您好,欢迎访问仪器信息网
注册
罗姆(江苏)仪器有限公司

关注

已关注

金牌8年 金牌

已认证

粉丝量 0

400-860-5168转4029

仪器信息网认证电话,请放心拨打

当前位置: 罗姆仪器 > 解决方案 > 相变材料PCM的配方稳定性与粒径分布的关系

相变材料PCM的配方稳定性与粒径分布的关系

2024/10/16 15:43

阅读:2

分享:
应用领域:
材料
发布时间:
2024/10/16
检测样品:
热电材料
检测项目:
理化分析
浏览次数:
2
下载次数:
参考标准:

方案摘要:

相变材料 (PCM) 可以将热能以潜热的形式储存起来。通过在特定温度水平下储存或释放热量,熔化和凝固在几乎恒定的温度下进行,这使得 PCM 成为需要恒定温度的系统的良好选择。分散体是一种包含连续相和分散相的两相流体。相变分散体 (PCD) 定义为在分散相中使用 PCM 的分散体(所有利用分散相相变的不同类型的乳液或悬浮液从此被称为 PCD)。 PCD 的性质,如粒度分布、热特性、粘度和稳定性,在很大程度上取决于分散相和所含化学剂的含量。例如,稳定性(表示 PCD 中的 PCM 颗粒是否保持其形状或保持多长时间)可以通过调整粒度分布来控制,而粒度分布主要受乳化剂的类型和数量以及所施加的剪切能的影响。如图 1 所示,乳化剂在 PCM 周围形成边界层,以防止聚结、乳化和聚集等不稳定效应。

产品配置单:

分析仪器

罗姆分散体分析仪LUMiSizer ® 650

型号: LUMiSizer ® 650

产地: 德国

品牌: 罗姆

面议

参考报价

联系电话

方案详情:

相变材料PCM的配方稳定性与粒径分布的关系


相变材料 (PCM) 可以将热能以潜热的形式储存起来。通过在特定温度水平下储存或释放热量,熔化和凝固在几乎恒定的温度下进行,这使得 PCM 成为需要恒定温度的系统的良好选择。分散体是一种包含连续相和分散相的两相流体。相变分散体 (PCD) 定义为在分散相中使用 PCM 的分散体(所有利用分散相相变的不同类型的乳液或悬浮液从此被称为 PCD)。 PCD 的性质,如粒度分布、热特性、粘度和稳定性,在很大程度上取决于分散相和所含化学剂的含量。例如,稳定性(表示 PCD 中的 PCM 颗粒是否保持其形状或保持多长时间)可以通过调整粒度分布来控制,而粒度分布主要受乳化剂的类型和数量以及所施加的剪切能的影响。如图 1 所示,乳化剂在 PCM 周围形成边界层,以防止聚结、乳化和聚集等不稳定效应。

图1  PCD 内分散 PCM 和功能性化学剂的模型


配方

为了找到理想的配方,测试不同的成分和质量分数的组合。对于所有样品,PCD 的主要成分是水。分散相由有机化学品混合物组成,主要成分是石蜡 (RT25HC)。乳液采用不同配方和数量(1 至 8% 质量分数)的乳化剂生产。一种适用的乳化剂是 C16 至 C18 部分乙氧基化醇的混合物,用于提高 PCD 的稳定性。为了防止过冷,将熔点较高的肉豆蔻酸作为成核剂(0.5 至 5% 质量分数)添加到分散相中。为了生产乳液,通常使用转子-定子的均质机。实验中使用转子-定子型均质机,剪切速率为 20,000 至 50,000/s。均质时间在1至10分钟之间。不同配方组成如下

粒度分布

分散体中的粒度分布 (PSD) 主要取决于配方(乳化剂)、剪切速率和剪切强度。它通常用于确定任何分散体的质量。小液滴和窄粒度分布有利于稳定性。


稳定性分析

保质期对于工业环境中的实际使用非常重要。为了确定 PCD 的长期稳定性,采用稳定性分析仪进行测试。LUMiSizer是一种能够加速样品内的乳化和沉淀,从而引起不稳定性。功能设计如图2所示。PCD 样品暴露在高达 2300 的重力加速度 g 下。然后通过将测量时间乘以离心机内施加的重力加速度来计算 g = 9.81 m/s2 时的“预期”寿命。在此过程中,会生成传输曲线(如图3所示),其中包含有关 PCD 浓度偏差的所有信息,表明发生了乳化或沉淀过程(“ISO/TR 13097”)。根据获得的数据计算出量化 PCD 保质期的不稳定指数。不稳定指数值低表示稳定且寿命长。

在我们的定义中,只要不稳定指数不超过其自身最终不稳定指数(最大可能不稳定性)的 10%,就认为样品足够稳定。如图5所示,最小不稳定指数线(略低于 10% 的虚线)与相应样品曲线的交点决定了最大寿命。例如,可以看出,含有 8% 乳化剂的配方的寿命约为 140 天。

图2                                            图3

结果讨论

粒度对乳液的稳定性有很大影响。颗粒较小的 PCD 通常比颗粒较大的 PCD 更稳定。通过调整乳化剂的量,粒度会受到影响。如图4所示,基于 E2 的配方中乳化剂含量的增加会降低平均粒度以及最大粒度 d99。比较图4和5,可以注意到,粒度最小的 PCD(因此乳化剂量最高)也是最稳定的。有趣的是,稳定性并不强烈地遵循粒度分布。例如,使用 7% 的乳化剂(第二多的量)不会导致第二稳定的分散体。这意味着颗粒大小并不是稳定性的唯一标准;粘度也会影响稳定性。一般来说,较高的粘度有利于 PCD 的保质期。


图 4  在剪切速率为 20,000 s−1 和分散时间为5分钟时,PSD 与乳化剂质量分数的关系

图 5 在剪切速率为 20,000 s−1 和分散时间为5分钟的情况下,保质期与乳化剂质量分数的关系

这些说法得到了斯托克斯定律的支持,该定律表明,颗粒在密度不同的流体中的沉降速度与颗粒大小的平方和分散体动态粘度的倒数成正比。因此,较小的颗粒尺寸分布是 PCD 稳定性的必要但不充分条件。因此,PSD 可以用作指标,但为了安全地预测有效稳定性,需要使用 LUMiSizer 进行稳定性分析。


图 6  将 8% 乳化剂应用于配方 E2 时 PSD 与剪切速率和分散时间的关系

图 7  将 8% 乳化剂应用于配方 E2 时,不稳定性指数与剪切速率和分散时间的关系

在图6和7中,说明了 PCD(配方 E2)生产过程中剪切速率和分散时间的影响。随着通过搅拌输入的能量增加,颗粒大小的行为以及稳定性通常会改善。可以通过延长分散时间或增加剪切速率来插入额外的能量。图7表明,两种效应相互独立,延长了保质期。恒定剪切速率下较长的分散时间或恒定分散时间下较高的剪切速率可提高 PCD 的稳定性。图6中的粒度分布也得出了同样的结论,其中平均粒度以及最大粒度 D99 明显减小。然而,粒度减小的速度减慢,并且颗粒会收敛到最小可实现尺寸,该尺寸因所用乳化剂而异。PCD 对稳定性的要求不同,取决于其当前用途,因此需要不同的最小平均粒度来确保稳定的分散。


总结

1、 粒径的大小不能完全代表分散体的稳定性,还与其他参数有关,需要使用稳定性分析仪LUMiSizer来准确测量

2、通过LUMiSizer能快速筛选出稳定性最佳的配方和工艺方案。


下载本篇解决方案:

资料文件名:
资料大小
下载
相变材料PCM的配方稳定性与粒径分布的关系.pdf
741KB
相关仪器

更多

罗姆分散体分析仪LUMiSizer ® 650

型号:LUMiSizer ® 650

面议

颗粒计数仪@纳米级

型号:LUMiSpoc

面议

LUMiFlector乳脂乳蛋白分析仪

型号:LUMiFlector

面议

罗姆分散体分析仪LUMiSizer ® 651

型号:LUMiSizer ® 651

面议

相关方案

锂电池陶瓷涂层隔膜前期的陶瓷浆料稳定性评估 - 之双重陶瓷材料的混合顺序

隔膜性能决定了电池的内阻和界面结构,进而决定了电池容量、安全性能、充放电密度和循环性能等特性。因此需满足如下一些特性1、好的化学稳定性一耐有机溶剂;2、机械性能良好一拉伸强度高,穿刺强度高;3、良好的热稳定性一热收缩率低,较髙的破膜温度;4、电解液浸润性一与电解液相容性好,吸液率高。 陶瓷涂覆特种隔膜特别适用于动力电池,它是以PP,PE或者多层复合隔膜为基体,表面涂覆一层纳米级三氧化二铝材料,经过特殊工艺处理,和基体粘接紧密,显著提高锂离子电池的耐髙温性能和安全性。 为了尽量减少在制造陶瓷涂覆隔膜时使用易燃、有毒、昂贵和非环境有机溶剂,目前人们开始广泛使用水性陶瓷浆料,但水性陶瓷浆料的主要问题是分散稳定性差。在前几篇应用文章里,我们介绍了表面活性剂浓度以及粉体,聚合物粘结剂,表面活性剂三者的添加顺序对水性陶瓷浆料的稳定性的影响。 然而,在这种情况下,为了保持涂层质量,仍然需要使用稳定剂和润湿增强剂等功能性添加剂,或者对聚烯烃隔膜的表面进行改性,使其具有亲水性。这些功能添加剂在锂电池中起着杂质的作用,可能影响锂电池的电化学性能。且隔膜的表面处理增加了工序数,从而降低了制造工艺的效率,增加了生产成本,在经济上是不利的。 新的研究发现结合两种不同电极性和晶粒尺寸的陶瓷可以产生协同效应,使得在不需要使用分散稳定剂的情况下即可提高水性陶瓷浆料的分散稳定性。

能源/新能源

2024/08/19

纳米碳材料作为填料的分散方法的优化

在众多类型的膜材料中,醋酸纤维素(Cellulose Acetate-CA)是最古老的材料之一,改性后的CA具有生物相容性好、脱盐性好、电位通量高、韧性好、成本相对较低等特点,使其仍然是一种非常有前景的材料。最近,混合基质膜材料(Mixed Matrix Membrane Materials-MMMS)受到高度重视,这主要归功于它们在增加机械稳定性、较低的塑化和抑制降解等方面的性能改进。纳米碳材料作为合适的填料在最终混合基质制备的膜上产生了新的先进性能。碳纳米管(CNTs),包括单壁和多壁SWCNTs和MWCNT碳纳米管、氧化石墨烯和石墨烯纳米板结构(GO,GNPS)目前处于膜技术用填料的第一线,可提高最终膜材料的各项物理化学性能。 本论文使用高纯度碳纳米管、醋酸纤维素和二丙酮醇制备了混合基质膜,并研究了分散方法(主要是超声和转子-定子系统)对混合基质稳定性的影响,以及最终膜结构特性的影响。

材料

2024/08/12

非水溶剂中功能石墨烯纳米片的分散稳定性和定量评估

石墨烯因其独特的结构和优异的性能而引起了人们的极大兴趣,但颗粒聚集仍然是原始石墨烯大规模应用的一个关键障碍。为了探索石墨烯的独特特性并进一步扩展其实际应用,化学改性石墨烯,例如氧化石墨烯(GO)和还原氧化石墨烯(rGO)悬浮液,然而,由于石墨烯纳米片基面之间的范德华相互作用,仍然在相对高的浓度下观察到聚集。 人们提出了许多方法来提高GO在水性和有机介质中的分散稳定性,石墨烯表面的共价官能化可提高其在各种有机溶剂中的分散稳定性。尽管它们被广泛使用,但许多方法仅在相对较低的条件下实现浓度范围(通常为 0.1−1.0 mg/mL;最大为 3.6 mg/mL)。 此外,长期悬浮稳定性的分析仅限于目视检查或基于浊度和紫外/可见光的光学表征,这不可避免地需要将样品进行稀释,而稀释对稳定性的影响尚未被量化。 通过引入了三种类型的分子,包括乙醇胺、乙二醇和苯基磺酸基团到GO纳米片上,制备GO-EA,GO-EG,GO-SA,并对分散稳定性进行定量评估。

材料

2024/08/12

不同乳化剂对油酸和亚油酸乳状液稳定性的影响

普遍认为过量地摄取饱和脂肪酸是导致心血管疾病的重要原因,增加膳食中的油酸等不饱和脂肪酸的摄入,代替膳食中的饱和脂肪酸,可改善摄入者的胰岛素敏感性,降低糖尿病风险,并增强对炎症反应和肝脏损害的保护作用。有报道用亚油酸替代膳食中的饱和脂肪酸能减少血脂异常和抗胰岛素抵抗患者低密度脂蛋白颗粒的产生和数量。目前针对不饱和脂肪酸稳态化技术主要包括粉末油脂和乳状液。稳定性是影响乳状液的最重要因素。乳状液的稳定性是指其抵抗各种物理化学性质随着时间变化的能力。在储藏过程中不可避免会导致乳状液失稳,因此,提高乳状液的稳定性对于食品工业生产中有着极其重要的意义。 可通过多糖、蛋白质和表面活性剂等多种不同类型的乳化剂提高其稳定性,这些不同的乳化剂具有不同的分子特征,通过降低相间的界面张力,增加空间位阻和液滴间的静电斥力,来达到稳定乳状液的效果。本文以粒径和稳定性为考察指标,利用激光粒度仪、快速稳定性分析仪研究不同种类和添加量的食品乳化剂(阿拉伯胶、酪蛋白酸钠、吐温20)对不饱和脂肪酸(油酸和亚油酸)乳状液的制备及其稳定性的影响。

食品/农产品

2024/08/07

罗姆(江苏)仪器有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 罗姆(江苏)仪器有限公司

公司地址: 苏州市工业园区钟园路788号丰隆城市中心T4-1605 联系人: 顾静静 邮编: 215028 联系电话: 400-860-5168转4029

主营产品:

仪器信息网APP

展位手机站