低能化学修饰的抗刺穿性以反弹冲击液滴;2)极短的固液接触时间以避免液滴在界面成核结冰。现有的相关界面设计工作遵循刚性和柔性两类策略,可有效缩短固液接触时间,但受限于苛刻的固液冲击定位要求。研究团队借鉴蹦床公园,提出了刚柔微结构相结合的超疏水界面设计,通过融合刚性和柔性设计策略,期望消除界面润湿性能对固液冲击定位的依赖。研究团队采用面投影微立体光刻3D打印技术(nanoArch S140,摩方精密)高效、精准地实现了上述刚柔复合界面设计的样机制备。液滴冲击行为    研究团队利用高速相机记录液滴在冲击不同界面以及界面内不同局部区域的动力学行为,证明可以利用刚柔复合界面设计来调整液滴冲击行为。固液接触时间液滴冲击实验进一步表明,当液滴冲击柔性界面区域时,将触发结构振动来缩短固液接触时间;而当液滴冲击刚性界面区域时,将触发液滴的非对称再分布来缩短固液接触时间。

应用实例

2021.07.12

中科院苏州纳米所《RSC Advances》: 利用衣架式挤出模具制备片径长程取向的氧化石墨烯液晶材料

氧化石墨烯液晶材料由于其片径之间产生取向堆叠而展现出独特的物理性能,让其在光电器件、储能器件和电磁屏蔽领域的应用备受关注。片径取向程度也影响着材料相应的性能。近日,中科院苏州纳米所钱波课题组开发了一种新型氧化石墨烯液晶材料的制备方法,并成功制备了片径具有长程高度取向的氧化石墨烯液晶材料。该方法依据氧化石墨烯分散液的流变参数和衣架式挤出模具的设计,借助摩方精密PμSL 3D打印技术(NanoArch S140),定制化的制备出100 μm狭缝厚度的衣架式挤出模具;随后利用此模具在玻璃衬底上挤出氧化石墨烯液晶材料,成功制备出取向结构的氧化石墨烯液晶材料,并且该材料在偏振显微镜下未观察到明显双折射条纹。该成果以“Preparation of graphene oxide liquid crystals with long-rangehighly-ordered flakes using a coat- hanger die”为题发表在RSCAdvances期刊上。原文链接:https://doi.org/10.1039/D1RA01241J图1 长程取向结构氧化石墨烯液晶材料制备示意图图2 五组不同浓度的氧化石墨烯分散液(2mg/mL~10 mg/mL标记为GO-2~GO-10,片径直径约为50μm)的流变测试结果从流变测试中可以看到,氧化石墨烯分散液的剪切粘度与剪切速率呈非线形关系,是一种典型的非牛顿流体,并且存在剪切变稀现象(shear-thining),这是由于剪切应力使氧化石墨烯片径取向由相互交错趋于相互平行,从而呈现出较低的粘度特性。另外,随着剪切应力的增加,分散液的剪切粘度逐渐降低,这也意味着较大的剪切应力可以使氧化石墨烯片径整体更具有取向性。因此衣架式挤出模具的尺寸和精度对制备长程取向结构的氧化石墨烯液晶材料有着重要的影响。图3 挤出模具的制备实物图和相关设计尺寸图3是通过摩方精密PμSL 3D打印机(NanoArchS140)制备出的衣架式挤出模具实物图,模具实际尺寸与设计保持一致,并且狭缝厚度尺寸十分精确,宽度幅度在2%以内,这也有利于减少材料挤出过程中因尺寸不精确而引起的湍流等副作用的产生。图4 a)未经过挤出模具挤出的氧化石墨烯材料,b)经过挤出模具挤出后的氧化石墨烯材料;尺寸标尺200 μm。从图4对比图中可以看出,经过定制化挤出模具挤出后的材料无明显的双折射条纹,这是由于氧化石墨烯片径高度取向,偏振光无法发生偏振。从偏振显微镜图片可看出,不同浓度的氧化石墨烯分散液经挤出模具挤出后均具有良好的片径长程取向结构。图5 a)经过定制化挤出模具制备的取向结构石墨烯气凝胶;b)未经挤出的无取向结构石墨烯气凝胶;尺寸标尺为200 μm图5为利用定制化挤出模具制备的取向结构石墨烯气凝胶材料,从材料截面电镜图中的红色箭头方向可看出,石墨烯片径具有明显一致的取向结构,并且如黄色箭头所示,氧化石墨烯片径之间相互连接良好,材料整体无明显的纵向空隙。利用此方法制备的片径长程取向结构的石墨烯气凝胶相较于片径无取向的石墨烯气凝胶材料而言,其导电性从32S/m提高到92 S/m,证明片径高度取向的结构能进一步提高气凝胶材料的导电性。        需要指出的是,衣架式挤出模具作为传统高分子液晶的制备工具的研究已开展很多,但受限于模具精度和尺寸多样性,目前未曾有过利用衣架式挤出模具制备氧化石墨烯液晶材料。摩方精密PμSL 3D打印技术因其高精度和高效的制备方法,让定制化的挤出模具应用于长程取向结构氧化石墨烯液晶材料的制备成为可能,并且100 μm的狭缝的厚度是目前衣架式挤出模具制备已知的最小值。依托于摩方精密的3D打印技术,未来对不同片径直径和浓度的氧化石墨烯分散液的液晶制备研究的可能性大大增加,有望能够进一步拓展片径取向结构的石墨烯基材料在众多领域内的应用。

企业动态

2021.06.23

北航《Applied Physics Letters》: 具有高运动精度和高输出力的可变形磁流体机器人

   在生物医学研究中,对生物颗粒(如细胞和生物组织)的操作,特别是捕获和运输,是各种生物应用的基础。许多工具和驱动系统被设计用来提高操作的准确性和效率。磁驱动机器人具有精确操纵粒子或生物组织的能力,在生物医学、生物工程和生物物理学领域具有重要的潜力。然而,具有预定形状的刚性机器人的变形能力是有限的,这限制了其在狭小的空间的运动。   近日,北京航空航天大学机械工程学院仿生与微纳研究所冯林副教授等研发了一种可变小型机器人,该机器人是利用具有磁性和流体性质的铁磁流体这一新型材料所研制的。该磁流体基机器人不仅可以根据不同的磁场的分布形成不同的形状,从而完成不同的任务;并且还可以借助于操作平台的疏水处理,使得磁流体基机器人与基板间的摩擦减小,进而简单高效地提高了机器人的实际输出力。图1. 通过多种形状的永磁铁产生的集中磁场改变磁流体形状进而达到搬运不同模块的目的为了证明这种磁流体基机器人所具有的且刚性机器人所欠缺的实际应用能力,作者设计了几个验证实验:1.制造不同形状的永磁体并磁化,观察不同磁场下磁流体基机器人的变形情况;2. 打印不同形状的模块,测试磁流体机器人的搬运能力;3.打印狭缝,测试机器人穿越窄缝的性能。通过采用PμSL 3D打印技术(nanoArch S140,摩方精密),实现了验证实验中的搬运模块、永磁模具及狭缝的精密制造。图2. 永磁体的制造流程及磁流体基机器人的变形图3. 磁流体基机器人在平面上的三自由度运动图4. 磁流体基机器人穿越狭缝动画及实物演示该项研究成果获得国家重点研发计划(No.2019YFB1309700)及北京新星科技计划项目(No. Z191100001119003)支持,以“Deformable ferrofluid-based millirobot with high motion accuracy and high output force”为题发表于国际期刊《Applied PhysicsLetters》(北京航空航天大学陈迪晓硕士为第一作者)。文章链接:https://doi.org/10.1063/5.0042893

企业动态

2021.06.21

深圳摩方新材科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 摩方新材

公司地址: 广东省深圳市龙华区红山6979商业区26栋5楼 联系人: 黄先生 邮编: 518110 联系电话: 400-860-5168转4666

友情链接:

仪器信息网APP

展位手机站