您好,欢迎访问仪器信息网
注册
深圳摩方新材科技有限公司

关注

已关注

银牌5年 银牌

已认证

粉丝量 0

400-860-5168转4666

仪器信息网认证电话,请放心拨打

当前位置: 摩方精密 > 公司动态
公司动态

跃进投影光固化工艺显著提升大尺寸高精度三维打印效率

无论是自然界或者人类身体本身充满了横跨多尺度的结构(Multi-scale structures),例如人体的肺器官由无数微观的肺泡组成,植物叶表的超疏水结构,工程中用于增强减重的超材料以及生物医疗领域的微流体器件。投影式光固化三维打印(Projection-based Vat Photopolymerization)在加工这种多尺度复杂零件方面拥有极大的潜力,然而该技术本身存在打印面积(print area)以及精度(resolution)之间的矛盾。随着打印机面积的增大,单个像素尺寸(pixel size)也会随之变大,降低了打印分辨率(图1a)。一个显而易见的解决办法是步进重复(Step-and-repeat method) – 通过线性模组将投影系统移动到不同位置,停下后投影直到打印完整个平面 (图1b)。在打印大尺寸零件时,该方法由于频繁的小线段加减速运动,打印时间会急剧增加,而打印可靠性和硬件寿命会急剧下降。为了提高打印效率,人们又开发了连续移动光源光固化(Moving light method) – 投影系统在连续移动的同时投影图片进行固化。该方法要求投影系统每移动一个像素需要刷新一张掩膜图像,否则会因为运动模糊(motion blur)导致错误的固化 (图1c)。为此投影仪需要极高的刷新率(例如10 kHz),市面上多数的投影仪都无法达到该性能要求而不得不降低打印速度或者开发专用高刷新率的投影系统。为解决打印面积限制以及打印速度问题,南加州大学的Yong Chen教授和其团队成员Yang Xu博士后(共同一作)与普渡大学助理教授Huachao Mao(共同一作), 及芬兰阿尔托大学Jouni Partanen教授研发出一种跃进光固化3D打印工艺(Hopping Light Vat Photopolymerization,HL-VPP),该工艺能够仅用10 Hz的刷新率的高精度(10 μm/pixel) 投影系统高效地打印出含有微观结构的大尺寸(200mm)零件,并有潜力进一步提升打印速度 (图1d-f)。相关研究工作以“Hopping Light Vat Photopolymerization for Multiscale Fabrication”为题发表在期刊《Small》上。其他参与者有南加州大学硕士生Cenyi Liu, Zhengyu Du, Weijia Yan和Zhuoyuan Yang。该工艺的核心思路是在传统光固化基础之上加上XY轴和一个单轴振镜,通过振镜的周期性旋转运动来抵消投影系统的连续平移运动(图2a-e)。在每个周期内,通过同步投影系统的匀速直线运动与振镜的匀速旋转运动,投影的图像保持相对静止,在当前周期结束时,振镜在10 μs内跳回初始位置并开启下一个周期,与此同时图像的投影也跳到下一个打印子区域 (图2f-g)。每个周期内,投影系统只需刷新一次图像,成百倍地降低了刷新率要求,即使采用高速扫描也不会产生运动模糊的情况。和传统步进重复(step-and-repeat)方法相比,速度提高了5倍以上 (图2h-i)。为同步两者运动避免错位,研究人员采用计算机辅助视觉方法调节运动参数确保误差小于最小分辨率(图3)。利用该工艺,研究人员展示了同时含有微观结构与宏观结构的大尺寸零件以及含有仿生超疏水结构的大面积表面(图4)。图1. a 传统光固化示意图;b Step-and-repeat示意图;c Moving Light示意图; d Hopping Light示意图;e 不同光固化工艺的打印效率与尺寸精度比的关系图;f Moving Light与Hopping Light在不同的曝光时间与刷新率条件下的打印效率对比图。 图 2. a-e Hopping Light 3D打印原理;f 振镜的周期运动;g 振镜,投影系统和掩模图像的运动规律;h-i Hopping Light和Step-and-repeat打印效率对比图。 图3. a-e计算机视觉辅助运动同步调节; f-g 调节前后对比图。 图 4. Hopping Light打印测试: a-d 含有微观结构与宏观结构的大面积零件; e-g 含有微针结构的大面积表面;h-n 含有仿生超疏水结构的大面积表面。 研究人员认为跃进光固化3D打印工艺带来的大尺寸高效高精度加工能力能够促进更多仿生表面,大型超材料结构,电子皮肤等领域的应用。原文链接:https://doi.org/10.1002/smll.202205784来源:高分子科技

应用实例

2023.04.21

DLP光固化打印具有高导电、机械强度和自愈合的离子.弹性体

离子导体(ICs)在柔性电子器件的发展中显示出巨大的潜力,广泛应用于可穿戴设备、传感器、微纳米发电机、柔性显示器、软机器人等领域。水凝胶和电离凝胶由于具有良好的导电性、生物相容性和可拉伸性等优点,被认为是制备ICs最有前途的材料。然而,由于脱水等问题,水凝胶基柔性电子材料很难在多变的环境中提供稳定的力学性能和导电性。相比之下,离子凝胶由离子液体(ILs)或深共晶溶剂(DESs)组成,被限制在聚合物网络中,具有良好的非挥发性和可以忽略的蒸气压。尽管电离凝胶的非挥发性使其具有较宽的工作温度,但离子液体和DESs容易发生泄漏,存在严重的安全隐患。因此,作为含液相凝胶弹性体的一种安全可靠的替代品,固态导电离子凝胶(SCIg)被开发出来,以克服这些潜在的问题。 图1 全固态离子导电离子凝胶的合成与表征近期,中国科学院福建物质结构研究所官轮辉研究员团队通过紫外固化法合成了一种综合性能优良的可快速制备的新型固态导电离子凝胶(SCIg) (图1a, b,c)。该产品可通过调整各组分的含量来获得迄今为止报道的最佳综合性能之一的可拉伸SCIg,包括优良的拉伸性能(λ=26.6拉伸应变,同时承受0.97 MPa应力),显著的自愈效率(>95%, 图2)和极好的电导率(137.8 mS m-1, 图1d, f))。此外,还构建了可拉伸电阻型传感器、可压缩电容型传感器和电子皮肤(图3),以展示SCIg在柔性可穿戴设备中的潜在应用,该设备可以将不同的机械刺激转换为电信号。有趣的是,这些传感器在高温下储存或在结构损伤中自我修复后,仍然可以可靠地检测到电阻信号。SCIg的另一个优点是3D打印的高效率。利用该材料的快速光固化特性,一次打印了多个直径为130 μm的微电路阵列(图4)。将打印好的微电路转移到透明弹性材料TPU薄膜上,经过应变λ=4的拉伸后,微电路保持结构完整。这些良好的性能为该材料在在电子皮肤、生理信号检测和人机界面等领域具有很大的应用潜力。图2 SCIg的自愈性能。 图3基于离子凝胶阵列设计的具有位置识别功能以及相应压力分布的电子皮肤 图4 SCIg的3D打印能力该工作以“Stretchable and Self-Healing Ionic Conductive Elastomer for Multifunctional 3D Printable Sensor”为题发表在《Chem. Eng. J.》上。文章第一作者是福州大学机械学院-中科院福建物构所联合培养博士吴启锐。通讯作者为黄建仁博士和官轮辉研究员。该工作得到国家自然科学基金的资助。福建电子口岸股份有限公司刘键涛博士以及福州大学机械学院杨晓翔教授对该研究提供了帮助和指导。原文链接:https://doi.org/10.1016/j.cej.2022.140328来源:高分子科技

应用实例

2023.04.21

3D打印高精度微针模具助力微针物理治疗增生性瘢痕的构效关系研究

增生性瘢痕(HS)是一种病理性瘢痕,表现为异常僵硬、肿胀、抗拉强度降低和色素沉着,可引发瘢痕患者机体功能障碍、情绪焦虑、抑郁等症状。因此,增生性瘢痕的防治一直是创伤后面临的一个重要挑战。聚合物微针(MNs)已成为一种的非常有效的透皮物质交换介质,其可以最小的侵入性帮助在疾病治疗如肿瘤、糖尿病、细菌生物被膜、真菌感染和疤痕中提供各种药物的透皮传递。但换个角度看,微针可穿透表皮层角质层,在组织中形成微孔阵列,往往会改变疤痕组织的生物力学环境和超微结构,这给增生性瘢痕的临床管理寻找一新的方便、耐受性好和可用性强的治疗策略提供了应用可能性。近日,陆军军医大学第一附属医院烧伤科罗高兴教授/谭江琳教授团队的张庆博士联合加拿大曼尼托巴大学Malcolm Xing院士在ACS Nano在线发表了最新研究成果:Down-Regulating Scar Formation by Microneedles Directly via a Mechanical Communication Pathway。该研究提出了微针介导的物理干预调节局部机械应力以改善瘢痕病理特征的增生性瘢痕机械治疗新策略,以阵列密度和三维尺度为变量因素探究聚合物微针微结构对瘢痕治疗效果影响的规律性来提升治疗效率,借助高精度3D打印平台(nanoArch S140,摩方精密)制造不同阵列密度和针体深度的微针阵列三维模型,以丝素蛋白为基础材料通过两步倒模法制造出对应规格的微针贴片。研究团队仅通过调整微针的纵深尺寸和阵列密度,即实现了增生性瘢痕外观和组织力学性能的显著改善。其核心的作用机制:微针的物理干预减少了成纤维细胞产生的收缩和机械应力,减弱整合素- fak通路中机械力信号的传导,下调TGF-β1、α-SMA、I型胶原和纤维连接蛋白的表达,进而产生一个低压力的微环境,有助于显著减少疤痕的形成。这种物理作用与微针的长度和阵列密度密切相关,表现为:微针尺寸太短(≤500μm)无法实现有效的组织穿透,随着针长增加,穿透力提高,但刺入深度太深(≥150μm)存在出血、炎症反应等不良反应,有加剧瘢痕增生的风险。在阵列密度效应方面,研究结果显示,结合有限元分析模型进一步预测,随着阵列密度的增加,有利于机械微环境重构,微针的治疗效果显著增加,但过高的阵列密度(≥20×20) 导致的空间压缩,胶原基质受到明显挤压,反而不利于机械微环境重构。因此,研究团队提出,基于不同瘢痕中的组织厚度分布范围,优先选择组织厚度中位值作为微针尺寸设计的参考值;而微针阵列密度为15×15/cm2时更为合适。这一研究结果与当前其他报道的微针介导的增生性瘢痕治疗策略(主要是透皮给药)显著不同。图 1. 高精密3D打印微针阳模与PDMS翻模流程图2. 微针通过干扰机械力传导下调瘢痕形成的尺寸效应图3. 微针通过干扰机械力传导下调瘢痕形成的阵列密度效应此外,研究团队还指出,与临床上常用的商用张力减压带通过减少线性切口周围的张力来防止疤痕形成相比,微针诱导的物理干预倾向于减少瘢痕组织中细胞与细胞、细胞与细胞外基质之间的机械通信(mechanical communication),从而重构一个有利于瘢痕逆转的低应力微环境。因此,微针贴片除适用于线性手术瘢痕外,对宽片状瘢痕的适应性也优于商用张力减压带。由此可以看出,作为一种微创无痛的选择,这种微针介导的机械治疗策略有很大的潜力为患者提供一种具有成本效益和方便的增生性瘢痕管理。原文链接:https://doi.org/10.1021/acsnano.1c11016

应用实例

2023.04.14

苏黎世联邦理工学院:3D打印光引发剂的研究趋势分析

3D打印技术制造方法已经对生物医药等多种领域产生了深远的影响。由于能够提供高分辨率,较高打印速度以及在材料设计方面较为灵活,光聚合3D打印尤其是立体光刻和数字光处理引起了广泛重视。作为光聚合3D打印树脂关键成分之一,光引发剂与光交联单体一道在近年来取得了显著的发展与进步。新型光引发剂或者光引发体系的设计不仅可以提供更快的打印速度、利用低能耗的可见光源,也能够为3D打印产物带来额外的功能,甚至能在与先进的光学设备的结合下促成新的打印方法。 近日,苏黎世联邦理工学院药学系鲍寅寅研究员着重梳理了用于光聚合3D打印的光引发剂以光引发体系在近年来开发与应用的研究趋势,涉及了小分子、高分子以及纳米组装体等不同种类的引发剂体系。作者随后分析了目前该领域的研究现状与不足,并对改进的策略与未来的研究方向提出了自己的见解。该综述作为邀请论文发表于Macromolecular Rapid Communication杂志并可开放获取。 该综述分五个方面分析了这一领域的发展趋势:作者首先介绍了可在低能耗可见光LED下工作的3D打印光引发剂,并着重分析了近年来发展迅速的蓝、绿、红和白光引发剂(图1)。其中,三组分氧化还原光引发体系表现出了独特的优势与高效的引发性能,成功实现了近红外3D打印。其次,可逆加成断裂链转移(RAFT)试剂最近被引入3D打印树脂中,其后官能化使得可控或活性3D打印成为可能。再次,光响应分子(如光开关分子)与光交联单体设计相结合,实现了功能化3D打印,如多材料打印和线性容积打印技术。  图1.代表性可见光3D打印光引发剂 另外,高分子光引发剂可有效缓解小分子光引发剂在树脂中的溶解性和相容性问题,已受到越来越多的重视。最后,纳米光引发剂和上转换纳米体系最近取得了快速发展,使得高分辨率的水凝胶制备和无损活体打印成为现实,并且有可能在不使用高强度飞秒激光的情况获得与双光子打印相近的分辨率和打印精度(图2)。 图2. 上转换纳米粒子用于3D打印。A) NaYF4无机上转换纳米粒子打印效果; B) 光引发剂负载上转换纳米粒子用于活体3D打印;C)三重态湮灭上转换纳米胶囊用于高精度3D打印 来源:高分子科技

应用实例

2023.04.14

可见光驱动的超快水溶液ATRP,成功用于3D打印

自 1990 年代提出原子转移自由基聚合(ATRP)以来,人们一直致力于发展能够获得具有预定分子量、低分散性的聚合物,以及定义明确的结构的ATRP体系。与早期的热引发系统相比,光诱导的 ATRP (photo-ATRP)越来越受到人们的关注,因为它具有丰富的光源、广泛可用性、环境友好性和时空控制性。到目前为止,photo-ATPR 已广泛应用于精密聚合、纳米技术、纳米医学和聚合物凝胶网络等领域。光引发的常规自由基聚合(FRP)在3D 打印应用的最为广泛。然而,FRP 提供的控制有限,会导致死聚合物链的产生,从而诱导异质凝胶网络的形成,无法进一步的链延伸和后功能化。相反,通过活性自由基聚合(如,ATRP 和RAFT)形成的聚合物网络更均匀,“活”的聚合物链的特性使网络很容易进行后修饰。但photo-ATRP 尚未在 3D 打印方面取得突破,主要因为有两个障碍需要克服:典型 photo-ATRP 系统的聚合速率缓慢和氧气抑制问题(3D 打印需要在露天条件下进行)。基于此,郑州大学庞新厂教授团队首次报道了以碳量子点为催化剂,可见光驱动的超快水溶液聚合,一分钟内单体转化率高达90%以上,且聚合物的分子量分布低于1.25。利用该体系成功实现了首例基于ATRP的3D打印。由于碳量子点优良和稳定的光学特性也为打印物体提供了有趣的光致发光能力。该方案的成功将为功能和刺激响应性水凝胶材料的制备提供一个新的平台。该研究以为“Ultrafast Visible-Light-Induced ATRP in Aqueous Media with Carbon Quantum Dots as the Catalyst and Its Application for 3D Printing”为题发表于最新一期的《JACS》。在此之前作者发现100%吡啶氮掺杂的碳量子点比其它碳量子点催化可见光诱导的ATRP表现出更优异的催化能力,具有更高的聚合速率和较窄的分子量分布。因此在这个工作中作者选择此类碳量子点为催化剂,研究其催化丙烯酸羟乙酯聚合的能力。作者首先受用不同的光源研究了其聚合动力学,研究发现即使利用绿光(6W, λmax = 530 nm, 2 mW cm−2)和太阳光,25min内单体也可以转化80%以上(图1a-b)。而使用蓝光(6W, λmax = 460 nm, 2 mW cm−2)时,单体在十分钟就可以转化90%以上,随着单体转化率的提高,聚合物的分子量线性的增加,且分子量保持较窄的分布,具有优异的控制性(图1c)。此外,控制实验表明,光源的存在与否可以有效的控制聚合反应的开关,具有完美的控制性(图1d)。图1. a)反应装置图,b)不同光照射下ATRP的动力学图,c) Mn和Mw/Mn在不同光照射下的演化,d) CuBr2/TPMA浓度和光源对ATRP的影响。随后作者通过控制实验对聚合条件进行了优化,发现碳量子点的最佳用量为0.25和0.50 mg/mL(图2a-c)。而Na2EDTA的用量的提高可以显著的提高聚合速率,使单体在1min内聚合90%以上,但是当用量超过10 mM时,会促进羟基自由基的形成,从而阻碍形成活性聚合(图2d-f)。即使在氧气存在的条件下,当Na2EDTA的用量为10 mM时,单体可以在5min内转化81%而不发生失活。有效的证明了该体系对氧气的耐受性和用于3D打印的潜力(图2g-i)。图2. a-c)无氧条件下,碳量子点的投料量对聚合速率和分子量及分子量分布的影响,d-f)无氧条件下,Na2EDTA的用量对聚合速率和分子量及分子量分布的影响,g-i)有氧条件下,Na2EDTA的用量对聚合速率和分子量及分子量分布的影响。最后,作者通过简单地调整固化时间和切片层厚,3D打印出不同的长方体、圆柱体和字母,甚至是结构更为复杂的金字塔,证明了该体系用于3D打印的能力(图3)。图3. 3D打印的长方体、圆柱体和字母,以及金字塔。总结:作者发展了首例可见光诱导、碳量子点催化的、具有耐氧特性的超快水溶液ATRP聚合,并成功利用3D打印具有光致发光行为的高精度聚合物材料,为功能和刺激响应性水凝胶材料的制备提供了一个新的平台。

应用实例

2023.04.14

《Biomaterials》:调整灰白质比即可轻松模仿脊髓机械异质性

生物工程支架具有模拟组织机械性能的特质,但天然组织的机械性能通常是不均匀的且难以表征,特别是脊髓的神经特性。递送到受伤脊髓以刺激轴突连接的支架通常使用沿着头-尾轴的引导线索匹配天然组织的各向异性,但是当前的方法没有模拟宿主组织力学的异质性。基于此,来自美国宾夕法尼亚大学的Paul A. Janmey团队描述了一种修改DLP打印支架的方法,该支架模拟由白质和灰质比例变化引起的脊髓机械异质性,与表现出均匀机械特性的对照组相比,这种方法能够有效改善轴突浸润。相关研究成果以“Matching mechanical heterogeneity of the native spinal cord augments axon infiltration in 3D-printed scaffolds”为题于2023年2月16日发表在《Biomaterials》上。1. 脊髓力学性能的微结构表征为了检查脊髓组织的异质性,作者首先进行了使用AFM和张力计的初步实验,以询问沿着横向解剖平面的灰质和白质的差异。为了澄清这些研究之间的差异,对脊髓进行了AFM和张力测量实验(图1A-B)。将组织分为三个区域:骶骨、胸/腰椎和颈椎,以评估解剖水平是否影响脊髓的机械性能。AFM以前已经被用来表征脊髓力学,显示灰质比白质表现出显著更高的弹性模数,尽管在三个水平之间没有统计学差异(图1C)。图1D显示了所有三个区域的灰质和白质的松弛因子,双因素方差分析显示灰质和白质之间存在统计学差异,尽管水平之间没有差异。这些结果表明,与白质相比,灰质表现出更坚硬和更多的粘弹性力学,并且灰质和白质沿脊髓长度的微观结构力学性质没有差异。为了验证这种力学异质性也存在于大鼠脊髓内,对大鼠脊髓颈部水平的切片进行了原子力显微镜检查,发现灰质区域的弹性模数明显高于周围白质区域。 图1 牛脊髓组织的微结构力学特性之后流变学被用来描述颈椎、腰椎和骶骨水平的脊髓的体积力学特征。对来自三个独立牛脊髓的每个水平(颈椎、腰椎和骶椎)的三个不同切片进行了流变学检测。给定AFM测试的结果,这些实验测试了这样的假设,即解剖层面的整体力学性质的差异是由于灰质与白质的比例不同。因此,在取自不同水平的5-6 mm厚的脊髓横切面上测量了剪切储能和损耗模量以及灰质和白质的横截面积。图2A-C显示了在三种不同的牛脊髓上进行的流变学实验。其中两只动物的颈部和第三只动物的骶部测得了最高的存储和损失模数。为了使整体测试与AFM测量结果一致,即在脊髓的灰质或白质中没有发现差异,脊髓横切面(图2D-F),横切面中灰质的百分比表示为总面积的百分比(图2G-I)。这些结果表明,沿脐带的整体流变特性是由脐带横截面中灰质与白质的比率的差异决定的。 图2 脊髓组织宏观结构力学特性的表征2. 灰质和白质的显微结构分析为了深入了解导致机械异质性的灰质和白质之间的结构差异,采用免疫组织化学方法检测了沿脊髓不同水平的两个区域的细胞核、髓鞘和层粘连蛋白表达的差异。图3显示了颈椎、腰椎和腰椎在开始处固定的切片(图3A、C、E),并在6小时后结束(图3B、D、F)的力学表征实验。DAPI、髓磷脂和层粘连蛋白的定量分析表明在所有水平的白质和灰质区域之间存在显著差异。 图3 灰质和白质的免疫组织化学分析3. 具有不同机械性能的3D打印支架基于以上结果,作者开发了一种新的DLP方法来制造支架,该支架模拟了通过牛脊髓微结构力学测试观察到的灰色和白色区域之间的硬度差异(图4A)。作者创建了灰度图案以在0-100%之间改变光强值,代表黑色到白色,以调节GelMA水凝胶的聚合程度。为了验证这种方法,交替强度的测试图案被打印在正方形块中。图4B显示了用于这些初步打印的灰度掩模,在10x10x3 mm的块中具有1 mm厚的条纹,用张力计量法验证力学性能的差异。对这些数据的量化和随后的统计分析表明,每条条纹之间存在显著差异,表明暴露在高光强下的区域表现出比低光强区域更坚硬的力学性能(图4C)。这些结果验证了3D打印支架可以实现异质性,以模拟灰质和白质区域之间的硬度差异。 图4 3D打印支架的特点4. 脊髓损伤三维打印支架的力学特性研究在验证了具有异质机械性能的3D打印支架的方法后,水凝胶被打印出来以模仿大鼠T10几何形状。图5A显示了同质支架(以用于异质支架白质的相同光强度打印)和一个异质支架中灰质和白质区域内支架的SEM图像。量化表明,在异质支架的模拟灰质中孔径减小(图5B),为了进一步验证模拟的白质和灰质之间的差异,对暴露于不同光强度的散装水凝胶进行了压缩测试。压缩测试表明,与代表白质的水凝胶相比,暴露于用于创建灰质区域的光强度的水凝胶表现出明显更高的弹性模量(图5C)。在验证了暴露于不同像素强度的支架的机械性能之间存在差异后,获得了同质和异质支架的图像,以证明不同的刚度不会影响支架的几何形状(图5E)。图 5F-H 显示了均质和异质支架中弹性模量的热图,异质支架内的灰质表现出明显高于周围白质和以75%强度打印的均质水凝胶的弹性模量。此外,异质支架中的灰质硬度与以100%强度打印的同质支架之间没有显着差异(图5I)。总之,上述结果表明机械异质性可以在脊髓支架中实现。 图5 3D打印异质支架的特点5. 评估轴突渗透到具有异质机械性能的支架中最后,作者进行移植研究以确定异质支架与同质对照相比是否会引起增加的轴突浸润。异质支架和刚度与异质支架匹配的同质支架都被移植到急性脊髓损伤模型中。图6A显示了T10支架的水凝胶制造、损伤模型和移植示意图。异质支架显着增强了感觉轴突的浸润(图6C)。为了进一步评估轴突浸润到支架中,检查了移植支架的延髓和尾部区域是否存在Tuj纤维。图6D显示Tuj+轴突的存在仅位于支架的延髓区域,具有与异质支架的“白质”相匹配的均质力学。图6E表明与灰质匹配的均质支架中的类似响应。然而,在异质支架的头侧和尾侧部分均观察到Tuj+纤维的浸润和生长(图6F),表明机械异质性刺激了神经元再生。为了确定异质支架是否刺激轴突生长增加,在两种支架类型的白质区域评估了Tuj纤维的量化,表明异质支架显着促进了Tuj+纤维的生长(图6G)并刺激了浸润与均质水凝胶相比的距离(图6H)。总体而言,这些结果表明,具有与宿主组织各向异性相匹配的异质机械性能的 3D 打印支架对轴突的浸润和再生具有有益影响。 图6 移植后轴突浸润的检查综上,横向脊髓部分的大量流变学测试表明,脊髓的粘弹性特性沿其长度发生变化。但不是由于微观结构特性的差异,AFM和张力测量表明灰质和白质的刚度不会根据水平而变化。因此,沿线的整体机械性能差异是由灰质和白质相对量的差异引起的。对现有数字光处理技术的修改有助于打印具有异质机械性能的支架,提供了一种模拟灰质和白质之间刚度差异的方法。急性横断大鼠模型的移植实验表明,与均质机械特性相比,具有这种异质机械特性的支架会导致更大的轴突浸润。尽管这种差异背后的机制尚不清楚,但这些结果强调了开发模拟脊髓组织空间异质性的生物材料的重要性。来源:EngineeringForLife

应用实例

2023.04.14

用于阶梯提升仿蒸腾作用的仿生微通道

近期,由湖南大学王兆龙副教授,上海交通大学郑平院士,东南大学陈永平教授和中科院理化所董智超研究员组成的联合团队在《极端制造》(International Journal of Extreme Manufacturing, IJEM)上发表题为《Bionic microchannels for step lifting transpiration》的研究文章。研究人员设计了用于仿蒸腾作用的低碳功能器件用于清洁水生产,并采用实验和数值计算方法研究了任意截面形状仿生微通道尖角引起的强前驱效应。最重要的是该团队使用基于微立体光刻3D打印技术(nanoArch P140,摩方精密)首次实现了任意截面、极小尺寸仿生微流控器件的亚十微米精度极端制造。图1 仿生异形微通道加工及液体输运能力。自然界的树木可以将液体从地下根部输运到100多米高的叶片,展现出了非凡的无动力水体输运能力。然而,具有长距离液体输运能力的微通道结构的设计与加工仍是阻碍微流控器件发展的一大挑战。因此,本项工作受到自然界树木内部通道结构的启发,利用面投影微立体光刻技术加工出具有任意横截面的仿生微通道。通过构建不同形状(五边形、正方形、三角形和五角星形)及不同尺寸(200-900 μm)的仿生微通道,利用毛细通道尖角极强的边界效应,实现了极强的微流体输运能力(图1)。同时,我们也对不同形状、不同直径、不同倾角的仿生微通道的输液能力进行了仿真计算与实验验证,具体结果如图2所示。实验发现,随着微通道直径的增大,液体的输运高度会逐渐降低,五角星形的毛细通道因为其尖角处独特的边界前驱效应,输液能力是所有形状中最强的,并且随着五角星形状倾角的减小使得输液能力进一步提升。图2 仿生微通道输液能力仿真计算与实验验证。同时,团队还实现了基于仿植物蒸腾作用的微通道台阶提升与清洁水生产的功能器件应用展示。如图3所示,通过加工一系列具有平行仿生微通道的阶梯结构,基于异形微通道极强的毛细输运能力可以实现液体从台阶底部向顶部的逐阶提升。同时,通过在台阶装置顶部进行太阳光照射,可以进行毛细力驱动的太阳能水蒸发,单根直径400 µm的微通道的最大蒸发速率可以达到500 mg/h,证明了仿生异形微通道优秀的液体输运与太阳能水蒸发能力。这些低成本、高性能的极高精度仿生微通道有望在微流控散热、细胞培养、长距离液体输运、清洁水生产等方面得到广泛应用。图3 仿生微通道台阶提升及太阳能水蒸发应用DOI 10.1088/2631-7990/acbcff来源:极端制造

应用实例

2023.04.14

用于阶梯提升仿蒸腾作用的仿生微通道

近期,由湖南大学王兆龙副教授,上海交通大学郑平院士,东南大学陈永平教授和中科院理化所董智超研究员组成的联合团队在《极端制造》(International Journal of Extreme Manufacturing, IJEM)上发表题为《Bionic microchannels for step lifting transpiration》的研究文章。研究人员设计了用于仿蒸腾作用的低碳功能器件用于清洁水生产,并采用实验和数值计算方法研究了任意截面形状仿生微通道尖角引起的强前驱效应。最重要的是该团队使用基于微立体光刻3D打印技术(nanoArch P140,摩方精密)首次实现了任意截面、极小尺寸仿生微流控器件的亚十微米精度极端制造。图1 仿生异形微通道加工及液体输运能力。自然界的树木可以将液体从地下根部输运到100多米高的叶片,展现出了非凡的无动力水体输运能力。然而,具有长距离液体输运能力的微通道结构的设计与加工仍是阻碍微流控器件发展的一大挑战。因此,本项工作受到自然界树木内部通道结构的启发,利用面投影微立体光刻技术加工出具有任意横截面的仿生微通道。通过构建不同形状(五边形、正方形、三角形和五角星形)及不同尺寸(200-900 μm)的仿生微通道,利用毛细通道尖角极强的边界效应,实现了极强的微流体输运能力(图1)。同时,我们也对不同形状、不同直径、不同倾角的仿生微通道的输液能力进行了仿真计算与实验验证,具体结果如图2所示。实验发现,随着微通道直径的增大,液体的输运高度会逐渐降低,五角星形的毛细通道因为其尖角处独特的边界前驱效应,输液能力是所有形状中最强的,并且随着五角星形状倾角的减小使得输液能力进一步提升。图2 仿生微通道输液能力仿真计算与实验验证。同时,团队还实现了基于仿植物蒸腾作用的微通道台阶提升与清洁水生产的功能器件应用展示。如图3所示,通过加工一系列具有平行仿生微通道的阶梯结构,基于异形微通道极强的毛细输运能力可以实现液体从台阶底部向顶部的逐阶提升。同时,通过在台阶装置顶部进行太阳光照射,可以进行毛细力驱动的太阳能水蒸发,单根直径400 µm的微通道的最大蒸发速率可以达到500 mg/h,证明了仿生异形微通道优秀的液体输运与太阳能水蒸发能力。这些低成本、高性能的极高精度仿生微通道有望在微流控散热、细胞培养、长距离液体输运、清洁水生产等方面得到广泛应用。图3 仿生微通道台阶提升及太阳能水蒸发应用DOI 10.1088/2631-7990/acbcff来源:极端制造

应用实例

2023.04.14

摩方精密亮相北美最大3D打印展

由美国工程师制造协会举办的美国3D打印制造展览会RAPID + TCT,于2022年5月17—19日在底特律会展中心举行。RAPID +TCT是北美最大的3D打印展会,展会展览面积达20000平米, 预计参展观众超过10000人,参展商数量及参展品牌达到400家。作为全球微尺度3D打印技术及颠覆性精密加工能力解决方案提供商,摩方精密自然不会错过这一场与行业及客户直面交流的盛会。一直以来,摩方受到各界人士的热切关注,众多行业研发人员对摩方超高精密3D打印能力表示赞赏和认可。此次参展,摩方携带了科研、电子、医疗、天线等领域的精密样件,凭借在超高精密3D打印领域的领先技术与产品优势,摩方在展会现场吸引了众多观众频频驻足。 展会期间,摩方北美区总裁John Kawola出席了同期举办的3D打印技术论坛,并在现场带来了主题演讲。演讲内容主要围绕使用摩方PuSL高精密3D打印技术在医疗器械领域的应用及案例与现场观众进行了详细的介绍和分享。演讲期间观众反响热烈,并在结束后移步到摩方展位进行了更进一步的详谈交流。值得一提的是,摩方这次在展位设计上别出心裁,颇具设计感的展台引人注目。走进展馆,从远处便可眺望到摩方独特的拱形展台,展台正上方悬挂着立体的“魔方”,搭配占据半个展台上方空间的公司Logo,令人印象深刻。RAPID + TCT 2022已于昨日完美落下帷幕,期待下一次的精彩再续。摩方精密也将持续秉承将3D打印转变为真正的精密快速成型及直接生产制造的理念,持续为各行业精细零件的前期研发和小批量制造解决加工需求难题。 

企业动态

2023.04.07

PμSL 3D打印技术制备的波形人工触须传感器用于不同流体的分析

近年来,随着无人水下航行器和软体机器人的发展,微型柔性流量传感器已经成为姿态控制和流场分析的关键器件。目前,仿生毛发流量传感器的灵感多来自昆虫的触角、海豹的触须。其中,仿生毛发流量传感器通常采用圆柱形结构,但是该类型的传感器会产生涡激振动,这种涡激振动会引发很大的噪音,并恶化流量传感器的信噪比。海豹可以通过触须识别、定位和追踪猎物。这种波形触须可以抑制涡激振动的产生、降低涡激振动引发的噪音。研究学者受海豹触须形态的启发制备了多种人工触须传感器。然而,这些传感器通常体积庞大、组装起来较为繁琐。因此,使用简单的制备工艺并优化传感器的结构以提高其灵敏度、使其微型化具有重要的意义。近日,北京航空航天大学蒋永刚课题组基于面投影微立体光刻(PμSL) 3D打印技术结合PDMS浇铸工艺制备了波形人工触须传感器,该传感器可以用于不同流体的分析。人工触须传感器由仿生触须和带有压阻传感器的PDMS基座组成;PDMS基座上集成有4个微通道,并采用定向液体扩散(DSL)方法将碳纳米管/银纳米颗粒(CNT/AgNPs)墨水注入微通道中,以形成压阻传感器。研究人员基于PμSL (nanoArch S140,摩方精密) 3D打印技术制备了仿生触须和两个用于制备PDMS基座的模具。仿生触须长35mm,表面呈现波浪形,截面呈现椭圆形,几何结构呈现非对称性;打印模具的链状凸台结构宽度为200μm,高度为80μm,其中,凸台上对称菱形组成的结构高度为30μm。 图1. 人工触须传感器的结构示意图图2. 人工触须传感器的制备。其中,a图是基于PμSL技术制备的仿生触须和两个模具图3. 稳态流场中人工触须传感器在不同流速下的响应图4. 涡流检测的实验装置及结果 波形人工触须传感器对复杂的流体现象表现出极好的灵敏性,包括涡激振动、振荡流动和上游涡流尾迹。稳态流实验表明,在0°攻角下,人工触须的波形形态可以显著降低触须的阻力,抑制涡激振动的产生;振荡流实验表明,触须传感器可以检测振荡流流速,阈值检测限可低至8mm/s;另外,涡流检测实验表明,该波形人工触须传感器可以辨别上游圆柱诱导的各种涡流尾迹。该研究成果在智能流体分析方面具有巨大的应用潜力,以“Artificial Whisker Sensor with Undulated Morphology and Self-Spread Piezoresistors for Diverse Flow Analyses”为题发表在Soft Robotics上。

应用实例

2023.04.07

华南理工大学《Bioact. Mater.》:支架孔隙形态调节骨再生机制

骨仿生学和结构工程激发了人们对优化人工支架以实现更好的骨再生的广泛兴趣。然而,支架孔隙形态调节骨再生背后的机制尚不清楚,这使得用于骨修复的支架结构设计具有挑战性。为了解决这个问题,来自华南理工大学的况宇迪、赵娜如、王迎军等人仔细评估了三种代表性孔隙形态(即圆柱形(C)、螺旋形(G)和菱形(D))β-TCP支架的成骨性能(图1a)。结果表明 D 型支架通过增强 RhoA/ROCK2 通路的机械信号转导促进 BMSC 向成骨分化并分泌更多与迁移相关的生长因子,从而在这些支架中实现最佳骨再生(图1b)。这项工作为开发新型生物适应性支架设计提供了对孔隙形态介导的骨再生机制的见解。相关研究成果以“3D printed pore morphology mediates bone marrow stem cell behaviors via RhoA/ROCK2 signaling pathway for accelerating bone regeneration”为题于2023年3月20日发表在《Bioact. Mater.》上。图1 不同孔隙形态的支架方案及支架-BMSC相互作用机制:(A)具有圆柱形、螺旋形和菱形孔形态的 3D 打印支架;(B)孔隙形态介导的细胞骨架力和 BMSCs 的核变形通过 RhoA/ROCK2 信号通路促进骨再生1. 不同孔形态的β-TCP支架上的骨髓间充质干细胞行为成功制备了三种孔结构的β-TCP支架(图2a),BMSCs在支架上表现出不同的铺展状态(图2b)。由于细胞的不同伸展和伸长状态会影响基因的表达,这些支架上的BMSCs可能会表现出不同的细胞行为和命运。随后制备了一种定制的具有整合路径的支架(每个路径由一种孔形态组成)评估BMSCs从支架外到支架内部的迁移行为,如图2C所示。迁移实验表明,D-和G-支架具有更好的引导骨再生的潜力(图2D,E)。CCK8检测结果显示,BMSCs在C-支架上的增殖情况明显好于其他各组(图2F),这可能归因于类多边形展开态引起的内应力的松弛碱性磷酸酶(ALP)活性(图2G)和RT-qPCR(图2H)结果显示,第7天,D支架组ALP、Col-1、OCN和Runx2的表达最高,C支架组最低。上述结果证实了D-支架在这些支架中诱导BMSCs成骨分化效果最好。此外,研究了孔形态对BMSCs血管生成因子旁分泌的影响(图2I))。成血管测试表明G-支架组BMSC培养上清液中VEGF和Ang-1的浓度最高(图2J),具有更好的骨再生效果(图2K,L)。图2 骨髓间充质干细胞在不同β-tCP支架上的细胞行为2. 孔形态介导的骨髓间充质干细胞行为的信号转导机制RNA测序结果显示,与C组相比,D组和G组的一些基因表达上调(图3A),表明骨髓间充质干细胞在D-支架中的迁移能力最强。此外,与C-支架组相比,G-和D-支架组中成骨分化相关基因(例如OCN3、BMP2和ALPK1)和血管生成相关因子(例如VEGFA、PDGFC和PDGFA)也上调(图3B,C)。聚类分析和热图的树状图显示,RhoA/ROCK2信号通路相关基因(DVL2、DAAM1、RhoA和ROCK2)在G-和D-支架组的表达高于C-支架组(图3D)。RT-qPCR分析和Western blotting也证实了RhoA/ROCK2信号通路相关基因和蛋白在G-支架和D-支架中的高表达(图3E-L)。这些结果揭示了BMSCs在不同孔形态的支架中进行不同的细胞骨架重组和机械应力传递。图3 RNA测序和生物信息学分析随后,检测了在不同支架上培养的BMSCs在含有和不含RhoA/ROCK2抑制剂的培养液中的成骨分化和迁移因子水平。当细胞培养液中没有RhoA/ROCK2抑制剂时,G-和D-支架组比C-支架组RhoA、ROCK2和激活蛋白(p-RhoA、p-ROCK2)水平更高(图4A-D)。CDC42、OCN和Runx2的蛋白表达水平顺序为D-支架>G-支架>C-支架。这些结果表明,RhoA/ROCK2信号通路在转导支架孔形态刺激调控BMSCs成骨分化和迁移中发挥了重要作用。图4E是支架孔形态介导的BMSC行为机理图,孔形态通过RhoA/ROCK2信号通路影响BMSCs成骨分化和迁移。图4 (A-C)药物对RhoA/ROCK2信号通路的干预;(D)用ELISA法检测在RhoA和RoCK2抑制剂干预前后7天不同孔隙形态的成骨相关Runx2和迁移相关CDC42蛋白的水平;(E)机制综述:孔形态通过RhoA/ROCK2信号通路影响BMSCs成骨分化和迁移3. 不同孔形态支架体内骨再生的评价随后,构建股骨髁缺损评价支架体内骨再生效果(图5A)。骨小梁计数、Micro-CT、血管分布检测、Van Gieson染色(VG)结果均显示G-和D-支架的血管生成能力强于C-支架,可以促进骨再生。图5 股骨髁缺损区术后4周、8周、12周植入支架的组织学分析及Micro-CT检查此外,通过连续荧光标记检测所有支架在2-4周和6-8周的动态成骨来评估骨再生率(图6)。柱状缺损区被分为三个部分(外层:0-1 mm,中层:1-2 mm,内层:2-3 mm),以更好地定量缺损区不同区域的新骨生长(图6a)。荧光标记染色结果显示,C-支架组支架的新骨沉积速度从外到中逐渐减慢,C-支架中心区域几乎没有新骨(图6B,C)。相比之下,D和G支架的中层和中心层的骨沉积速率明显较高,表明细胞在支架中的迁移速率不同。这些结果揭示了支架形态对体内新骨生长的重要指导作用。图6 成骨的动态组织学分析综上所述,本文在体外和体内评估了三种孔结构的β-TcP支架的成骨潜力。D-支架通过影响BMSCs的黏附状态,激活较高水平的RhoA/ROCK2信号转导通路,促进细胞迁移,促进BMSCs的成骨分化。同时,D-支架和G-支架还可通过影响骨髓间充质干细胞的旁分泌来促进血管生成。在体内骨修复的评价中,D-支架在促进骨修复方面的表现优于G-支架和C-支架。这项工作加深了我们对孔形态影响细胞行为的机制的理解。来源:EngineeringForLife 

应用实例

2023.04.07

摩方精密与信维通信达成战略合作,共同研发下一代天线

2022年5月12日,全球领先的一站式泛射频相关电子元器件及模组(如天线及模组、无线充电模组、EMC/EMI射频隔离器件、精密连接器、高速连接器及线缆、无源器件等)解决方案提供商信维通信(美国)(Sunway Communication)与重庆摩方精密科技有限公司(美国)全资子公司(BMF, Boston Micro Fabrication)达成战略合作,共同研发下一代天线产品,两家公司在美国加利福尼亚州圣地亚哥开设了联合研发实验室。对于5G和未来的天线来说,先进的制造技术已经逐渐发展至可以满足精密微小尺寸器件的需求。射频行业正更全面地进入毫米波应用领域,因此,天线和波导需要变得越来越小,导致传统制造技术变得越来越具有挑战性。“为了满足零部件越来越小的需求,我们一直在寻求不同的解决方案,摩方精密的迅速发展,其技术已经应用于众多行业,这次的联合开发合作加速了我们的研发速度,同时也提升了我们的领导地位。”美国信维通信执行副总裁兼总经理Wilson Wu博士表示。 “我们很高兴能与信维合作,帮助了我们将3D打印技术引入通信这一应用领域,”摩方精密欧美区首席执行官John Kawola表示。“摩方精密提供了精密加工方面的专业解决方案,而信维则带来了他们在高价值通信组件方面的宝贵经验”。 此次合作由信维首席科学家/副总裁、信维天线研究所所长Howard Liu博士和摩方精密联合创始人兼首席技术官夏春光博士领导。

应用实例

2023.04.03

基于PμSL 3D打印技术制备微通道嵌入式自保湿隐形眼镜

近年来,隐形眼镜除了用于视力矫正和装饰品之外,还可作为智能传感平台用于实时监测人体的健康状况。但是,佩戴隐形眼镜通常会导致干眼症及相关炎症或者角膜损伤。目前,保持隐形眼镜镜片湿润的方法主要有两种:一种方法是利用隐形眼镜表面的单层石墨烯涂层减少水分蒸发,但是该方法制备工艺比较复杂;另一种方法是利用电渗流保持镜片湿润,但是该方法需要生物兼容性电池。隐形眼镜常见的制备工艺有离心浇铸法、模压法及车床加工工艺,其中,离心浇铸法和模压法需要先通过车床加工工艺制备模具。车床加工不仅存在成本高、周期长、加工几何形状受限的缺点,而且直接制备的隐形眼镜需要立即进行镜片的水合,以避免镜片发生破裂。随着增材制造技术的发展,3D打印技术已被用于制造隐形眼镜或者隐形眼镜的模具。同车床加工工艺相比,3D打印技术具有加工成本低、加工效率高以及加工结构可定制化等优势。然而,3D打印技术固有的逐层制造方式会产生台阶效应,且成型精度越低,打印层厚越大,台阶效应越明显,该效应将会导致镜片加工需要额外的抛光打磨,限制了3D打印技术在镜片加工中的应用。因此,提高成型精度、降低打印层厚、抑制台阶效应对于3D打印技术在隐形眼镜制备中的应用极为重要。近日,马尼帕尔高等教育学院Sajan D. George课题组基于面投影微立体光刻(PμSL) 3D打印技术结合PDMS浇铸工艺制备了微通道嵌入式隐形眼镜,该隐形眼镜可以利用微通道的毛细作用实现自保湿功能。研究人员基于PμSL (microArch S140,摩方精密) 3D打印技术制备了凹模模具,为减小打印模具的台阶效应,打印层厚降低至10μm。模具的基弧是8.5mm,直径是15mm,内表面有大量微通道,该微通道的宽度、深度以及间距均为100μm;另外,内表面还设计有直径8mm的光学区,该区域无任何微通道以保证隐形眼镜的视觉透明度。另外,所制备的PDMS隐形眼镜经过氧等离子体处理可获得更好的亲水性,进一步促进毛细管驱动周围液体通过微通道流动至整个镜片表面,使隐形眼镜镜片保持湿润。 图1. 微通道嵌入式隐形眼镜的制备过程图2. 采用不同方法制备的PDMS隐形眼镜镜片图3. PDMS隐形眼镜镜片的毛细管填充过程 研究人员基于PμSL 3D打印技术制备了两种PDMS隐形眼镜镜片:一种隐形眼镜镜片中的微通道呈现直线形,光学区将部分直线形微通道阻断;另一种隐形眼镜镜片中的微通道呈现曲线形,该微通道可以保证流体的连续流动。另外,研究人员还使用基于熔丝制造技术制备的隐形眼镜镜片作为对比,该隐形眼镜镜片中的微通道来源于模具中的台阶效应(打印层厚100μm),且模具的光学区需要进行手工抛光。将上述三种隐形眼镜镜片放置于水中以观察毛细管填充情况。研究结果表明,基于PμSL 3D打印技术制备的、具有曲线形微通道的镜片,其微通道的尺寸、分布可控,且光学区未将微通道阻断,故液体可以通过微通道的毛细管驱动作用畅通、连续、快速的流动至整个镜片表面。该研究成果为用于生物标志物检测的微流控芯片的制备提供了新思路,以“Self-moisturizing contact lens employing capillary flow”为题发表在Additive Manufacturing上。

应用实例

2023.04.03

基于3D打印的微混合器芯片用于研究单元连接对混合性能的影响

近年来,微米尺度金属增材制造技术得到了快速的发展,并广泛应用于光学、微机器人、微电子学等领域。目前,微米尺度3D金属结构可以采用聚焦电子/离子束诱导沉积、激光感应光致还原等3D打印技术直接制备而成,或者采用双光子聚合3D打印技术结合电镀技术多步制备而成。其中,基于金属离子局部电化学还原反应的电化学沉积技术被认为具有极大的优势:该技术无需进行任何后处理,而且可制备致密性好、导电、无污染的金属样件。然而,如何在保持打印分辨率的情况下提高打印速率是该技术面临的一个难题。本研究论文是基于中空原子力显微镜(AFM)悬臂梁的金属电化学沉积3D打印系统,在保持电场电势和体素高度不变的情况下,研究了施加压力和喷嘴直径对体素水平尺寸的影响。研究结果发现,在打印过程中保持喷嘴直径不变,针对施加压力的实时调整可以实现体素面积两个数量级的跨越,并且通过改变施加压力,使用孔径为500nm的喷嘴成功制备了四根线径不同的铜线圈。基于以上研究,该技术通过精确调整体素尺寸不仅可以实现同一打印样件从亚微米级到亚毫米级的跨尺度制作,而且还可以显著提高打印速率。该技术使用铜作为金属打印材料,但同样适用于其他电镀金属。 图1. 基于中空AFM悬臂梁金属电化学沉积3D打印系统示意图及打印过程示意图 图2. 使用孔径为500nm的喷嘴打印的四根线径不同的铜线圈的SEM图,其中,a图和b图是同一结构的两种不同视图 原文链接:https://doi.org/10.1002/adem.201900961关于摩方精密重庆摩方精密科技有限公司(BMF,Boston Micro Fabrication)从事微纳3D打印设备的研发、生产及销售,专注于高精密3D打印领域。摩方精密采用面投影微立体光刻(PμSL: Projection Micro Stereolithography)技术,该技术具有成型效率高、加工成本低等突出优势。作为高精密增材制造领域的领军企业,已和众多全球知名企业开展业务合作,包括GE医疗、美国强生、日本电装、安费诺、泰科电子等,产品广泛应用在连接器、精密医疗器械、消费电子、精密加工等行业。摩方精密也与瑞士Exaddon AG公司合作,在中国区进行微纳金属3D打印设备提供服务和推广。基于电化学沉积技术的金属微增材制造技术,Exaddon创新地设计了微纳金属打印系统CERES。CERES可以在室温下以亚微米级分辨率打印复杂的微金属结构,尺寸从1 μm到最大1000 μm(人类的头发一般为80~90μm),并且无需进行后处理。Exaddon CERES 微纳金属3D打印系统

应用实例

2023.04.03

《AFM》:3D打印粘弹性可调湿滑水凝胶仿生软组织器官模型

与活体器官、动物模型以及人体临床试验相比,具有仿生结构的三维组织器官模型在体外手术训练和生物医学设备测试等应用至关重要,因为它们不仅真实地反映了生物体的生物结构、形态和生理微环境,而且具有成本低、符合伦理道德、易于操作等优点。然而,迄今为止体外仿生组织器官模型的制造和应用仍面临许多未解决的挑战。一方面,传统注模技术所制造的器官模型缺乏精准仿制生物器官复杂结构特性的能力。另一方面,目前的器官模型无法精确模拟生物体的理化特性,例如柔韧性、粘弹性以及润湿性等。上述问题表明,目前的组织模拟材料和工程技术难以制造与人体软组织机械特性、理化微环境和仿生结构均匹配的器官模型,这对目前的仿生软组织器官模型仍然是一个很大的挑战。基于此,中国科学院兰州化学物理研究所刘维民院士/王晓龙研究员团队在Advanced Functional Materials上发表文章Engineering Tridimensional Hydrogel Tissue and Organ Phantoms with Tunable Springiness,如图1所示,提出了一种基于共价交联网络和金属配位网络的双交联网络策略来制备刚度可调的弹性水凝胶,其弹性水凝胶的弹性模量(软硬度)可以通过调节水凝胶组分和金属配位键的密度,使其从几千帕到几百千帕之间灵活调控来匹配不同的生物软组织;同时借助数字光处理3D打印技术实现了各种结构复杂、保真度高、机械可调的湿滑水凝胶软组织器官三维结构的一体化成型,且这些水凝胶软组织器官模型具有复杂的内部通道和腔体结构、血管化的组织结构、逼真的解剖结构等。这些机械精确可调的仿生水凝胶软组织器官模型在外科手术训练、医疗设备测试和器官芯片等领域具有潜在的应用前景。图1 弹性双网络水凝胶的设计及湿滑水凝胶软组织器官模型的制造如图2所示,利用多种可调刚度的弹性水凝胶来匹配天然软组织的机械特性,并结合数字光处理3D打印技术制造了大脑、支气管、肺、肝脏、心脏、胃、肾脏以及肠等具有高保真度和三维复杂结构的水凝胶组织器官模型。此外,这些水凝胶软组织器官模型具有结构复杂的腔体、可灌注的微通道以及异质结构。图2 刚度与天然软组织特性相匹配的湿滑水凝胶仿生组织器官模型如图3所示,3D打印的水凝胶器官模型具有复杂的内部通道和腔体结构,以及更接近于天然心脏器官的外部逼真解剖结构。此外,这些类组织弹性水凝胶还具有可调控的粘弹性,且与各种活组织器官的粘弹性非常相似。图3 湿滑水凝胶软组织器官模型的解剖细节及粘弹性能人体组织器官含有许多复杂的血管网络拓扑结构。如图4所示,在弹性水凝胶基质内制造了许多具有可调管状拓扑结构的流体多通道网络结构。此外,在弹性水凝胶中设计和制造了具有曲折的仿生多支叉血管网络和不规则分叉和大小通道的仿生树突状血管网络。图4 弹性水凝胶基质中制造的流体通道网络和仿生多血管网络结构由于水凝胶基的湿滑组织器官模型可以重构与天然血管相似的微环境。如图5所示,设计的具有复杂曲折脑动脉和湿滑特性的3D打印水凝胶人脑模型可作为模拟血管内介入治疗的有效仿真平台,其为血管内介入治疗领域解决一些临床和技术挑战开辟创新新型道路。图5 3D打印湿滑水凝胶仿生器官模型的体外导丝介入演示相关研究工作目前以“Engineering Tridimensional Hydrogel Tissue and Organ Phantoms with Tunable Springiness”为题目发表在《Advanced Functional Materials》上,文章第一作者为中国科学院大学博士生刘德胜,通讯作者为中国科学院兰州化学物理研究所特别研究助理蒋盼博士、王晓龙研究员、刘维民院士。该研究得到国家重点研发计划项目、国家自然科学基金项目、中国科学院“西部之光”交叉创新团队项目、甘肃省科技计划项目等的支持。原文链接:https://doi.org/10.1002/adfm.202214885摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。来源:高分子科学前沿

应用实例

2023.04.03

《Nat. Commun.》:可聚合轮烷水凝胶3D打印的柔性传感器

水凝胶的力学性能特别是抗疲劳等性能对柔性传感器的实际应用至关重要,传统化学交联的水凝胶由于凝胶网络的不均匀性和缺乏有效的能量耗散机制,容易对水凝胶网络造成不可逆的损害,影响水凝胶中生理信号传感的可靠性,限制了水凝胶在柔性传感中的实际应用。目前在可穿戴柔性传感器的长期应用中,设计具有优良力学性(高柔性、高回弹等)和高稳定性的水凝胶仍然是一个巨大的挑战。近期,华南理工大学材料科学与工程学院、国家人体组织功能重建工程技术研究中心贾永光、施雪涛、王琳与南洋理工大学赵彦利合作,应用天然分子胆酸和β-环糊精主客体组装成的准轮烷作为可聚合交联剂(图1),以丙烯酰胺(Am)为单体,将导电的离子液体(氯化胆碱,ChCl)引入乙二醇/水二元溶剂体系中,制备出具有优异拉伸性能、抗疲劳性、耐穿刺等多功能于一体的PR-Gel。原位小角X-射线散射、X-射线衍射等手段证明了可移动交联点(β-环糊精-胆酸轮烷单元)产生的“滑轮效应”提供了与固定交联点显著不同的力学性能,能够有效地分散施加的作用力,最终使得凝胶具有超强的抗疲劳性能和超快的回弹性能以及优异的抗断裂能力(图2),基于PR-Gel的柔性传感器也表现出了出色的循环稳定性。 图1 PR-Gel的设计和3D打印应用 图2 PR-Gel力学性能和耐穿刺性能表征将该凝胶与DLP 3D打印技术相结合,制备了具有复杂几何结构和高分辨率的凝胶柔性器件。基于PR-Gel的应变传感器具有高度灵敏的传感性能,能够实现精确的实时人体运动检测和心电信号的原位监测(图3)。该工作以“Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors”为题发表在《Nature Communications》杂志上了(Nature Communications 2023; 14:1331),文章第一作者是华南理工大学硕士生熊雪茹。该研究得到国家自然科学基金委等项目的支持。图3 基于PR-Gel的3D打印柔性传感器该研究不仅为可打印功能材料的设计提供了新的范例,也为3D智能柔性电子设备的开发创造了新的机遇。参考文献:Polymerizable rotaxane hydrogels for three-dimensional printing fabrication of wearable sensors Nature Communications 2023, 14:1331. 原文链接:https://doi.org/10.1038/s41467-023-36920-3摩方精密作为微纳3D打印的先行者和领导者,拥有全球领先的超高精度打印系统,其面投影微立体光刻(PμSL)技术可应用于精密电子器件、医疗器械、微流控、微机械等众多科研领域。在三维复杂结构微加工领域,摩方团队拥有超过二十年的科研及工程实践经验。针对客户在新产品开发中可能出现的工艺和材料难题,摩方将持续提供简易高效的技术支持方案。来源:高分子科技

应用实例

2023.04.03

基于3D打印的微混合器芯片用于研究单元连接对混合性能的影响

被动式微混合器,是一种用于样品预处理的关键微流控器件。常见的两种微混合器有两个入口呈现180°的T型微混合器和呈现任意角度(通常小于180°)的Y型微混合器。这两类混合器结构简单、易于制备,但是混合时间比较长、混合效率比较低,很少单独使用,通常同另一种微混合器一起使用。为了提高微混合器的混合效率,科研工作者尝试进行微混合器入口、混合腔室结构的优化设计研究。在混合腔室的结构设计方面,常见的设计方案是在微通道中周期性的添加障碍物;另外,弧形微通道的引入、分流合并结构的设计以及微通道底部交错结构的设计等方案也极大地提高了混合效率。上述混合腔室的设计方案具有一个共同特点,即采用周期性重复混合单元结构提高混合效率。其中,两个混合单元的连接处既是前一个单元的出口,同时也是下一个单元的入口。然而,在设计过程中,关于单元连接的研究并没有得到重视。近日,沈阳工业大学张贺课题组基于面投影微立体光刻(PμSL) 3D打印技术制备了微混合器芯片,通过模拟结果与测试结果的对比,研究了单元连接对微混合器芯片性能的影响。该团队基于PμSL (nanoArch P150,摩方精密) 技术打印了一种具有重复结构的微混合器。微混合器是由平面T型入口通道和混合腔室组成,其中混合腔室是由6个立方混合单元以及单元之间的连接组成。最初设计的结构是一种研究中常见的微混合器结构,连接通道位于立方混合单元的几何中心,且微混合器的入口和出口位置同立方混合单元的连接通道位置重合。微混合器总长度为12.3mm;立方混合单元的边长是1mm;单元连接通道的长度是500μm,截面是边长为200μm的正方形。 图1. 最初设计的具有重复结构的微混合器图2.具有不同连接位置的微混合器的混合指数(模拟结果)图3.两种不同连接位置组合的微混合器的混合指数(模拟结果)图4. 可视化测试系统以及3D打印的微混合器的显微图像(Location 5) 图5. 3D打印的两种不同连接位置组合的微混合器在不同时间的显微图像 根据单元连接位置的不同分为九种微混合器,分别命名为Location 1- Location 9;该九种微混合器的混合指数模拟结果表明单元连接位置对微混合器的混合性能有显著的影响。在此基础上,将两种不同单元连接位置进行组合,用以提高混合器的混合效率。基于PμSL 技术制备了三种微混合器并进行了可视化测试。测试结果同模拟结果一致,表明单元连接位置对微混合器的性能确实有显著的影响,并且仅通过改变单元连接的位置,可以极大地改善微混合器的性能。该研究成果为优化微混合器的结构设计、提高微混合器的性能提供了新思路,以“The Influence of the Unit Junction on the Performance of a Repetitive Structure Micromixer”为题发表在Micromachines上。

应用实例

2023.03.27

《Lab on a Chip》3D打印微流控器件制备双层脂膜

Fig. 1 日本东京大学 竹内昌治 教授及其研究团队在Lab on a Chip杂志上发表封面文章近年来,与细胞膜信号和物质传输有关的膜蛋白(membrane proteins),受到药物开发人员的广泛关注。由于具有极高的特异性(specificity)以及对配体分子(ligand molecules)的敏感性,膜蛋白还有望用于各类化学传感器。在实际操作中,膜蛋白需要双层脂膜(lipid bilayer)作为载体。在过去,研究人员主要利用机加工或光刻等MEMS器件的加工方法,来制作具有“双空腔结构”(double-well chamber,DW)的微型器件,并通过“液滴接触法”(droplet contact method,DCM)来制作双层脂膜。随着3D打印技术的快速发展,也有越来越多的研究人员尝试使用3D打印来制作类似微型器件。最近,东京大学著名学者竹内昌治教授所带领的团队,研究了3种不同的3D打印技术用于双层脂膜制备(fabrication of lipid bilayer devices)及其用于膜蛋白检测(measurement of membrane proteins)的可行性。研究成果以“3D printed microfluidic devices for lipid bilayer recordings”为题,作为封面文章发表在Lab on a Chip期刊上。Fig. 2 (a)DCM装置示意图;(b)3D打印制作DCM微型器件 这项研究从以下三个方面进行:1. 利用3D打印DCM微型器件制备双层脂膜的成功率。研究人员利用3种不同的3D打印技术,分别制作了特殊的DCM器件,其中包含厚度为40μm /80μm /200μm的薄壁结构。利用PμSL高精密3D打印(摩方精密,microArch S140)技术制作的DCM器件,实际尺寸与设计值的偏差只有6%,表面粗糙度低至0.27±0.02μm,在制备双层脂膜时能够实现高达93%的成功率。Fig. 3 不同3D打印样品的尺寸精度及表面粗糙度(microArch为摩方精密 S140打印机)2. 分别对由3D打印及传统方法制作的DCM器件进行性能对比。研究指出,通过电噪声振幅(amplitude of electrical noise)及双层脂膜成型时间(waiting time for lipid bilayer formation)的比较,3D打印所制作的器件能实现与传统方法较为一致的性能,即可灵敏、快速地获取离子通道信号(ion channel signals)。3. 3D打印技术在DCM领域的拓展应用。通过微流控一体成型(monolithic fabrication)制备不同的DCM器件(如DW结构、DW与双管道串联结构、多空腔DW结构)用于溶液混合以及电信号的并行记录,研究人员指出,3D打印技术能够快速、便捷、一体成型制作传统方法无法实现的复杂结构,在药物开发和化学传感器等方面将会有非常大的应用前景。Fig. 4 摩方精密的S140所打印的DCM器件

应用实例

2023.03.27

基于PμSL 3D打印的导电点阵结构用于多模态传感器

介观尺度(10μm-1mm)的3D点阵结构为新应用领域提供了最佳的几何结构,例如轻质力学超材料、生物打印组织支架等。其周期性、多孔的内部结构为调谐3D点阵结构对力、热、电以及磁场的多功能响应提供了机会。借助这种结构优势,多材料3D点阵结构可用于实现器件的多功能性。由于传统微加工技术在复杂三维结构制造方面的局限性,而3D打印技术在制备复杂三维结构方面可较好的克服这一局限性。目前,研究人员基于挤压成型、立体光刻(SLA)等3D打印技术制备了金属点阵或者复合材料点阵实现结构的功能化。但是这些方法打印分辨率比较低,挤压成型制备的点阵需要高温烧结处理,工艺比较繁琐。面投影微立体光刻(PμSL) 3D打印技术具有超高的精度,可以实现介观尺度3D聚合物点阵结构的制备。纳米薄膜可以利用表面驱动的静电对化学吸附和物理吸附的敏感性而被用于化学和生物传感领域。因此,基于PμSL技术,通过纳米薄膜与3D聚合物点阵结构的集成化可以实现介观尺度传感器件的制备。近日,美国达特茅斯学院William J. Scheideler课题组基于面投影微立体光刻(PμSL) 3D打印技术结合原子层沉积技术(ALD)制备了多功能3D电子传感器。该团队基于摩方精密(BMF)超高精度光固化3D打印机 microArch S240打印了3D点阵结构,结构表面光滑,有利于电子薄膜的均匀沉积(图1)。采用原子层沉积技术先在聚合物点阵表面低温沉积一层Al2O3晶种层,然后再均匀沉积一层导体(SnO2,ZnO : Al)和半导体(ZnO)的金属氧化物薄膜材料,从而实现3D打印聚合物到多功能3D电子器件的转变(图2)。其中,Al2O3晶种层可以促进导电薄膜在聚合物点阵表面的生长。图1. 基于PμSL 技术制备的3D导电点阵结构 图2. 金属氧化物在3D打印点阵结构上的生长图3. 金属氧化物包覆的3D打印八面体点阵的电学性能图4. 3D导电点阵结构的传感性能 3D导电点阵结构电学性能的测试表明金属氧化物薄膜厚度、3D网络结构以及生长温度等均可影响结构的导电性能;同2D结构相比,3D导电点阵结构具有更大的比表面积,为电流传导提供更多的平行通道,因此,该结构的导电性能明显增强。研究结果发现,八面体导电点阵具有高比表面积、高理论预测电导率和热导率,因此研究者将其用于多模态传感器进行传感性能的研究并进行验证。结果表明3D几何结构不仅提高了传感器的灵敏度,而且增强了传感器对化学、热以及机械刺激的响应。该研究成果表明3D导电点阵结构在植入式生物传感器、3D集成微机电系统等介观尺度器件方面具有巨大的应用潜力,以“Transforming 3D-printed mesostructures into multimodal sensors with nanoscale conductive metal oxides”为题发表在Cell Reports Physical Science上。

应用实例

2023.03.27

基于3D打印的表面波太赫兹金属龙勃透镜天线

律回春晖渐,落子开新局。在这个春暖花开、朝气蓬勃的时节,摩方精密再一次迎来了公司发展的里程碑时刻,经过数月的周密规划和积极筹备,摩方精密南京办事处于2023年3月22日在南京市秦淮区太平南路168号2幢正式成立。深耕于微纳3D打印领域多年的摩方精密,早在2018年即于无锡市设立了首家办事处。五年来,在各界新老客户的支持下,摩方精密凭借公司雄厚的研发和生产的实力,为客户提供了颠覆性精密加工能力解决方案和卓越的一站式服务,实现了区域业务量的持续增长。随着公司客户量的不断增加和市场需求的持续扩大,为了更好地服务客户,做好本地化服务,同时加速区域市场开拓步伐、延伸业务范围,筹建成立了南京办事处。该办事处的成立,将更有效地覆盖南京周边及安徽地区,并辐射山东与河南区域,为更多客户提供更加高效的优质服务。此举也彰显了摩方精密对华东市场持续发展的战略信心。作为微纳3D打印技术和精密加工解决方案的资深提供商、精密增材制造领域的领军企业,摩方精密此次立足江浙、进驻南京,是公司实施发展战略目标的重要部署之一,无疑将给南京、江苏乃至整个华东地区的行业发展带来强大动力,也必将迎来给公司带来向更高台阶发展的新契机。今后,摩方精密将依托本地化的运营模式,积极集聚区域资源,为精密医疗器械、电子器件、微流控、微机械等众多工业及科研领域提供更优质的服务,也为3D打印行业的发展作出更大的贡献。

应用实例

2023.03.27

基于3D打印的表面波太赫兹金属龙勃透镜天线

太赫兹/亚太赫兹频段的复杂透镜结构加工精度和公差要求很高,一般在几微米以内,因此如何实现太赫兹/亚太赫兹频段的天线加工是一个关键问题。3D打印技术以其自由成型的能力为复杂透镜结构的加工提供了更多的制造灵活性。近年来,针对亚太赫兹无源器件的3D打印技术已经得到了实现,其加工精度可达5−20 μm,但对于太赫兹频段多波束天线的加工制造尚无报道。近期,来自北京理工大学毫米波与太赫兹技术北京市重点实验室的刘埇和卢宏达研究小组提出了一种太赫兹全金属梯度折射率透镜多波束天线。天线由一个基于周期性金属柱的表面波Luneburg透镜和一个由9个WR-2.2波导构成的馈电阵列组成。透镜和馈电结构采用相同的高精度3D打印技术加工,并利用磁控溅射金涂层进行表面金属化处理。天线的测量结果显示其所有端口的反射系数都在−12.5 dB以下,并且多个独立波束可以连续覆盖±60°的扫描范围,与仿真结果吻合良好。测量的增益均在16 dBi以上,扫描损耗在1.2 dB以下。这项工作为太赫兹频率下金属多波束透镜天线的制造和实现提供了一种新方法。图1天线结构:(a)3D打印,(b)镀金后。图1中的天线实物通过面投影微立体光刻(PμSL)3D打印技术制造。透镜结构和馈电波导使用高精度3D打印机(nanoArch S140,摩方精密)打印得到,所用材料为HTL树脂,结构如图1(a)所示,透镜天线的总尺寸为14 mm×14 mm×1.6 mm。图中标注的尺寸测量结果表明了3D打印透镜天线具有较高的加工精度,误差控制在±5μm以内。利用磁控溅射表面镀金工艺,在3D打印的透镜结构上涂覆了一层500 nm厚的金涂层,实现了多波束天线的金属结构,如图1(b)所示。图2(a)展示了最终亚太赫兹全金属梯度折射率透镜多波束天线以及测试工装实物图。图2(b)-(c)和图3分别给出了太赫兹全金属梯度折射率透镜多波束天线的s参数和辐射方向图测试结果。仿真和测量结果之间的良好一致性验证了所提出的亚太赫兹全金属多波束天线的可行性和高精度3D打印技术的能力。图2 (a)天线夹具及AUT与UG-387法兰连接件;(b)仿真的端口隔离度;(c)测量和仿真的端口1、2、3、4和5的反射系数。 图3 (a)AUT和测试装置的照片;(b)355 GHz测量和仿真的H面辐射方向图;(c)352 GHz与358 GHz处测量的H面辐射方向图;(d)测量和仿真的E面辐射方向图。

应用实例

2023.03.27

3D打印多仿生槽锥刺结构实现跨气-液界面微油滴高效定向操控

复杂环境下的低表面能液滴操控对于混合液相分离、化学微反应废物处理等能源、环境与健康领域的应用发展具有重要指导意义。具有液体靶向运输控制功能的仿生结构表面为微滴操控提供了一种能耗更低、制备工艺更简单的解决策略。目前实现基底表面液滴智能运输主要依赖于材料润湿性梯度和结构的不对称性,且相关研究均集中于水处理。油等低表面能液滴的低接触角滞后和接触线滑移使其相比水运动路径更难控制,尽管具有亲油表面的传统圆锥形结构可以实现微油滴的自运输,但复杂环境下的实用性、大容量自发连续低表面张力微液滴输送系统是亟待解决的行业难题与挑战。如何突破现有微滴操控不对称性结构的功能局限实现微油滴气-液界面跨相传输提取更是鲜有研究。近日,西南科技大学微纳仿生系统与智能化研究团队李国强教授与海河实验室曹墨源研究员合作,受鱼刺微油滴操控功能、水稻叶表面各向异性液滴滑动现象启发,利用PμSL高精密3D打印(摩方精密,nanoArch S140,P150)技术制备了一种多仿生槽锥刺结构(BGCS)实现水下油滴的逆重力高效运输与收集。在非对称拉普拉斯压力和表面毛细力的协同作用下,所设计的2-BGCS结构具备在水下、空气以及跨气-液两相界面超快、连续传输油滴的功能,运输速度最高可达70.2 mm/s。与传统圆锥形结构相比,倾斜角20°时,2-BGCS结构的输送速度提高9倍。在逆重力传输油滴时,2-BGCS结构能够提升超过22 μL的重油滴,通量提升5倍,极大的改善了圆锥结构的功能与性能,且具有输运大体积油滴的潜力。仿生槽锥刺集油阵列装置表现出在水环境下连续、自发地收集油滴的性能。该研究为复杂环境下的油滴从输送到收集提供了一种集成、通用的新策略,在水下微油滴收集系统、生物分析及污染治理等领域具有广阔的应用前景。评审人对该工作给予高度评价:基于锥形结构和沟槽结构的巧妙结合和功能设计为微流控等领域提供新的仿生策略。该工作以“Directional and Adaptive Oil Self-transport on a Multi-bioinspired Grooved Conical Spine”为题发表在国际著名期刊《Advanced Functional Materials》上。西南科技大学机械工程2019级硕士生李耀霞和中国科学技术大学仪器科学与技术2021级博士生崔泽航为共同一作,通讯作者为李国强教授和曹墨源研究员。图1 仿生槽锥刺结构的设计与性能对比。受鱼刺和水稻叶启发,利用精密3D打印制备了不同槽个数的仿生锥形结构。梯度槽和锥形结构的结合,使仿生结构具备水下超快逆重力定向传输功能,对比不同槽数的仿生结构以及传统锥形结构,2-BGCS结构的运输效果最佳。图2 不同结构连续输送油滴及理论机制的比较。对仿生槽锥形结构、传统锥形结构以及对称圆柱结构在水下进行连续逆重力输送实验对比,微油滴在不同结构上连续运输的高度对比说明仿生槽锥形结构上的微油滴能够不断连续输送,且不影响下一次循环。基于不同结构对比实验,对油滴沿结构运输的模型进行机理分析。图3 仿生槽锥刺结构在不同环境下油滴运输的应用。基于仿生槽锥形结构水下逆重力油滴运输的优异性能,进一步探讨了在多环境下的油滴运输功能,不仅能够实现微油滴在空气中的超快输送,还可以实现气-液界面跨相油滴传输,集成收集装置能够实现水下油滴的大通量收集。小结综上所述,受鱼刺空中油滴定向输送以及水稻叶各向异性槽的启发,作者借助精密3D打印制备新型仿生功能结构,由锥形结构产生的非对称拉普拉斯压力和凹槽结构产生的表面毛细力的共同作用下,提高了油滴在水下传输能力,极大的改善了传统圆锥结构的功能与性能。同时,利用不对称结构实现油滴跨气-液两相界面的精准高效传输,仿生槽锥刺集油阵列装置实现在水环境下超快、连续收集油滴,为复杂环境下的油滴从输送到收集提供了新的方法。微纳仿生系统与智能化团队一直致力于超快激光微纳精密制造和超精密3D/4D打印制造的基础研究与应用研究,以开发微纳功能结构、芯片、器件及集成系统为目标,服务于能源、环境、健康等重点领域。近年来,该团队报道了一系列高水平研究成果,包括水平振动模式高性能微滴定向驱动(Adv. Mater., 2020, 2005039),飞秒激光诱导自生长蘑菇头凹角结构微柱(Nano Lett., 2021, 21, 9301−9309; ACS Nano2022, 16, 2730-2740),激光3D打印和飞秒激光直写构筑仿鱼骨微液滴多相分流器、仿荻草叶保水功能“即插即用”式高效集水灌溉装置(J. Mater. Chem. A, 2021, 9, 9719; J. Mater.Chem. A, 2021, 9, 5630; Nano-Micro Lett., 2022,14:97),精密3D打印构建仿生麦芒分级系统用于高效雾水收集、受蚊眼启发的激光织构化仿生多功用玻璃(Chem. Eng. J, 2020.125139; Chem. Eng. J,2021.129113),一种用于微样分析的仿生微滴操控器(ACS Appl. Mater. Interfaces 2021, 13, 14741−14751)等40余篇。这些重要成果体现了机械工程学科在科学研究和人才培养方面的新成就。该研究受到国防科工局十四五基础科研计划项目、装备预研领域基金项目、国家自然科学基金项目、四川省科技创新基金等项目的支持。

应用实例

2023.03.17

基于小球藻细胞的磁性复合多聚体微机器人用于高效靶向给药

微纳机器人在低雷诺数流体中可将能量转化为有效运动,因此在生物医学领域具有巨大的应用前景。近年来,磁性微纳机器人作为一种有发展前景的靶向给药平台而受到了特别的关注。科研工作者设计了不同的磁性微纳机器人用于高效递送抗癌药物至靶向肿瘤部位并取得了较好的效果。研究发现,作为体内给药的平台或载体,一方面,微纳机器人的生物相容性是至关重要;另一方面,微纳机器人的重构对于其在复杂变化环境中高度灵活地完成给药具有重要意义。然而,目前来说,微纳机器人的研究在同时满足这两方面的要求上仍具有一定的挑战性。 天然生物模板具有良好的生物相容性和精致结构的固有优势,有望为磁性微纳机器人的制备提供新的机遇。小球藻是一种具有良好的生物相容性和生物降解性的单细胞微藻。它们具有均匀的球状结构,直径约为3-5μm。这些特性使它们具有作为理想天然生物材料用于生物医学领域的优越性。然而,由于扇贝定理的限制,在低雷诺数流体中采用动态磁场有效地驱动具有简单对称球体形状的单一微球是不可行的,这限制了微藻细胞在微机器人领域的应用潜力。近日,北京航空航天大学蔡军课题组制备了一种基于小球藻细胞的磁性复合多聚体微机器人,实现了高效的靶向给药。研究者将小球藻(Chlorella,Ch.)细胞作为一种生物模板,依次进行Fe3O4沉积、抗癌药物阿霉素(DOX)装载,实现磁性复合微机器人单元的制备。利用磁偶极作用,微机器人单元通过诱导自组装作用重构成链状的复合多聚体微机器人(BMMs),如微小的二聚体、三聚体等。基于面投影微立体光刻(PμSL)技术设计了哑铃形的微流控通道,用于进行BMMs的体外靶向给药试验(图1)。图1,BMMs的制备和靶向给药示意图。图2,自组装BMMs的驱动性能。图3,BMMs的生物相容性和化疗性能。图4,BMMs的体外靶向给药试验。BMMs具有两种不同的运动模式,包括动态磁场下的旋转和垂直旋转磁场下的翻滚;运动速度的测量以及精确定位的实现表明BMMs具有优异的驱动能力(图2)。BMMs还表现出良好的生物相容性、高效的DOX装载能力、pH触发释药能力以及显著的化疗效果(图3)。另外,采用PμSL(nanoArch S140, 摩方精密)技术结合PDMS倒模技术制备了哑铃形微流控通道,在该通道内,利用磁场驱动实现了BMMs对HeLa癌细胞的靶向给药。结果表明BMMs可以实现精准靶向给药,并对抗肿瘤治疗具有良好的疗效。此研究在靶向抗癌治疗方面具有巨大的应用潜力。该研究成果,以“Magnetic Biohybrid Microrobot Multimers Based on Chlorella Cells for Enhanced Targeted Drug Delivery”为题发表在ACS Applied Materials & Interfaces上。

应用实例

2023.03.17

基于PμSL 3D打印的水凝胶用于柔性热响应智能窗

通风、空调、照明、供暖等能耗占建筑总能耗的40%以上,同时温室气体排放和全球人口持续增加,极大加剧了全球气候变暖。因此,基于外界环境条件调节太阳辐射的智能窗受到了极大的关注。该智能窗可通过感知外部刺激(如光、热、电等)而产生相应的光学性质变化,从而选择性地吸收或反射太阳辐射,达到改善室内光强、温度的目的。根据制备材料常分为热致变色智能窗、光致变色智能窗、机械致变色智能窗以及电致变色智能窗。其中,热致变色智能窗因其对天气和温度的适应性响应而得到广泛的研究。 近年来,热响应水凝胶在超过低临界溶解温度(LCST)时,可快速完成从透明状态到不透明状态的可逆转变,可作为一种新型热致变色智能窗的材料。热响应水凝胶智能窗可以在无需额外能量输入的情况下,最大限度地利用太阳光的热量,对能耗的降低具有重要作用。聚(N-异丙基丙烯酰胺)(PNIPAM) 是最常用的热响应材料,其LCST大约是32℃。PNIPAM水凝胶在可逆相变过程中表现出高太阳光调制能力,而且在室温下具有高透光率,可以保证良好的室内能见度。然而,纯PNIPAM水凝胶柔韧性较差,难以通过传统的制备技术制造复杂的结构。因此,需要开发一种具有良好的机械性能、高太阳光调制能力以及高透光率的新型水凝胶用于智能窗的制备。3D打印技术作为一种新型的材料加工技术,因其设计灵活、成本低、加工效率高等优点,已经应用于复杂结构水凝胶的加工制备。然而,受限于刺激响应型单体,通过3D打印技术制备高分辨率结构的水凝胶智能窗仍极具挑战性。近日,湖南大学王兆龙课题组开发了一种新型的热响应3D打印水凝胶用于智能窗的设计,基于面投影微立体光刻(PμSL) 3D打印技术,水凝胶结构的分辨率高达40μm。研究者基于N-异丙基丙烯酰胺(NIPAM)与亲水性的4-丙烯酰吗啉(ACMO)乙烯基单体的共聚反应制备了热响应水凝胶。该水凝胶响应机理是通过可逆亲水/疏水相变反应调节NIPAM-ACMO共聚物对光的散射行为:当温度低于LCST时,NIPAM-ACMO共聚物同水之间形成分子间氢键,入射光可以透过;一旦温度超过LCST,疏水缔合物主导太阳光的传输,导致入射光发生散射,水凝胶由透明状态转变为不透明状态,阻挡太阳光的照射(图1)。采用PμSL (nanoArch S140, 摩方精密)在玻璃衬底上打印水凝胶图案,最高分辨率可达40μm。水凝胶图案在20℃是透明的;然而,当温度升高至40℃时,图案化的水凝胶选择性地由透明状态转变为不透明状态(图2)。而且,3D打印水凝胶从透明状态到不透明状态的转变是可逆的。 图1.a:热响应水凝胶设计的光学透明-不透明可切换窗口刺激响应变化的示意图 图2.基于PμSL3D打印技术制备的水凝胶图案。a:光固化树脂的组成成分;b:打印水凝胶的拉曼光谱;c:PμSL 3D打印技术原理示意图;d:3D打印高分辨率水凝胶图案,标尺是100μm;e:图案化水凝胶选择性透明-不透明转变的图片,标尺是5mm图3. 柔性热响应水凝胶器件的性能。a:透明水凝胶承受变形的照片(20℃),比例尺是10mm;b:不透明水凝胶承受变形的照片(40℃),比例尺是10mm;c:不同ACMO质量含量的水凝胶应力-应变曲线;d:不同PEDGA质量含量的水凝胶应力-应变曲线;e:不同温度下的水凝胶应力-应变曲线;f:PDMS衬底上水凝胶的透射光谱;g:PC衬底上水凝胶的透射光谱;h:水凝胶智能窗与已有文献报道的性能比较 同纯PNIPAM水凝胶智能窗相比,热响应ACMO单体赋予新型水凝胶极好的柔韧性和超高的拉伸性。其可以承受很大的变形,例如弯曲、拉伸、扭转;单轴拉伸试验表明水凝胶拉伸性能最大值为1500%。采用3D打印水凝胶制作的柔性热响应智能窗表现出优异的太阳光调制能力。智能窗在20℃是完全透明的,透光率(Tlum )高达85.847%;当环境温度超过LCST时,智能窗能通过超快的透明状态-不透明状态的转变调节太阳光的传输,太阳光调制率(∆Tsol)高达79.332%。相比于其他文献报道的热致变色智能窗,该工作中制备的柔性水凝胶智能窗表现出超高的透光率和太阳光调制率。此研究在新一代理想智能窗的节能方面具有巨大的应用潜力。该研究成果,以“3D printed hydrogel for soft thermo-responsive smart window”为题发表在International Journal of  Extreme Manufacturing上。

应用实例

2023.03.17

3D打印用于抗凝药物重组水蛭素新型微创无痛递药系统的设计制备

 抗凝治疗通常被用作心脑血管疾病治疗的首选策略,且此类患者大多需要长期甚至终身服用抗凝药物。直接口服抗凝剂有导致胃肠道出血的风险,尤其是对于有胃肠道疾病如胃肠道溃疡的患者,这种出血是致命的。皮下或静脉注射给药或可规避胃肠道出血的风险,但是注射给药需专业人员辅助,这对长期用药的患者而言极其不便,注射引起的疼痛亦会导致患者用药依从性较差。此外,皮下注射抗凝剂还会导致皮下出血淤青,增加感染风险,给抗凝药物临床应用带来了极大的不便。透皮给药作为一种前瞻性给药策略,可以补充注射和口服给药的局限性 (图1)。图1. 临床抗凝药物给药方式及不良反应微针 (Microneedle,MN) 作为微米级的微创设备,可通过破坏皮肤最外层角质层产生短暂的疏水性毛孔,将治疗药物输送至表皮中,被认为是最有前途的透皮给药系统之一。目前,微针的制备主要通过微模型浇铸法,但是用于微模型制备的方法大多局限于光刻或者化学蚀刻,工艺复杂、周期长且成本高,限制了微针的多样性和个性化发展。高精度 3D 打印是近年来新兴的一种微模型制备方法,由于该法简单高效且成本相对较低,已广泛应用于生物医药的各领域,为微针阵列模型的设计制备提供了新的选择。图2.微针阵列模型的设计与打印 A. 1#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);B.2#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);C.设计模型和打印模型对比 近期,复旦大学代谢分子医学教育部重点实验室于敏教授团队联合复旦大学药学院沈腾老师提出了一种基于 3D 打印技术的微模型制备方法。该团队利用新型超高精度 3D 打印技术 (nano Arch P140,摩方精密) 实现了个性化设计的微针阵列模型的制备,并通过开发一条新的模型复刻工艺成功制备了基于 3D 打印模型的微针模具,最终制备了 r-hirudin 新型微创无痛递药系统。该方法成功解决了以光敏树脂为打印材料的微针阵列表面 PDMS 无法固化导致的模型翻制问题,同时进一步拓展了 3D 打印在微针阵列设计制备领域的应用。利用高精度 3D 打印制备的微针阵列拥有较高的分辨率,打印的微针形貌特征保留完整、尺寸均一,为载药微针的定性与定量分析奠定了基础。相关成果以“Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease” 为题发表在《Asian Journal of Pharmaceutical Sciences》期刊上。 在该研究中,首先利用计算机辅助的模型设计对目标微针阵列进行设计优化,分别按需设计了两款不同参数的微针阵列模型,如图 2A所示,考虑到 3D 打印分辨率的限制,绘制微针长度为 1000 μm,允许微针有 100-200 μm 的长度损失,设置微针形状为五棱锥形,底边长度分别为 150 μm 和 100 μm,将微针有序排列成 10 × 10 的微针阵列 (图 2B)。将设计图纸输出导入 3D 打印软件进行打印,最终获得基于光敏树脂的微针阵列模型。与设计模型相比,微针的高度发生了100-200μm 的损失 ,但在允许范围之内,微针针体形貌保存完整,不同微针个体尺寸均一 (图 2C),提示高精度 3D 打印在微针阵列模型制备方面具有巨大的应用潜力。图3.微针模具及 3DMN 制备流程图 由于以光敏树脂为打印材料的微针阵列模型在用 PDMS 进行模型翻制时在接触表面 PDMS 无法固化,所以选择明胶作为中间过渡材料替代直接使用 PDMS 进行微针模具制备,开发一条新的模型制备工艺(图 3),并通过该路线成功制备了微针制备模具。将该模具应用于r-hirudin 递药系统的制备,通过连续的微模型浇铸并辅以恒温真空制备r-hirudin 荷载的 3DMN。对 3DMN 进行表征分析并在实验动物体内进行微针给药的药效学与药物代谢动力学分析,结果显示 3DMN 给药可以实现快速的透皮药物递送,血药浓度在给药后 0.5 h 达到峰值 (图 4D-F),血液的凝固时间在 3DMN 给药后显著延长 (图 4A-C)。对 3DMN 给药的生物利用度(BA) 进行分析,发现 3DMN 给药相对于皮下注射给药的BA可达50% (图 4G-F)。该结果初步验证了基于高精度 3D 打印的微针阵列模型制备的 3DMN 在介导透皮 r-hirudin 递送中的可行性。 图4. 3DMN 介导的r-hirudin 透皮递送的体内药效学与药物代谢动力学研究 A-C. 血液凝固时间随给药时间的变化;D-F. 血清 r-hirudin 浓度随时间变化曲线;F. 不同给药方式血清药物浓度随时间变化曲线 G. 不同给药方式血清药物浓度参数 进一步研究 3DMN 在血栓性疾病防治中的应用,分别构建肾上腺素/Ⅰ型胶原混合物尾静脉注射诱导的急性肺栓塞动物模型和三氯化铁损伤诱导的肠系膜微动脉血栓动物模型,将载药 3DMN 用于动静脉血栓的预防性治疗,研究发现3DMN 介导的r-hirudin 用药可以显著抑制急性肺栓塞模型小鼠肺部血管栓塞的形成 (图 5C-D),提高小鼠的存活率 (图 5A-B)。此外还观察到,3DMN 介导的 r-hirudin 用药同样可以显著三氯化铁损伤诱导的肠系膜动脉血栓的形成,降低血栓发生率 (图 6)。以上结果进一步说明 3DMN 可用于动静脉血栓的预防性用药,而高精度 3D 打印技术的出现不仅丰富了微针多样性,也为未来临床用药个体微针量身定制提供了基础,具有极大的经济效益与社会效益。图5. 3DMN 在预防急性肺栓塞中的应用A-B. 3DMN 给药对急性肺栓塞小鼠生存率的影响;C. 小鼠肺部组织石蜡切片 HE 染色;D. 小鼠肺部 CT 扫描图图 6. 3DMN 在预防肠系膜微动脉血栓中的应用 A. 血小板在血管损伤部位聚集的体内成像;B. 血栓形成率的统计分析图;C. 血栓形成长度统计分析图

应用实例

2023.03.17

肠道吻合术!4D打印可控变形和降解的形状记忆吻合环

肠道吻合术是指切除部分带病肠道后将其连接并重建的重要技术,这在腹部外科手术中非常常见。理想的吻合术要求吻合口牢固,无吻合口瘘、出血或梗阻等并发症。早期临床上使用的吻合技术主要是手工缝合,后逐渐被无缝合吻合技术替代,如借助金属钉及辅助器械实现的机械肠道吻合。目前报道最多的是由具有生物相容性的高分子材料制成的可降解肠吻合环,但是该一体式的大体积结构在吻合手术中不易置入肠道,增加了消化道内容物流出导致感染炎症的风险。近日,浙江大学化工学院赵骞教授与附属第一医院刘剑团队报道了一种分体式的具有形状记忆效应的可降解肠吻合环。如图1所示,借助模具均匀压缩使得吻合环固定直径为原来1/ 2的临时形状,将其与可酸溶解的壳聚糖水袋和辅助管进行组装得到备用的吻合环。在大肠肿瘤的两侧分别剪开小洞置入缩小后的内环体和外环体。注入热水使缩小后的吻合环受热发生形状回复。剪去肿瘤段肠道后,内环体插入外环体中通过卡扣结构吻合在一起,此时吻合环伞状外圈将大肠两端紧紧地接触在一起,使其逐渐发生愈合。图1. 形状记忆吻合环的组装和吻合示意图一般来说,良好的形状回复需要材料具有交联结构,而交联对材料降解有阻碍影响。在这项工作中,通过聚乳酸(PLA)和聚乳酸-乙醇酸(PLGA)不同比例的熔融共混实现了形状记忆性能和降解性能之间的平衡。同时添加增塑剂得到了具有合适回复温度的可变形可降解材料。采用熔融沉积3D打印技术制备了具有特殊菱形网格和卡扣结构的吻合环。该结构有助于最大化减小临时形状的压缩体积,从而便于置入肠道。图2展示了吻合环形状记忆的过程,内外环体在发生形状回复后可以实现稳定牢固的吻合。图2. 吻合环的形状记忆与吻合过程以猪大肠为例,通过吻合环实现了两断肠的连接与重建(图3)。吻合口结构前后左右都不会发生移动,吻合环具有良好的机械支撑作用,仍能保持肠道的畅通。一个月左右肠道发生愈合,吻合环由于降解机械性能下降,在肠道的蠕动下碎裂而排出体外。由于个体的肠道尺寸各异, 3D打印灵活定制和构建复杂形状的优势得以体现,在3D打印基础上加以变形的4D打印降低了手术过程中将吻合环置入肠道的难度。该工作进一步促进了4D打印在医学领域的发展。图3. 猪大肠吻合过程该成果以“4D printed shape memory anastomosis ring with controllable shape transformation and degradation”为题发表在Advanced Functional Materials上。其中,浙江大学化工学院彭文俊(现为浙江理工大学特聘研究员)为第一作者,浙江大学化工学院赵骞教授和浙江大学附属第一医院刘剑主任医师为共同通讯作者。来源:高分子科学前沿

应用实例

2023.03.17

肠道吻合术!4D打印可控变形和降解的形状记忆吻合环

肠道吻合术是指切除部分带病肠道后将其连接并重建的重要技术,这在腹部外科手术中非常常见。理想的吻合术要求吻合口牢固,无吻合口瘘、出血或梗阻等并发症。早期临床上使用的吻合技术主要是手工缝合,后逐渐被无缝合吻合技术替代,如借助金属钉及辅助器械实现的机械肠道吻合。目前报道最多的是由具有生物相容性的高分子材料制成的可降解肠吻合环,但是该一体式的大体积结构在吻合手术中不易置入肠道,增加了消化道内容物流出导致感染炎症的风险。近日,浙江大学化工学院赵骞教授与附属第一医院刘剑团队报道了一种分体式的具有形状记忆效应的可降解肠吻合环。如图1所示,借助模具均匀压缩使得吻合环固定直径为原来1/ 2的临时形状,将其与可酸溶解的壳聚糖水袋和辅助管进行组装得到备用的吻合环。在大肠肿瘤的两侧分别剪开小洞置入缩小后的内环体和外环体。注入热水使缩小后的吻合环受热发生形状回复。剪去肿瘤段肠道后,内环体插入外环体中通过卡扣结构吻合在一起,此时吻合环伞状外圈将大肠两端紧紧地接触在一起,使其逐渐发生愈合。图1. 形状记忆吻合环的组装和吻合示意图一般来说,良好的形状回复需要材料具有交联结构,而交联对材料降解有阻碍影响。在这项工作中,通过聚乳酸(PLA)和聚乳酸-乙醇酸(PLGA)不同比例的熔融共混实现了形状记忆性能和降解性能之间的平衡。同时添加增塑剂得到了具有合适回复温度的可变形可降解材料。采用熔融沉积3D打印技术制备了具有特殊菱形网格和卡扣结构的吻合环。该结构有助于最大化减小临时形状的压缩体积,从而便于置入肠道。图2展示了吻合环形状记忆的过程,内外环体在发生形状回复后可以实现稳定牢固的吻合。图2. 吻合环的形状记忆与吻合过程以猪大肠为例,通过吻合环实现了两断肠的连接与重建(图3)。吻合口结构前后左右都不会发生移动,吻合环具有良好的机械支撑作用,仍能保持肠道的畅通。一个月左右肠道发生愈合,吻合环由于降解机械性能下降,在肠道的蠕动下碎裂而排出体外。由于个体的肠道尺寸各异, 3D打印灵活定制和构建复杂形状的优势得以体现,在3D打印基础上加以变形的4D打印降低了手术过程中将吻合环置入肠道的难度。该工作进一步促进了4D打印在医学领域的发展。图3. 猪大肠吻合过程该成果以“4D printed shape memory anastomosis ring with controllable shape transformation and degradation”为题发表在Advanced Functional Materials上。其中,浙江大学化工学院彭文俊(现为浙江理工大学特聘研究员)为第一作者,浙江大学化工学院赵骞教授和浙江大学附属第一医院刘剑主任医师为共同通讯作者。来源:高分子科学前沿

应用实例

2023.03.17

中国科学院合肥物质科学研究院吴晅课题组《Biomimetics》:微米级3D打印助力仿爬岩鱼吸盘制备

自然界中有许多水生生物具有令人惊叹的吸附能力,例如,章鱼可以利用手臂上的吸盘在海中爬行并捕捉猎物,鮣鱼可以使用背上的粘性圆盘附着在鲨鱼身上 “搭便车”,爬岩鱼将它们的整个身体用作吸附系统抵御湍流的冲击。这些生物大多具有基于负压效应的吸盘黏附系统,尽管生物吸附器官的种类和形式不同,但学者们在生物黏附器官表面均发现了特殊的微/纳米级结构。有报道指出,这些微细结构在提高生物表面适应性、增加各向异性摩擦力等方面发挥了至关重要的作用。为了制造出表面覆盖微纳结构的仿生黏附器件,基于立体光刻的微型 3D 打印方法越来越受欢迎。近期,中国科学院合肥物质科学研究院的吴晅副研究员团队受爬岩鱼吸附现象的启发,研制了一款边缘具有分层微结构的仿生吸附器件(图1),并从毛细力和Stefan黏附相关的角度解释了微结构边缘在增强粘附力所起的作用。该团队利用新型面投影微立体光刻技术(nanoArch S140,摩方精密)和胶体球刻蚀技术制造了具有不同仿生特征(图2)的仿生吸盘,通过实验验证了微结构形状和规模、表面粗糙度和边缘材料对仿生吸盘粘附力的影响。最后,团队进行了拉脱实验以表征仿生边缘的剥离行为,并说明微结构在吸盘边缘从基底动态剥离中的作用。相关成果以“Enhanced Adhesion of Synthetic Discs with Micro-Patterned Margins”为题发表在《Biomimetics》期刊上。图1 爬岩鱼生物吸盘和仿生吸盘结构:(a-e)爬岩鱼生物吸盘边缘结构;(f)仿生吸盘边缘;(g)仿生分层微结构;(h)仿生吸盘 图2 不同仿生特征的微结构示意图该研究中,团队发现常规吸盘的吸附力曲线在 0–1 s 和 1.2–1.5 s 处显示两个峰值,在 1–1.2 s 和 1.5–1.8 s 处显示两个谷值。 另一方面,对于具有微观结构的吸盘,它们在 0.5 秒后只显示一个峰值和一个谷值(图3)。这表明与仿生吸盘相比,常规吸盘的性能不稳定,可能由于边缘突然从基板上剥离导致粘附力突然下降,这也很容易导致黏附完全失效。相反的,随着拉力的逐渐增加,仿生吸盘边缘的剥离平缓,粘附力曲线相对平滑。通过对仿生吸盘和含水基底的界面接触观察,团队发现,液体在单层六边形结构表面产生了聚集,导致部分液膜厚度不均匀。然而,这种液体聚集现象并没有发生在分层微结构的表面上(图4)。此外,液膜在分层微结构表面出现了分层现象:初级液层沿着六边形凹槽流出,次级液层受摩擦粘滞力作用被困在纤维阵列间(图5)。该团队认为,这种现象有助于维持湿黏附状态,增强仿生吸盘的剪切强度。该研究提出的仿生吸附器件和协同黏附策略表现优异,在攀爬机器人和水下抓取方面极具应用潜力。图3 具有不同仿生特征的吸盘吸附力测试图4 不同仿生特征边缘从基底上剥离时的接触界面变化:(a)单层微结构和基底间的液膜;(b)分层微结构和基底间的液膜;(c)单层微结构和基底接触截面示意图;(c)分层微结构和基底接触截面示意图;图5 液膜在单个分级微结构单元中的迁移过程:(a) 分层结构被液膜覆盖;(b) 液膜开始分离为初级层和次级层。浅蓝色箭头表示次级液层边界,深蓝色箭头表示初级液层边界; (c–g) 次级液膜迁移到单个二级结构上; (h) 单个分层微结构单元完全从基底上剥离。

应用实例

2023.03.15

基于 PμSL 3D打印的水凝胶用于柔性热响应智能窗

通风、空调、照明、供暖等能耗占建筑总能耗的40%以上,同时温室气体排放和全球人口持续增加,极大加剧了全球气候变暖。因此,基于外界环境条件调节太阳辐射的智能窗受到了极大的关注。该智能窗可通过感知外部刺激(如光、热、电等)而产生相应的光学性质变化,从而选择性地吸收或反射太阳辐射,达到改善室内光强、温度的目的。根据制备材料常分为热致变色智能窗、光致变色智能窗、机械致变色智能窗以及电致变色智能窗。其中,热致变色智能窗因其对天气和温度的适应性响应而得到广泛的研究。 近年来,热响应水凝胶在超过低临界溶解温度(LCST)时,可快速完成从透明状态到不透明状态的可逆转变,可作为一种新型热致变色智能窗的材料。热响应水凝胶智能窗可以在无需额外能量输入的情况下,最大限度地利用太阳光的热量,对能耗的降低具有重要作用。聚(N-异丙基丙烯酰胺)(PNIPAM) 是最常用的热响应材料,其LCST大约是32℃。PNIPAM水凝胶在可逆相变过程中表现出高太阳光调制能力,而且在室温下具有高透光率,可以保证良好的室内能见度。然而,纯PNIPAM水凝胶柔韧性较差,难以通过传统的制备技术制造复杂的结构。因此,需要开发一种具有良好的机械性能、高太阳光调制能力以及高透光率的新型水凝胶用于智能窗的制备。3D打印技术作为一种新型的材料加工技术,因其设计灵活、成本低、加工效率高等优点,已经应用于复杂结构水凝胶的加工制备。然而,受限于刺激响应型单体,通过3D打印技术制备高分辨率结构的水凝胶智能窗仍极具挑战性。近日,湖南大学王兆龙课题组开发了一种新型的热响应3D打印水凝胶用于智能窗的设计,基于面投影微立体光刻(PμSL) 3D打印技术,水凝胶结构的分辨率高达40μm。研究者基于N-异丙基丙烯酰胺(NIPAM)与亲水性的4-丙烯酰吗啉(ACMO)乙烯基单体的共聚反应制备了热响应水凝胶。该水凝胶响应机理是通过可逆亲水/疏水相变反应调节NIPAM-ACMO共聚物对光的散射行为:当温度低于LCST时,NIPAM-ACMO共聚物同水之间形成分子间氢键,入射光可以透过;一旦温度超过LCST,疏水缔合物主导太阳光的传输,导致入射光发生散射,水凝胶由透明状态转变为不透明状态,阻挡太阳光的照射(图1)。采用PμSL (nanoArch S140, 摩方精密)在玻璃衬底上打印水凝胶图案,最高分辨率可达40μm。水凝胶图案在20℃是透明的;然而,当温度升高至40℃时,图案化的水凝胶选择性地由透明状态转变为不透明状态(图2)。而且,3D打印水凝胶从透明状态到不透明状态的转变是可逆的。 图1.a:热响应水凝胶设计的光学透明-不透明可切换窗口刺激响应变化的示意图 图2.基于PμSL3D打印技术制备的水凝胶图案。a:光固化树脂的组成成分;b:打印水凝胶的拉曼光谱;c:PμSL 3D打印技术原理示意图;d:3D打印高分辨率水凝胶图案,标尺是100μm;e:图案化水凝胶选择性透明-不透明转变的图片,标尺是5mm图3. 柔性热响应水凝胶器件的性能。a:透明水凝胶承受变形的照片(20℃),比例尺是10mm;b:不透明水凝胶承受变形的照片(40℃),比例尺是10mm;c:不同ACMO质量含量的水凝胶应力-应变曲线;d:不同PEDGA质量含量的水凝胶应力-应变曲线;e:不同温度下的水凝胶应力-应变曲线;f:PDMS衬底上水凝胶的透射光谱;g:PC衬底上水凝胶的透射光谱;h:水凝胶智能窗与已有文献报道的性能比较 同纯PNIPAM水凝胶智能窗相比,热响应ACMO单体赋予新型水凝胶极好的柔韧性和超高的拉伸性。其可以承受很大的变形,例如弯曲、拉伸、扭转;单轴拉伸试验表明水凝胶拉伸性能最大值为1500%。采用3D打印水凝胶制作的柔性热响应智能窗表现出优异的太阳光调制能力。智能窗在20℃是完全透明的,透光率(Tlum )高达85.847%;当环境温度超过LCST时,智能窗能通过超快的透明状态-不透明状态的转变调节太阳光的传输,太阳光调制率(∆Tsol)高达79.332%。相比于其他文献报道的热致变色智能窗,该工作中制备的柔性水凝胶智能窗表现出超高的透光率和太阳光调制率。此研究在新一代理想智能窗的节能方面具有巨大的应用潜力。该研究成果,以“3D printed hydrogel for soft thermo-responsive smart window”为题发表在International Journal of  Extreme Manufacturing上。官网:https://www.bmftec.cn/links/10

应用实例

2023.03.10

高精度3D打印用于抗凝药物重组水蛭素 (r-hirudin) 新型微创无痛递药系统的设计制备

抗凝治疗通常被用作心脑血管疾病治疗的首选策略,且此类患者大多需要长期甚至终身服用抗凝药物。直接口服抗凝剂有导致胃肠道出血的风险,尤其是对于有胃肠道疾病如胃肠道溃疡的患者,这种出血是致命的。皮下或静脉注射给药或可规避胃肠道出血的风险,但是注射给药需专业人员辅助,这对长期用药的患者而言极其不便,注射引起的疼痛亦会导致患者用药依从性较差。此外,皮下注射抗凝剂还会导致皮下出血淤青,增加感染风险,给抗凝药物临床应用带来了极大的不便。透皮给药作为一种前瞻性给药策略,可以补充注射和口服给药的局限性 (图1)。图1. 临床抗凝药物给药方式及不良反应微针 (Microneedle,MN) 作为微米级的微创设备,可通过破坏皮肤最外层角质层产生短暂的疏水性毛孔,将治疗药物输送至表皮中,被认为是最有前途的透皮给药系统之一。目前,微针的制备主要通过微模型浇铸法,但是用于微模型制备的方法大多局限于光刻或者化学蚀刻,工艺复杂、周期长且成本高,限制了微针的多样性和个性化发展。高精度 3D 打印是近年来新兴的一种微模型制备方法,由于该法简单高效且成本相对较低,已广泛应用于生物医药的各领域,为微针阵列模型的设计制备提供了新的选择。图2.微针阵列模型的设计与打印 A. 1#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);B.2#微针阵列模型的计算机模拟(左)、打印预览(中)及3D 打印微针的长度(右);C.设计模型和打印模型对比 近期,复旦大学代谢分子医学教育部重点实验室于敏教授团队联合复旦大学药学院沈腾老师提出了一种基于 3D 打印技术的微模型制备方法。该团队利用新型超高精度 3D 打印技术 (nano Arch P140,摩方精密) 实现了个性化设计的微针阵列模型的制备,并通过开发一条新的模型复刻工艺成功制备了基于 3D 打印模型的微针模具,最终制备了 r-hirudin 新型微创无痛递药系统。该方法成功解决了以光敏树脂为打印材料的微针阵列表面 PDMS 无法固化导致的模型翻制问题,同时进一步拓展了 3D 打印在微针阵列设计制备领域的应用。利用高精度 3D 打印制备的微针阵列拥有较高的分辨率,打印的微针形貌特征保留完整、尺寸均一,为载药微针的定性与定量分析奠定了基础。相关成果以“Design and fabrication of r-hirudin loaded dissolving microneedle patch for minimally invasive and long-term treatment of thromboembolic disease” 为题发表在《Asian Journal of Pharmaceutical Sciences》期刊上。 在该研究中,首先利用计算机辅助的模型设计对目标微针阵列进行设计优化,分别按需设计了两款不同参数的微针阵列模型,如图 2A所示,考虑到 3D 打印分辨率的限制,绘制微针长度为 1000 μm,允许微针有 100-200 μm 的长度损失,设置微针形状为五棱锥形,底边长度分别为 150 μm 和 100 μm,将微针有序排列成 10 × 10 的微针阵列 (图 2B)。将设计图纸输出导入 3D 打印软件进行打印,最终获得基于光敏树脂的微针阵列模型。与设计模型相比,微针的高度发生了100-200μm 的损失 ,但在允许范围之内,微针针体形貌保存完整,不同微针个体尺寸均一 (图 2C),提示高精度 3D 打印在微针阵列模型制备方面具有巨大的应用潜力。图3.微针模具及 3DMN 制备流程图 由于以光敏树脂为打印材料的微针阵列模型在用 PDMS 进行模型翻制时在接触表面 PDMS 无法固化,所以选择明胶作为中间过渡材料替代直接使用 PDMS 进行微针模具制备,开发一条新的模型制备工艺(图 3),并通过该路线成功制备了微针制备模具。将该模具应用于r-hirudin 递药系统的制备,通过连续的微模型浇铸并辅以恒温真空制备r-hirudin 荷载的 3DMN。对 3DMN 进行表征分析并在实验动物体内进行微针给药的药效学与药物代谢动力学分析,结果显示 3DMN 给药可以实现快速的透皮药物递送,血药浓度在给药后 0.5 h 达到峰值 (图 4D-F),血液的凝固时间在 3DMN 给药后显著延长 (图 4A-C)。对 3DMN 给药的生物利用度(BA) 进行分析,发现 3DMN 给药相对于皮下注射给药的BA可达50% (图 4G-F)。该结果初步验证了基于高精度 3D 打印的微针阵列模型制备的 3DMN 在介导透皮 r-hirudin 递送中的可行性。 图4. 3DMN 介导的r-hirudin 透皮递送的体内药效学与药物代谢动力学研究 A-C. 血液凝固时间随给药时间的变化;D-F. 血清 r-hirudin 浓度随时间变化曲线;F. 不同给药方式血清药物浓度随时间变化曲线 G. 不同给药方式血清药物浓度参数 进一步研究 3DMN 在血栓性疾病防治中的应用,分别构建肾上腺素/Ⅰ型胶原混合物尾静脉注射诱导的急性肺栓塞动物模型和三氯化铁损伤诱导的肠系膜微动脉血栓动物模型,将载药 3DMN 用于动静脉血栓的预防性治疗,研究发现3DMN 介导的r-hirudin 用药可以显著抑制急性肺栓塞模型小鼠肺部血管栓塞的形成 (图 5C-D),提高小鼠的存活率 (图 5A-B)。此外还观察到,3DMN 介导的 r-hirudin 用药同样可以显著三氯化铁损伤诱导的肠系膜动脉血栓的形成,降低血栓发生率 (图 6)。以上结果进一步说明 3DMN 可用于动静脉血栓的预防性用药,而高精度 3D 打印技术的出现不仅丰富了微针多样性,也为未来临床用药个体微针量身定制提供了基础,具有极大的经济效益与社会效益。图5. 3DMN 在预防急性肺栓塞中的应用A-B. 3DMN 给药对急性肺栓塞小鼠生存率的影响;C. 小鼠肺部组织石蜡切片 HE 染色;D. 小鼠肺部 CT 扫描图图 6. 3DMN 在预防肠系膜微动脉血栓中的应用 A. 血小板在血管损伤部位聚集的体内成像;B. 血栓形成率的统计分析图;C. 血栓形成长度统计分析图官网:https://www.bmftec.cn/links/10

应用实例

2023.03.10

< 1 ••• 8 9 10 11 12 ••• 21 > 前往 GO

深圳摩方新材科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 摩方新材

公司地址: 广东省深圳市龙华区红山6979商业区26栋5楼 联系人: 黄先生 邮编: 518110 联系电话: 400-860-5168转4666

友情链接:

仪器信息网APP

展位手机站