您好,欢迎访问仪器信息网
注册
北京科诺科仪分析仪器有限公司

关注

已关注

已认证

粉丝量 0

当前位置: 科诺科仪 > 公司动态
公司动态

污水处理技术之影响生物除磷效果的10大因素

生物除磷中通过聚磷菌在厌氧状态下释放磷,在好氧状态下过量地摄取磷。经过排放富磷剩余污泥而除磷,其影响因素有:生物除磷的影响因素包括:温度、pH值、厌氧池DO、厌氧池硝态氮、泥龄、CP比、RBCOD含量、糖原、HRT等。1、温度温度对除磷效果的影响不如对生物脱氮过程的影响那么明显,在一定温度范围内,温度变化不是十分大时,生物除磷都能成功运行。试验表明,生物除磷的温度宜大于10℃,因为聚磷菌在低温时生长速度会减慢。2、pH值在pH在6.5一8.0时,聚磷微生物的含磷量和吸磷率保持稳定,当pH值低于6.5时,吸磷率急剧下降。当pH值突然降低,无论在好氧区还是厌氧区磷的浓度都急剧上升,pH降低的幅度越大释放量越大,这说明pH降低引起的磷释放不是聚磷菌本身对pH变化的生理生化反应,而是一种纯化学的“酸溶”效应,而且pH下降引起的厌氧释放量越大,则好氧吸磷能力越低,这说明pH下降引起的释放是破坏性的,无效的。pH升高时则出现磷的轻微吸收。3、溶解氧每毫克分子氧可消耗易生物降解的COD3mg,致使聚磷生物的生长受到抑制,难以达到预计的除磷效果。厌氧区要保持较低的溶解氧值以更利于厌氧菌的发酵产酸,进而使聚磷菌更好的释磷,另外,较少的溶解氧更有利予减少易降解有机质的消耗,进而使聚磷菌合成更多的PHB。而在好氧区需要较多的溶解氧,以更利于聚磷菌分解储存的PHB类物质获得能量来吸收污水中的溶解性磷酸盐合成细胞聚磷。厌氧区的DO控制在0.3mg/l以下,好氧区DO控制在2mg/l以上,方可确保厌氧释磷好氧吸磷的顺利进行。4、厌氧池硝态氮厌氧区硝态氮存在消耗有机基质而抑制PAO对磷的释放,从而影响在好氧条件下聚磷菌对磷的吸收。另一方面,硝态氮的存在会被气单胞菌属利用作为电子受体进行反硝化,从而影响其以发酵中间产物作为电子受体进行发酵产酸,从而抑制PAO的释磷和摄磷能力及PHB的合成能力。每毫克硝酸盐氮可消耗易生物降解的COD8.5mg,致使厌氧释磷受到抑制,一般控制在1.5mg/l以下。5、泥龄由于生物除磷系统主要通过排出剩余污泥实现除磷,因此剩余污泥量的多少决定系统的除磷效果,而泥龄长短对剩余污泥的排放量和污泥对磷的摄取作用有直接的影响。污泥龄越小,除磷效果越佳。这是因为降低污泥龄,可增加剩余污泥的排放量及系统中的除磷量,从而削减二沉池出水中磷的含量。但对于同时除磷脱氮的生物处理工艺而言,为了满足硝化和反硝化细菌的生长要求,污泥龄往往控制得较大,这是除磷效果难以令人满意的原因。一般以除磷为目的的生物处理系统的泥龄控制在3.5~7d。6、COD/TP污水生物除磷工艺中,厌氧段有机基质的种类、含量及微生物所需营养物质与污水中含磷的比值是影响除磷效果的重要因素。不同的有机物为基质时,磷的厌氧释放和好氧摄取效果是不同的。分子量较小的易降解有机物(如挥发性脂肪酸类等)容易被聚磷菌利用,将其体内储存的多聚磷酸盐分解释放出磷,诱导磷释放的能力较强,而高分子难降解有机物诱导聚磷菌释磷能力就较差。厌氧阶段磷的释放越充分,好氧阶段磷的摄取量就越大。另外,聚磷菌在厌氧阶段释磷所产生的能量,主要用于其吸收低分子有机基质以作为厌氧条件下生存的基础。因此,进水中是否含有足够的有机质,是关系到聚磷菌能否在厌氧条件下顺利生存的重要因素。一般认为,进水中COD/TP要大于15,才能保证聚磷菌有足够的基质,从而获得理想的除磷效果。7、RBCOD(易降解COD)研究表明,当以乙酸、丙酸和甲酸等易降解碳源作为释磷基质时,磷的释放速率较大,其释放速率与基质的浓度无关,仅与活性污泥的浓度和微生物的组成有关,该类基质导致的磷的释放可用零级反应方程式表示。而其他类有机物要被聚磷菌利用,必须转化成此类小分子的易降解碳源,聚磷菌才能利用其代谢。8、糖原糖原是由多个葡萄糖组成的带分枝的大分子多糖,是胞内糖的贮存形式。聚磷菌中糖原在好氧环境下形成,储存能量在厌氧环境下代谢形成为PHAs的合成的原料NADH并为聚磷菌代谢提供能量。所以在延迟曝气或者过氧化的情况下,除磷效果会很差,因为过量曝气会在好氧环境下消耗一部分聚磷菌体内的糖原,导致厌氧时形成PHAs的原料NADH的不足。9、 HRT对于运行良好的城市污水生物脱氮除磷系统来说,一般释磷和吸磷分别需要1.5~2.5小时和2.0~3.0小时。总体来看,似乎释磷过程更为重要一些,因此,我们对污水在厌氧段的停留时间更为关注,厌氧段的HRT太短,将不能保证磷的有效释放,而且污泥中的兼性酸化菌不能充分地将污水中的大分子有机物分解为可供聚磷菌摄取的低级脂肪酸,也会影响磷的释放;HRT太长,也没有必要,既增加基建投资和运行费用,还可能产生一些副作用。总之,释磷和吸磷是相互关联的两个过程,聚磷菌只有经过充分的厌氧释磷才能在好氧段更好地吸磷,也只有吸磷良好的聚磷菌才会在厌氧段超量地释磷,调控得当会形成一个良性循环。我厂在实际运行中摸索得到的数据是:厌氧段HRT为1小时15分~1小时45分,好氧段HRT为2小时~3小时10分较为合适。10、回流比(R)A/O工艺保证除磷效果的极为重要的一点,就是使系统污泥在曝气池中“携带”足够的溶解氧进入二沉池,其目的就是为了防止污泥在二沉池中因厌氧而释放磷,但如果不能快速排泥,二沉池内泥层太厚,再高的DO也无法保证污泥不厌氧释磷,因此,A/O系统的回流比不宜太低,应保持足够的回流比,尽快将二沉池内的污泥排出。但过高的回流比会增加回流系统和曝气系统的能源消耗,且会缩短污泥在曝气池内的实际停留时间,影响BOD5和P的去除效果。如何在保证快速排泥的前提下,尽量降低回流比,需在实际运行中反复摸索。一般认为,R在50~70%的范围内即可。我厂的污泥回流比基本上控制在50%左右。

厂商

2019.11.18

氨氮超标 下面原因你有没有中招!

1、有机物导致的氨氮超标运营过CN比小于3的高氨氮污水,因脱氮工艺要求CN比在4~6,所以需要投加碳源来提高反硝化的完全性。当时投加的碳源是甲醇,因为某些原因甲醇储罐出口阀门脱落,大量甲醇进入A池,导致曝气池泡沫很多,出水COD、氨氮飙升,系统崩溃。分析:大量碳源进入A池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养菌,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制,氨氮升高。解决办法:1、立即停止进水进行闷曝、内外回流连续开启;2、停止压泥保证污泥浓度;3、如果有机物已经引起非丝状菌膨胀可以投加PAC来增加污泥絮性、投加消泡剂来消除冲击泡沫。2、内回流导致的氨氮超标目前遇到的内回流导致的氨氮超标有两方面原因:内回流泵有电气故障(现场跳停仍有运行信号)、机械故障(叶轮脱落)和人为原因(内回流泵未试正反转,现场为反转状态)。分析:内回流导致的氨氮超标也可以归到有机物冲击中,因为没有硝化液的回流,导致A池中只有少量外回流携带的硝态氮,总体成厌氧环境,碳源只会水解酸化而不会完全代谢成二氧化碳逸出。所以大量有机物进入曝气池,导致了氨氮的升高。解决办法:内回流的问题很好发现,可以通过数据及趋势来判断是否是内回流导致的问题:初期O池出口硝态氮升高,A池硝态氮降低直至0,pH降低等,所以解决办法分三种情况:1、及时发现问题,检修内回流泵就可以了;2、内回流已经导致氨氮升高,检修内回流泵,停止或者减少进水进行闷曝;3、硝化系统已经崩溃,停止进水闷曝,如果有条件、情况比较紧迫可以投加相似脱氮系统的生化污泥,加快系统恢复。3、pH过低导致的氨氮超标目前遇到的pH过低导致的氨氮超标有三种情况:1、内回流太大或者内回流处曝气开太大,导致携带大量的氧进入A池,破坏缺氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响了反硝化的完整性,因为反硝化可以补偿硝化反应代谢掉碱度的一半,所以因为缺氧环境的破坏导致碱度产生减少,pH降低,低于硝化细菌适宜的pH之后硝化反应受抑制,氨氮升高。这种情况可能有些同行会遇到,但是从来没从这方面找原因。2、进水CN比不足,原因也是反硝化不完整,产生的碱度少,导致的pH下降。3、进水碱度降低导致的pH连续下降。分析:pH降低导致的氨氮超标,实际中发生的概率比较低,因为pH的连续下降是一个过程,一般运营人员在没找到问题的时候就开始加碱去调节pH了解决办法:1、pH过低这种问题其实很简单,就是发现pH连续下降就要开始投加碱来维持pH,然后再通过分析去查找原因。2、如果pH过低已经导致了系统的崩溃,目前笔者接触过pH在5.8~6的时候,硝化系统还没有崩溃的情况,但是及时将pH补充上来,首先要把系统的pH补充上来,然后闷曝或者投加同类型的污泥。

厂商

2019.11.15

环保人都在意的“制药污水治理” 方法来了~

随着我国医药工业的发展,制药污水治理已成为环保界的一大难题。由于制药行业原料和制药行业原料及工艺的多样性,排放的废水水质千差万别,所以制药废水并没有成熟统一的治理方法。制药污水主要包括:√抗生素生产废水√合成药物生产废水√中成药生产废水√各类制剂生产过程的洗涤水和冲洗废水制药污水容易超标的指标:①COD:主要是制药过程中的有机原料所引起的COD超标②氨氮:在制药过程中容易因为发酵原料等工序引起氨氮超标③总磷:在处理某些特殊原材料的过程中,总磷有时候也会超标那么制药污水治理可以怎么做呢?生化处理技术是目前制药废水广泛采用的处理技术。但由于制药污水可生化性较差,很难直接生化处理后达标排放,一般作预处理使用。就没有其他方法让制药污水治理轻松一点吗?有的!直接在制药污水中投加化学药剂,能够快速去除污水中的污染物,无需增加其他工艺或设备,直接投加,去除率高达96%以上。制药污水治理可能会用到哪些药剂呢?下表是工程师列出的相关药剂,可供参考

厂商

2019.11.12

48个经典废水处理问题答疑 读完你就是半个专家了!

1、为什么要污水处理?一般来说,当环境和资源遭到破坏,生态平衡失调后,没有十几年、几十年,甚至上百年的时间,是难以恢复的,而且有时是无法恢复的。因此,任何企业企图以牺牲环境和资源为代价来换取经济的暂时发展,不但国法不容,人民群众不答应,而且企业自身的存在和发展也必将受到限制。2、什么叫ISO14000(环境管理标准)?ISO14000系列标准是由国际标准化组织的环境管理技术委员会制定的环境管理标准,其指导思想是“全面管理、预防污染、持续改进”,是环境管理思路与方法的创新。ISO14000有非常严格的标准和条例,从购进原料开始到产品出厂每个生产工序和管理环节均有相应的核查标准,它从制度上严格地预防了污染物质在生产过程中的产生和保证污染物质的有效治理。废水治理仅仅是ISO14000系列标准中的一个部分。目前ISO14000系列标准正在国内某些大城市和大型企业开始试点和执行。ISO14000环境质量认证被称为国际市场认可的“绿色护照”,谁通过认证,无疑就获得了“国际通行证”。许多国家纷纷宣布,没有环境管理认证的商品和产品,将在进口时受到数量和价格上的限制。因此,随着与国际市场的逐步接轨,ISO14000环境质量认证在国内所有的企业中全面推广执行,如同ISO9000(质理管理标准)一样。因此,从环境管理标准的角度出发,我们不仅要努力做好污染源末端的废水处理工作,实行科学的环保管理,保证处理出水达标排放;更应该化大力气狠抓污染源前端的清洁生产管理,预防污染,减少污染。3、怎样实施科学的环保管理?保护环境已经成为我国经济持续发展的基本国策,因此,废水处理应符合我国制定的环境保护法规和方针政策。在环保的规划设计中,必须把生产观点和生态观念、环境保护结合起来统筹考虑,把治理废水和改进生产工艺、实行清洁生产结合起来统筹考虑。通过系统的分析和考证,寻求比较合理的治理方案。环保管理的主要原则归纳起来有以下几点:(1) 淘汰不合理的产品对于一些传统的、低产值的、废水治理难度极大的垃圾产品应该下决心用高产值的、技术含量高的产品置换掉。如果某产品的年利润还抵不上每年用于废水的治理成本,这样的产品应下决心停止生产,换上污染少且易于治理达标的产品。(2) 加强管理,减少污染企业管理也是防治污染的一个重要因素。如设备的跑、冒、滴、漏;不按操作规程办事造成的生产事故或产品报废等导致的大量高浓度废水的产生;用大量的水冲洗设备与地面,造成废水量的增加;冷却水与生产废水未做到“清浊分流”,都会增加废水的水量和废水的治理难度。(3) 建立区域性的小型污水处理厂对工厂比较集中的地方,不必套用“谁污染,谁治理”的原则,而应该加强各企业间的联系,统筹考虑污染的治理对策,若有必要和可能,可将各个工厂的废水集中处理,建立统一的污水处理厂,实行“谁污染,谁出钱”的治理方法。因为各个工厂由于产品的不同,废水的水质也不是一样的,如有的工厂的废水是酸性的,而有的工厂的废水却是碱性的,放在一起处理可以减少中和药剂的处理费用;有的工厂排出的高盐分低COD的废水,而有的工厂的废水却是高浓度易生物降解的,如果单独处理的话,都是治理难度很大的废水,但如果放在一起进行生化处理,由于水质条件的改善,不仅可以减少废水的处理难度,而且可以提高处理效率。(4) 提高水的循环利用率为了减少废水水量,首先应该在废水产生的源头上多做文章。如可以考虑水的循环利用、或多次重复利用,提高水的循环利用率,尽量减少外排水量。在国外,某些先进企业水的循环利用率已经达到96%以上,而上海生产企业水的循环利用率还停留在20-30%的较低水平,尚有很大的潜力可以挖掘。提高生产用水的循环利用率不仅可以减轻环境污染,而且还能减少新鲜水的补充用量,在一定程度上可以缓和日益紧张的水资源问题。在废水处理时,也应该尽量考虑处理出水的循环使用。(5) 回收利用和综合利用废水中的污染物,都是在生产过程中进入水中的原材料、半成品、成品和反应介质(如溶剂),特别是精细化工生产中一些化学反应往往不能十分安全,产品的分离过程也不可能十分彻底,因此在废水中尤其是在反应母液中常含有一定数量的有用物质。排放这些污染物质,就会污染环境,造成危害。但若加以回收利用或综合利用,便可以变废为宝,化害为利;或以废治废,取长补短,综合治理,就可以节省水处理的费用。4、什么是“环保110”?针对当前环保行政执法和环境管理与群众投诉不相适应的状况,上海市开通了环保应急热线62863110,即所谓的“环保110”。今后电话号码将简化为63110(“绿色110”的谐音)。这是全国环保系统中首例“环保110”。随着环保力度的加强,全国各地将先后推行环保应急热线。环保应急热线的职责范围是:受理和组织在全市范围内发生的重大污染事故受理对排污单位污染非法排放的举报,如偷排、直排等;受理和处理由环境问题引发的可能造成社会不稳定的事件;协助有关部门处理可能对环境造成影响的重大事件;其它无需到现场处理的环境污染问题,环保应急热线可24小时接受上述范围内的全市群众的投诉。对于污染排放单位来说,环保110的开通既是压力又是动力,我们只有认真做好污染的管理和治理工作,才能经受住环保执法机构和群众的监督考验。5、清洁生产管理包括那几项工作?废水和其中的污染物是生产工艺过程的产物,因此改革生产工艺,实行清洁生产是消灭或减少废水危害的根本措施。通过工艺及设备的改革可以把废水消灭于生产过程之中,这样既可以提高原辅材料的利用率,又可减少废水的处理费用。这方面工作应由生产工艺工程师及环境工程师共同合作完成。应该认识到保护环境不只是环境工程师的工作,而是要从污染源头进行控制,这样才能真正把废水治理好。因此,在工艺设计、产品试制时就要考虑今后可能发生的环境污染问题。在选择合成路线时,尽量采用无公害、少公害的生产工艺,要选择原料利用率高的路线,在生产工艺中不用或少用生物难降解性物质或有毒有害物质,包括原辅材料及溶剂,并加强溶剂及副产品的回收及综合利用工作。具体的办法大致有下列几种:(1) 采用新工艺、新技术、新路线采用新工艺、新技术、新路线。首先可对生产工艺中配料比作一核实,应把污染较大,而又超过理论配比的原料降低,以增加原料的利用率以及废水的可处理性。在化工生产中,有时采取了新的路线,不但可提高生产水平,也可以解决废水处理问题。例如以往抗结核药物原料异烟酸,需由硫酸作电解液进行电解氧化制备,过程中产生的酸性废水水量较大且较难处理。现采用空气催化氧化新技术,在流化床中进行反应,废水水量也较少,污染问题也比较容易解决。(2) 更换原辅材料这是常用的方法,如用无毒或低毒的原料代替高毒或剧毒的原料,用生物可降解物质代替生物难降解物质等。此外要尽可能地不用和少用排放标准中规定限止性物质,特别是一些要求严格的物质,这样就可以减轻废水处理的负担。例如现在对废水中的氨氮浓度有较严格的要求,这样就要求在生产中尽可能少用氨水或液氨。例如以前在调节废水pH时,有的处理工艺用氨水调节,则出水中的氨氮就会大大超标,也增加了废水的生化处理的难度。同样的原理我们应少用重铬酸钾做氧化剂,少用硝基化合物、氯代烃做溶剂。在选用溶剂时,除了需满足生产工艺上的要求外,还需考虑溶剂的生物可降解性及其毒性。从上述要求来说,其选用的优先秩序见下表。溶剂选择优先秩序表优先使用甲醇、乙醇、异丙醇、丙酮、醋酸、醋酸乙酯、甘油、乙二醇可以使用苯、甲苯、二甲基甲酰胺(DMF)、甲酰胺、二甲苯避免使用叔丁醇、二甲亚砜(DMSO)、三乙胺、二甲基苯胺、氯仿*、四氯化碳*、氯苯、硝基苯*、吡啶*、吗啉、四氢呋喃注:*表示对微生物有毒性或有抑制作用。(3) 选用新的后处理工艺,将污染减轻或消灭在生产工艺中这种方法对于从事化学化工生产的技术人员来说,是大有用武之地的。例如,在有机合成工业中,常用加水稀释反应物料的方法(水析)使反应产物从反应有机溶剂中析出,水析所产生的母液,由于水量较大,其中有机溶剂(如甲醇、乙醇等水溶性溶剂)较难回收,带入废水流中造成污染。如果在稀释前,先用蒸馏法回收大部分溶剂,再用水稀释,则废水中有机物的含量可明显下降。为了使所得的产品保证较好的质量,反应产物或中间产物常需进行洗涤,以除去产物中夹带的杂质。洗涤操作是否合理,对废水污染程度有相当大的影响。但是,如果采用新的后处理技术即可以使洗涤废水全部消灭于工艺操作过程中,实现零排污。废水中的盐分含量太高会抑制微生物的生长繁殖,影响生化处理的效果。我们也可以采用新的后处理工艺来解决废水处理中的这一难点。例如某厂将对硝基氯苯在甲醇溶剂中与氢氧化钠反应制备对硝基苯甲醚。原先的后处理操作工艺是用水洗涤去除反应物料中的NaCl盐分,该操作的结果是废水水量大,废水中的盐分含量高,导致后续的生化处理发生困难。后来该厂改进了后处理的操作工艺,先将反应物料(有机相)中的NaCl过滤掉,再用水洗涤并析出对硝基苯甲醚,改进后的操作工艺不仅可以减少废水水量的50%,而且可以回收废水中盐分的97.4%,削减废水有机负荷58.7%,废水的生物降解性能得到了很大的改善。(4) 加强溶剂回收工作在大多数化工原料生产厂,溶剂在原辅料中的使用比例是相当高的,可以说,许多生产废水中的有机负荷基本上来自溶剂,因此,重视和做好溶剂的回收工作不仅是防治污染、减少污染的重要措施,也是降本增效、提高利润的重要途径,具有环境和经济的双重效益。如上海某生产激素的制药厂,有机负荷(COD)的日排放总量为8吨,是地区的污染大户。该厂的环保治理首先从溶剂的回收工作做起,将含有相同溶剂的母液废水集中起来加以回收,结果废水中的有机负荷日排放总量从8吨降至3吨,回收溶剂的收益超过了废水处理站的运行费用。6、废水分析中为什么经常使用COD和BOD这二个污染指标?废水中有许多有机物质,含有十几种、几十种,甚至上百种有机物质的废水也是能经常遇到的,如果对废水中的有机物质一一进行定性定量的分析,既耗时间,又耗药品。那么能不能只用一个污染指标来表示废水中所有的有机物质及其它们的数量呢?环境科学工作者经过研究发现,所有的有机物质都有二个共性:一是它们至少都由碳氢组成;二是绝大多数的有机物质能够化学氧化或被微生物氧化,它们的碳和氢分别与氧形成无毒无害的二氧化碳和水。废水中的有机物质不论是在化学氧化过程中还是在生物氧化过程中都要消耗氧,废水中的有机物质愈多,则消耗的氧量也愈多,二者之间是呈正比例关系的。于是环境科学工作者们将废水用化学药剂氧化时所消耗的氧量称为化学需氧量,即COD;而将废水用微生物氧化所消耗的氧量称为生物需氧量,即BOD。由于COD和BOD能够综合性地反映废水中所有有机物质的数量,且分析比较简单,因此被广泛地应用于废水分析和环境工程上。实际上,COD并不是单单表示水中的有机物质的,它还能表示水中具有还原性质的无机物质,如:硫化物、亚铁离子、亚硫酸钠,甚至氯根离子等。譬如讲,如果铁炭池出水中的亚铁离子在中和池中没能完全被去除掉的话,则生化处理出水中由于有亚铁离子的存在,出水COD可能会超标。7、什么叫COD(化学需氧量)?化学需氧量(COD)是指废水中能被氧化的物质在被化学氧化剂氧化时,所需要的氧量,以氧的毫克/升作为单位。它是目前用来测定废水中有机物含量的一种最常用的手段。COD分析中常用的氧化剂有高锰酸钾(锰法CODMn)和重铬酸钾(铬法CODCr),现在常用重铬酸钾法。废水在强酸加热沸腾回流条件下对有机物实行氧化,用硫酸银作催化剂时可以使大多数的有机物的氧化率提高到85-95%。如果废水中含有较高浓度的氯根离子,应该用硫酸汞将氯离子屏蔽掉,以减少对COD的测定干扰。8、什么叫BOD5(生化需氧量)?生化需氧量也可以表征废水被有机物污染的程度,最常用的为五日生化需氧量,以BOD5表示,它表示废水在微生物存在下进行生化降解五日内所需要的氧的数量。今后我们将经常使用五日生化需氧量。9、COD和BOD5之间有什么关系?有的有机物是可以被生物氧化降解的(如葡萄糖和乙醇),有的有机物只能部分被生物氧化降解(如甲醇),而有的有机物是不能被生物氧化降解的而且还具有毒性(如银杏酚、银杏酸、某些表面活性剂)。因此,我们可以把水中的有机物分成二个部分,即可以生化降解的有机物和不可生化降解的有机物。通常认为COD基本上可表示水中的所有的有机物。而BOD为水中可以生物降解的有机物,因此COD与BOD的差值可以表示废水中生物不可降解部分的有机物。10、什么叫B/C?B/C表示什么意义?B/C是BOD5与COD比值的缩写,该比值可以表示废水的可生化降解特性。如果CODNB表示COD中的不可生物降解部分,则废水中不可为微生物生物降解的有机物所占的比例可用CODNB/COD表示。BOD5/COD与CODNB/COD之间有如下表所示的关系:CODNB/COD 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8BOD5/COD 0.52 0.46 0.41 0.35 0.29 0.23 0.17 0.12当BOD5/COD≥0.45时,不可生物降解的有机物仅仅占全部有机物的20%以下,而当BOD5/COD≤0.2时,不可生物降解的有机物已占全部有机物的60%以上。因此,BOD5/COD值常常被作为有机物生物降解性的评价指标。BOD5/COD 0.45 易生物降解BOD5/COD 0.30 可生物降解BOD5/COD 0.30 较难生物降解BOD5/COD 0.20 较以难生物降解B/C在环境工程上有着非常重要而实用的意义。11、什么叫pH?pH实际上是水溶液中酸碱度的一种表示方法。平时我们经常习惯于用百分浓度来表示水溶液的酸碱度,如1%的硫酸溶液或1%的碱溶液,但是当水溶液的酸碱度很小很小时,如果再用百分浓度来表示则太麻烦了,这时可用pH来表示。pH的应用范围在0-14之间,当pH=7时水呈中性;pH<7时水呈酸性,pH愈小,水的酸性愈大;当pH>7时水呈碱性,pH愈大,水的碱性愈大。世界上所有的生物是离不开水的,但是适宜于生物生存的pH值的范围往往是非常狭小的,因此国家环保局将处理出水的pH值严格地规定在6-9之间。水中pH值的检测经常使用pH试纸,也有用仪器测定的,如pH测定仪。12、废水分析中为什么要经常使用毫克/升(mg/L)这个浓度单位?一般来说,废水中的有机物质和无机物质的含量是很小很小的,如果用百分浓度或其它浓度来表示则太麻烦太不方便了,譬如一吨废水中往往只有几克、几十克、几百克甚至几千克污染物质,其单位即为克/吨(g/T),如将吨换算成升即为毫克/升(mg/L)。计算时可参考下表换算:1毫克/升 百万分之一1000毫克/升 千分之一10000毫克/升 百分之一13、什么叫废水的预处理?预处理要达到哪几个目的?生化处理前的处理一般都习惯地叫作预处理。由于生化法处理费用比较低、运行比较稳定,因此一般的工业废水都采用生化法处理,***公司废水的治理也以生化法作为主要的处理手段。但是***公司的废水中含有某些对微生物有抑制、有毒害的有机物质,因此废水在进入生化池之前必须进行必要的预处理,目的是将废水中对微生物有抑制、有毒害的物质尽可能地削减或去除,以保证生化池中的微生物能正常地运行。预处理的目的有二个:一是将废水中对微生物有抑制有毒害、有抑制作用的物质尽可能地消减和去除或转化为对微生物无害或有利的物质,以保证生化池中的微生物能正常运行;其二是在预处理过程中削减COD负荷,以减轻生化池的运行负担。如***公司的预处理工艺是铁炭微电解与Fe2+/Fe3+还原氧化法,形成的无数个微小的铁炭原电池有利于氧化还原反应的进行,可将废水中的有毒有害物质破坏去除,在中和沉淀过程中还可以通过二价铁与三价铁在碱性条件所形成的活性絮体吸附废水中的有机物质以削减COD负荷,保证后续的生化处理系统能正常地运行。14、废水集水池是派什么用的?废水集水池的作用是汇集、储存和均衡废水的水质水量。各个车间的生产废水,其排出的废水水量和水质一般来说是不均衡的,生产时有废水,不生产时就没有废水,甚至在一日之内或班产之间都可能有很大的变化,特别是精细化工行业的废水,如果清浊废水不分流,则工艺浓废水与轻污染废水的水质水量变化很大,这种变化对废水处理设施设备的正常操作及处理效果是很不利的,甚至是有害的。因此废水在进入主要污水处理系统前,都要设置一个有一定容积的废水集水池,将废水储存起来并使其均质均量,以保证废水处理设备和设施的正常运行。15、为什么废水中的胶体颗粒不易自然沉降?废水中许多比重大于1的杂质悬浮物、大颗粒、易沉降的悬浮物都可以用自然沉降、离心等方法去除。但比重小于1的、微小的甚至肉眼无法看到的悬浮物颗粒则很难自然沉降,如胶体颗粒是10-4-10-6mm大小的微粒,在水中非常稳定,它的沉降速度极慢,沉降1m需耕时200年。沉降慢的原因有二个,(1)一般来说,胶体粒子都带有负电荷,由于同性相斥的原因,从而阻止胶体微粒间的接触,不能被彼此粘合,悬浮于水中。(2)胶体粒子表面还有一层分子紧紧地包围着,这层水化层也阻碍和隔绝胶体微粒之间的接触,不能被彼此粘合,悬浮于水中。16、怎样使胶体颗粒沉淀?要使胶体颗粒沉淀,就要促使胶体颗粒相互接触,使之成为大的颗粒,亦即凝聚起来,使其比重大于1而沉淀。采用的方法有很多种,工程上常用的技术有:凝聚法、絮凝法和混凝法。17、什么叫凝聚?在废水中投加带正离子的混凝药剂,大量正离子在胶体粒子之间的存在以消除胶体粒子之间的静电排斥,从而使微粒聚结,这种通过投加正离子电解质的方法,使得胶体微粒相互聚结的过程称为凝聚。常用地凝聚剂有硫酸铝、硫酸亚铁、明矾、氯化铁等。18、什么叫絮凝?絮凝是在废水中加入高分子混凝药剂,高分子混凝药剂溶解后,会形成高分子聚合物。这种高聚物的结构是线型结构,线的一端拉着一个微小粒子,另一端拉着另一个微小粒子,在相距较远两个粒子之间起着粘结架桥的作用,使得微粒逐渐变大,最终形成大颗粒的絮凝体(俗称矾花),加速颗粒沉降。常用的絮聚剂有聚丙烯酰胺(PAM)、聚铁(PE)等。19、废水为什么要用聚铁进行絮凝吸附预处理?聚铁在混凝过程中形成氢氧化铁絮体具有很好的吸附废水中有机物质的能力,实验数据表明,废水用聚铁絮凝吸附后,可以去除废水中COD的10%-20%左右,这样可以大大地减轻生化池的运行负担,有利于处理废水的达标排放。另外,用聚铁进行混凝预处理可以将废水中对微生物有毒害、有抑制作用的微量物质去除,以保证生化池中的微生物能正常运行。在诸多混凝药剂中,聚铁的价格相对来说比较便宜(25-300元/吨),因此处理成本比较低廉,比较适合工艺废水的预处理。聚铁是酸性物质,腐蚀性很强,因此处理设备应做好防腐处理。20、什么叫混凝?凝聚与絮凝结合在一起使用的过程为混凝过程。混凝在实验或工程上被经常应用,如先在水中投加硫酸亚铁等药剂,消除胶体粒子之间的静电排斥,然后再投加聚丙烯酰胺(PAM),使得微粒逐渐变大,形成肉眼可见的矾花,后产生沉降。21、什么叫吸附?利用多孔性固体(如活性炭)或絮体物质(如聚铁)将废水中的有毒有害物质吸附在固体或絮体的表面上或微孔内,达到净化水质的目的,这种处理方法称作为吸附处理。吸附的对象可以是不溶性固体物质,也可以是溶解性物质。吸附处理的效率高,出水水质好,因此常作为废水深度处理。也可在生化处理单元中引入吸附处理,以提高生化处理效率(如PACT法就是其中的一种)。22、什么叫铁炭处理法?铁炭处理法又称铁炭微电解法或铁炭内电解法,它是金属铁处理废水技术的一种应用形式,用铁炭法作为预处理技术来处理有毒有害、高浓COD废水具有一种独特的效果。铁炭法的处理机理目前尚未完全清楚,现在比较认同的一种解释是:在酸性条件下,铁与炭之间形成无数个微电流反应池,有机物在微电流的作用下被还原氧化。铁炭出水再用石灰或石灰乳中和,生成的Fe(OH)2胶体絮状物对有机物具有很强的絮凝吸附能力。因此,铁炭法是综合应用了铁的还原性质、铁炭的电化学性质和铁离子的絮凝吸附作用,正是这三种性质的共同作用,使用铁炭法具有很好的处理效果。铁炭法的缺点是:(1)铁屑在酸性介质中长期浸泡后易于板结成块,造成堵塞,形成沟流,使操作困难,处理效果降低;(2)铁在酸性条件下溶出的铁量较大,加碱中和后产生的泥渣量较多。23、铁炭出水为什么还要用石灰粉进行中和处理?用硫酸调节成pH为2废水经过铁炭处理后,硫酸成为硫酸亚铁,废水的pH值从2升高至5-6,那么铁炭出水为什么还要用石灰粉进行中和处理呢?或者中和处理时是不是可以少加一些石灰粉呢?铁炭出水中含有大量的硫酸亚铁,如果不予去除的话,会影响后续生化池中微生物的生长繁殖,因此我们必须要用石灰将废水的pH值从5-6再调高至9以上,使水溶性的硫酸亚铁转化成不溶性的氢氧化亚铁与硫酸钙,然后通过混凝沉降的方法使它们沉淀下来,以保证进入生化池的废水中不含硫酸亚铁。中和处理时是不是可以少加石灰粉呢?我们可以在化验室做一个对比实验。取相同数量的铁炭进水(pH在2左右)和铁炭出水(pH在5-6)分别放置于二个烧杯中,然后分别计量地加入石灰粉进行中和混凝,二个烧杯中的废水的pH值都调节至9时,我们可以发现二个烧杯中所投加的石灰粉的数量是一样的。这是因为铁不是中和药剂,硫酸所转化成的硫酸亚铁还是酸性物质,硫酸亚铁在中和过程中转化成氢氧化亚铁与硫酸钙时所耗用的石灰粉是一点也不能少的。因此,铁炭出水中和处理时是不可以少加石灰粉的。24、怎样估算化学污泥的产生量?通过化学反应(如:中和)和物化处理(如:加药混凝)所产生的污泥习惯上都称作为化学污泥。铁炭出水经过中和混凝处理后形成的污泥主要由氢氧化亚铁与硫酸钙组成。污泥的产生量可以通过投加的硫酸与石灰粉的量来计算。工程上也可以利用经验进行估算。一般来说,铁炭进水的pH如果在2左右,则中和混凝后每吨废水所产生的化学污泥量(含水率80%)在50公斤左右。25、什么叫废水的生化处理?废水的生物化学处理是废水处理系统中最重要的过程之一,简称生化处理。生化处理是利用微生物的生命活动过程将废水中的可溶性的有机物及部分不溶性的有机物有效地去除,使水得到净化。事实上,我们对生化处理并不是很陌生的,天然的水体中存在着一条食物链,即大鱼吃小鱼,小鱼吃虾米,虾米吃小虫,小虫吃微生物,微生物吃污水,如果没有这条食物链,自然界就要乱套了。在天然的河流中,有着大量的、依靠有机物生活的微生物,它们日日夜夜地将人们排入河流中的有机物(如工业废水、农药化肥、粪便等等有机物质)氧化或还原,最终转化为无机物质,如果没有微生物的存在,我们周围的河流,少则几个月,多则一、二年,就会成为臭河了,只是由于微生物太微小太分散,以致人们的肉眼看不见罢了。而废水的生化处理工程则是在人工条件下对这一过程的强化。人们将无以计数的微生物全部集中在一个池子内,创造一个非常适合微生物繁殖、生长的环境(如温度、pH值、氧气、氮磷等营养物质),使微生物大量增殖,以提高其分解有机物的速度和效率。然后再往池内泵入废水,使废水中的有机物质在微生物的生命活动过程中得到氧化降解,使废水得到净化和处理。与其他处理方法相比,生化法具有能耗低、不加药、处理效果好、处理费用低等特点。26、微生物是通过何种方式将废水中的有机污染物分解去除掉的?由于废水中存在碳水化合物、脂肪、蛋白质等有机物,这些无生命的有机物是微生物的食料,一部分降解、合成为细胞物质(组合代谢产物),另一部分降解氧化为水份,二氧化碳等(分解代谢产物),在此过程中废水中的有机污染物被微生物降解去除。27、微生物与哪些因素有关?微生物除了需要营养,还需要合适的环境因素,如温度、pH值、溶解氧、渗透压等才能生存。如果环境条件不正常,会影响微生物的生命活动,甚至发生变异或死亡。28、微生物最适宜在什么温度范围内生长繁殖?在废水生物处理中,微生物最适宜的温度范围一般为16-30℃,高温度在37-43℃,当温度低于10℃时,微生物将不再生长。在适宜的温度范围内,温度每提高10℃,微生物的代谢速率会相应提高,COD的去除率也会提高10%左右;相反,温度每降低10℃,COD的去除率会降低10%,因此在冬季时,COD的生化去除率会明显低于其它季节。29、微生物最适宜的pH条件应在什么范围?微生物的生命活动、物质代谢与pH值有密切关系。大多数微生物对pH的适应范围在4.5-9,而最适宜的pH值的范围在6.5-7.5。当pH低于6.5时,真菌开始与细菌竞争,pH到4.5时,真菌在生化池内将占完全的优势,其结果是严重影响污泥的沉降结果;当pH超过9时,微生物的代谢速度将受到阻碍。不同的微生物对pH值的适应范围要求是不一样的。在好氧生物处理中,pH可在6.5-8.5之间变化;厌氧生物处理中,微生物以pH的要求比较严格,pH应在6.7-7.4之间。30、什么叫溶解氧?溶解氧与微生物的关系如何?溶解在水体中的氧被称溶解氧。水体中的生物与好氧微生物,它们所赖以生存的氧气就是溶解氧。不同的微生物对溶解氧的要求是不一样的。好氧微生物需要供给充足的溶解氧,一般来说,溶解氧应维持在3mg/L为宜,低不应低于2mg/L;兼氧微生物要求溶解氧的范围在0.2-2.0mg/L之间;而厌氧微生物要求溶解氧的范围在0.2mg/L以下。31、为什么高浓度的含盐废水对微生物的影响特别大?我们先来描述一个渗透压的实验:用一张半渗透薄膜将两种不同浓度的盐溶液隔开,低浓度盐溶液的水分子就会透过半渗透薄膜进入高浓度盐溶液,而高浓度盐溶液的水分子也会透过半渗透薄膜进入低浓度盐溶液,但其数量要少,故高浓度盐溶液一侧的液面会升高,当两侧液面的高差产生了足够阻止水再流动的压力时渗透就会停止,这时两侧液面的高差产生的压力就是渗透压。一般来说,盐分浓度越高,渗透压越大。微生物在盐水溶液中的情况与渗透压的实验是相似的。微生物的单位结构是细胞,细胞壁相当于半渗透膜,在氯离子浓度小于等于2000mg/L时,细胞壁可承受的渗透压为0.5-1.0大气压,即使加上细胞壁和细胞质膜有一定的坚韧性和弹性,细胞壁可承受的渗透压也不会大于5-6大气压。但当水溶液中的氯离子浓度在5000mg/L以上时,渗透压大约将增大至10-30大气压,在这样大的渗透压下,微生物体内的水分子会大量渗透到体外溶液中,造成细胞失水而发生质壁分离,严重者微生物死亡。在日常生活中,人们用食盐(氯化钠)腌渍蔬菜和鱼肉,灭菌防腐保存食物,就是运用了这个道理。工程经验数据表明:当废水中的氯离子浓度大于2000mg/L时,微生物的活性将受到抑止,COD去除率会明显下降;当废水中的氯离子浓度大于8000mg/L时,会造成污泥体积膨胀,水面泛出大量泡沫,微生物会相继死亡。不过,经过长期驯化,微生物会逐渐适应在高浓度的盐水中生长繁殖。目前已经有人驯化出能够适应10000mg/L以上氯离子或硫酸根浓度的微生物。但是,渗透压的原理告诉我们,已经适应在高浓度的盐水中生长繁殖的微生物,细胞液的含盐浓度是很高的,一旦当废水中的盐分浓度较低或很低时,废水中的水分子会大量渗入微生物体内,使微生物细胞发生膨胀,严重者破裂死亡。因此,经过长期驯化并能逐渐适应在高浓度的盐水中生长繁殖的微生物,对生化进水中的盐分浓度要求始终保持在相当高的水平,不能忽高忽低,否则微生物将会大量死亡。32、什么叫好氧生化处理?什么叫兼氧生化处理?二者有何区别?生化处理根据微生物生长对氧环境的要求的不同,可分为好氧生化处理与缺氧生化处理两大类,缺氧生化处理又可分为兼氧生化处理和厌氧生化处理。在好氧生化处理过程中,好氧微生物必须在大量氧的存在下生长繁殖,并降低废水中的有机物质;而兼氧生化处理过程中,兼氧微生物只需要少量氧即可生长繁殖并对废水中的有机物质进行降解处理,如果水中氧太多,兼氧微生物反而生长不好从而影响它对有机物质的处理效率。兼氧微生物可适应COD浓度较高的废水,进水COD浓度可提高到2000mg/L以上,COD去除率一般在50-80%;而好氧微生物只能适应于COD浓度较低的废水,进水COD浓度一般控制在1000-1500mg/L以下,COD去除率一般在50-80%,兼氧生化处理和好氧生化处理的时间都不太长,一般都在12-24小时。人们利用兼氧生化和好氧生化之间的差别和相同之长,将兼氧生化处理和好氧生化处理组合起来,让COD浓度较高的废水先进行兼氧生化处理,再让兼氧池的处理出水作为好氧池的进水,这样的组合处理可以减少生化池的容积,既节省了环保投资又减少了日常的运行费用。厌氧生化处理与兼氧生化处理的原理和作用是一样的。厌氧生化处理与兼氧生化处理的不同之处是:厌氧微生物繁殖生长及其对有机物质降解处理的过程中不需要任何氧,而且厌氧微生物可适应更高COD浓度的废水(4000-10000mg/L)。厌氧生化处理的缺点是生化处理时间很长,废水在厌氧生化池内的停留时间一般需要40小时以上。33、生物处理在废水处理工程上有哪些应用?生物处理在废水处理工程上应用得最广泛最实用的技术有二大类:一类叫做活性污泥法,另一类叫做生物膜法。活性污泥法是以悬浮状生物群体的生化代谢作用进行好氧的废水处理形式。微生物在生长繁殖过程中可以形成表面积较大的菌胶团,它可以大量絮凝和吸附废水的悬浮的胶体状或溶解的污染物,并将这些物质吸收入细胞体内,在氧的参与下,将这些物质完全氧化放出能量、CO2和H2O。活性污泥法的污泥浓度一般在4g/L。而在生物膜法中,微生物附着在填料的表面,形成胶质相连的生物膜。生物膜一般呈蓬松的絮状结构,微孔较多,表面积很大,具有很强的吸附作用,有利于微生物进一步对这些被吸附的有机物分解和利用。在处理过程中,水的流动和空气的搅动使生物膜表面和水不断接触,废水中的有机污染物和溶解氧为生物膜所吸附,生物膜上的微生物不断分解这些有机物质,在氧化分解有机物质的同时,生物膜本身也不断新陈代谢,衰老的生物膜脱落下来被处理出水从生物处理设施中带出并在沉淀池中与水分离。生物膜法的污泥浓度一般在6-8g/L。为了提高污泥浓度,进而提高处理效率,可以将活性污泥法与生物膜法结合起来,即在活性污泥池中添加填料,这种既有挂膜的微生物又有悬浮微生物的生物反应器称为复合式生物反应器,它具有很高的污泥浓度,一般在14g/L左右。34、生物膜法和活性污泥法有哪些异同之处?生物膜法和活性污泥法是以生化处理的不同反应器形式,从外观上看主要区别在于前者的微生物不需要填料载体,生物污泥是悬浮的,而后者的微生物是固定在填料上的,然而它们处理废水、净化水质的机理是一样的。另外,二者的生物污泥都是好氧活性污泥,而且污泥的组成也具有一定的相似性。此外,生物膜法中的微生物,由于是固定在填料上的,可以形成比较稳定的生态系统,其生活能量和消耗能量不象活性污泥法中的微生物那样大,因此生物膜法的剩余污泥比活性污泥法要少。上海信谊百路达药业有限公司的接触氧化池采用生物膜法,而SBR生化池采用活性污泥法。35、什么叫活性污泥?从微生物角度来看,生化池中的污泥是由各种各样有生物活性的微生物组成的一个生物群体。如果把污泥的泥粒放在显微镜下观察,可以看到里面有多种微生物---细菌、霉菌、原生动物和后生动物(如轮虫、昆虫的幼虫和蠕虫等),它们构成一条食物链,细菌和霉菌能分解复杂的有机化合物,获得自身活动必需的能量并构造自身。原生动物以细菌和霉菌为食,又被后生动物所消耗,后生动物也可以直接依靠细菌生活。这种充满微生物、具有降解有机物能力的絮状泥粒就叫做活性污泥。活性污泥除了由微生物组成之外,还含有一些无机物质和吸附在活性污泥上不能再被生物降解的有机物(即微生物的代谢残余物)。活性污泥的含水率一般在98-99%。活性污泥象矾花一样,具有很大的表面积,因此具有很强的吸附力和氧化分解有机物的能力。36、怎样评价活性污泥法与生物膜法中的活性污泥?活性污泥法与生物膜法的活性污泥生长情况的判别和评价是不一样的。在生物膜法中,活性污泥生长情况的评价主要采用显微镜直接观察生物相。在活性污泥法中,评价活性污泥生长情况的评价除了直接用显微镜观察生物相外,常用的评价指标还有:混合液悬浮固体(MLSS),混合液挥发性悬浮固体(MLVSS),污泥沉降比(SV),污泥沉降指数(SVI)等。37、在用显微镜进行生物相观察时,那一类微生物直接表明生化处理效果良好?微型后生动物(如轮虫、线虫等)的出现则表明微生物群落生长良好,活性污泥的生态系统比较稳定,这时候的生化处理效果佳,这就好比能经常捕获到大鱼的河流里,小鱼小虾生长良好的情况一样。38、什么叫混合液悬浮固体(MLSS)?混合液悬浮固体(MLSS)亦要称为污泥浓度,它是指单位体积生化池混合液所含干污泥的重量,单位为毫克/升,用来表征活性污泥浓度。它包括有机物和无机物两部分。一般来说SBR生化池内MLSS值控制在2000-4000mg/L左右为宜。39、什么叫混合液挥发性悬浮固体(MLVSS)?混合液挥发性悬浮固体(MLVSS)是指单位体积生化池混合液所含干污泥中可挥发性物质的重量,单位也是毫克/升,由于它不包括活性污泥中的无机物,因此能较确切地代表活性污泥中微生物的数量。40、污泥沉降比(SV)?污泥沉降比(SV)是指曝气池内混合液在100毫升量筒中,静止沉淀30分钟后,沉淀污泥与混合液之体积比(%),因此有时也用SV30来表示。一般来说生化池内的SV在20-40%之间。污泥沉降比测定比较简单,是评定活性污泥的重要指标之一,它常被用于控制剩余污泥的排放和及时反时污泥膨胀等异常现象。显然,SV与污泥浓度也有关系。41、污泥指数(SVI)?污泥指数(SVI)全称污泥容积指数,1克干污泥在湿态时所占体积的毫升数,其计算公式如下为:SVI=SV*10/MLSSSVI剔除了污泥浓度因素的影响,更能反映活性污泥凝聚性和沉降性,一般认为:当60<SVI<100时, 污泥沉降性能好当100<SVI<200时, 污泥沉降性能一般当200<SVI<300时, 污泥由膨胀的趋势当SVI>300时, 污泥已膨胀42、溶解氧(DO)表示什么?溶解氧(DO)表示水中氧的溶解量,单位用mg/L表示。不同的生化处理方式对溶解氧的要求也不同,在兼氧生化过程中,水中的溶解氧一般在0.2-2.0mg/L之间,而在SBR好氧生化过程中,水中的溶解氧一般在2.0-8.0mg/L之间。因此,兼氧池操作时曝气量要小,曝气时间要短;而在SBR好氧池操作时,曝气量和曝气时间要大得多和长得多,而我们用的是接触氧化,溶解氧控制在2.0-4.0mg/L。43、废水中溶解氧的含量与哪些因素有关?水中溶解氧的浓度可以用Henry定律来表示:当达到溶解平衡时:C=KH*P其中:C为溶解平衡时水中氧的溶解度;P为气相中氧的分压;KH为Henry系数,与温度有关;增加曝气努力使氧的溶解接近平衡,而同时活性污泥还会消耗水中的氧。因此废水中实际溶解氧量与水温、有效水深(影响压力)、曝气量、污泥浓度、盐度等因素有关。44、生化过程中微生物所需的氧气由谁提供?生化过程中微生物所需的氧气主要由罗茨风机提供。45、在生化过程中为什么需要经常补充废水中的营养物?利用生化过程去除污染物的方法,主要是利用微生物的新陈代谢过程,而微生物的细胞合成等生命过程均需要有足够量和种类营养物质(包括微量元素)。对于化工类废水来说,由于生产产品的单一性,因此废水水质的组成的成分也较为单一,缺乏微生物必要的营养物质。比如讲,***公司的生产废水中只有碳和氮而没有磷,这种废水无法满足微生物新陈代谢需要,因此必须添加废水中磷完善微生物新陈代谢的过程,促进微生物细胞的合成。这就像人在吃米饭、面粉的同时,还要摄入足够量的维生素一样。46、废水中微生物所需的各营养元素之间的比例为多少?微生物像动物植物一样也需要必要的营养物质才能够生长繁殖,微生物所需要的营养物质主要是指碳(C)、氮(N)、和磷(P),废水中主要营养元素的组成比例有一定的要求,对于好氧生化一般为C:N:P=100:5:1(重量比)。47、为什么会有剩余污泥产生?在生化处理过程中,活性污泥中的微生物不断地消耗着废水中的有机物质。被消耗的有机物质中,一部分有机物质被氧化以提供微生物生命活动所需的能量,另一部分有机物质则被微生物利用以合成新的细胞质,从而使微生物繁衍生殖,微生物在新陈代谢的同时,又有一部分老的微生物死亡,故产生了剩余污泥。48、怎样估算剩余污泥的产生量?在微生物的新陈代谢过程中,部分有机物质(BOD)被微生物利用合成了新的细胞质以替代死亡了的微生物。因此,剩余污泥的产生量配被分解了的BOD数量有关,两者之间是有关联的。工程设计时,一般都考虑每处理一公斤BOD5,产生0.6-0.8公斤的剩余污泥(百分百),折算成含水率为80%的干污泥则为3-4公斤。

厂商

2019.11.11

电镀废水化学法综合处理及回用工程设计

本文通过分析企业废水来源和废水含量,应用化学法处理含铬、含镍、含氰等多类型废水,利用膜分离技术进行回水再利用,设计建立了废水处理中心系统。该系统由pH和ORP控制仪控制各处理单元自动加药,过程稳定可控,结果可数据化且可实时传递至环保管理部门,达到清洁生产Ⅱ级要求,实现了企业节能减排的目的。桂林航天电子有限公司是航天机电元器(组)件的高科技企业,主要研制生产军用继电器、连接器、特种开关和小型仪器设备等产品,表面处理工艺主要有镀金、镀银、镀铜、镀镍等。为进一步改善废水排放指标,按照“十二五”基础设施改造和节能减排固定资产投资项目的要求对电镀废水进行综合处理及回水利用。废水来源及其水质1.1 废水来源及其分类电镀废水来源及其水质分析是废水处理工艺设计的基础,各企业因生产工艺、生产产品不同而致使废水各不相同,需全面分析。1.1.1 前处理废水表面前处理由镀件除油和去除氧化膜两个主要工序组成。工件通常采用表面活性剂乳化方式除油,此部分废水化学需氧量(Chemical Oxygen De?mand,简称 COD)较高。氧化膜去除工艺的选择与基体材料密切相关,通常处理溶液由各类酸组成,此部分废水含基体材料金属离子。总的来说,前处理工序以酸性和碱性废水为主,含 Ni2+、Cu2+、Ag+、Fe2+、Fe3+、COD等污染物。 1.1.2 电镀废水根据生产工艺,电镀废水主要分为以下三类:1)含铬废水:含铬废水主要来自于银合金的铬酐酸洗、铜合金的铬酐钝化以及银镀层的出光等工序,废水中主要含有 Cr6+以及极少量的 Cu2+、Ag+等金属离子。2)含镍废水:含镍废水主要有两个来源:电镀镍和化学镀镍。其中电镀镍废水主要来自酸性镀镍生产线的漂洗水,废水中主要含有NiSO4、NiCl2 等。化学镀镍废水组成较为复杂,通常含有络合剂、稳定剂、pH 值缓冲剂等。3)含氰废水:含氰废水由氰化镀铜、氰化镀银及镀金产生,废水中含有CN-、Cu2+、Ag+等污染物,镀金废水回收后再排入含氰废水中。 1.1.3 废弃镀液和退镀溶液由于镀液到达使用寿命、镀槽处理以及退镀零件等原因会产生废弃镀液和退镀溶液,该类废液通常浓度较高、成分较复杂,可以单独收集、预处理后缓慢投加至相应废水中进行处理,也可以单独收集,委托外部资质单位进行处理。 1.2 进水水量和水质分质分流是做好废水处理的前提,因此需要明确每个镀槽排出废水的类别,计量每种废水的排放量并控制地面排水的流向。前处理废水归属于酸碱废水;含氰镀液废水归属于含氰废水;含铬酐镀液废水归属于含铬废水;化学镀镍废水经初步处理后与镀镍废水一起归属于含镍废水;冲洗镀槽以及车间地面的废水按类别归入相应的废水。项目废水的平均排放量约为120 m3/d,按有关要求,废水处理设施设计处理能力144 m3/d,每天按 8 h 运行,各类废水设计处理水量和水质如表1所示。2 设计目标排放水质满足《电镀污染物排放标准》 (GB21900—2008)中的表2要求。电镀用水重复利用率达到2015年环境保护部等三部委25号公告中附件 2《电镀行业清洁生产评价指标体系》Ⅱ级要求,回水利用率≥40%,回用水质优于《金属镀覆和化学覆盖工艺用水水质规范》(HB5472—1991)B类水标准,回用水电导率≤100 μS/cm。安全防范达到《国防科技工业安全防范系统技术要求》的二级。 3 工艺设计电镀废水处理工艺主要有化学法、电解法、吸附法、反渗透等,而目前处理效果稳定、适应性强、处理成本低、管理简便的处理工艺仍是化学法,加入碱性溶剂使废水中金属离子形成氢氧化物絮体,然后沉淀分离去除。本项目的目标是要提高位于中心市区企业的电镀污水排放的可控性,实现安全、稳定和达标排放。因此本项目在设计上采用了措施减小对周围环境的影响,合理的将废水进行浓缩分离、回收水资源;合理控制噪声、气味;妥善处理、处置固体废弃物,避免二次污染。同时充分考虑操作自动化,减少劳动强度;处理站内设置必要的监控仪表,提高管理水平。与企业原有电镀废水处理系统相比,操作全自动化、过程可控,结果数据化且实时传递至环保管理部门,体现了企业对社会负责的作业方式。项目电镀废水处理工艺流程如图1所示。3.1 含铬废水系统电镀废水中的铬主要以 Cr6+离子存在,加入还原剂将Cr6+还原成微毒的Cr3+,沉淀后进入酸碱废水系统。选择焦亚硫酸钠作为还原剂[3],设定pH为2.5~ 3,氧化还原电位(Oxidation-Reduction Potential 简称ORP)190~240 mV,在搅拌状态下自动加入硫酸和焦亚硫酸钠溶液,反应时间 30~45 min。反应方程式如式(1)所示。 2H2Cr2O7+3Na2S2O5+3H2SO4→2Cr(2 SO4)3+ 3Na2SO4+5H2O (1)还原反应完成后,用 NaOH 调节 pH 至 7.8~8.5,进行中和反应,投加聚合氯化铝(Polyaluminium Chloride,简称 PAC)混凝,投加聚丙烯酰胺(Poly?acrylae,简称 PAM)絮凝,再进入含铬废水沉淀系统进行泥水分离,反应方程式如式(2)所示。Cr3++3OH-→Cr(OH)3↓ (2)泥水分离后污泥进入污泥处理系统,溶液进入酸碱废水系统。 3.2 含镍废水系统化学镀镍废水采用 H2O2破络,设定 pH 为 2~ 3,反应停留时间3~5 h,破络完的废水采用NaOH调pH 至 10.5~11.0,进行中和反应,投加 PAC 混凝、PAM 絮凝,沉淀后清水与电镀镍废水混合,污泥排至综合污泥池。含镍废水用 NaOH 调节 pH 至 9.6~11.0,进行中和反应,反应时间15~20 min。投加PAC混凝、PAM絮凝,再进入含镍废水沉淀系统进行泥水分离。 3.3 含氰废水系统含氰废水采用 NaClO作为还原剂,碱性氯化法二阶段破氰。一阶段为不完全氧化阶段,将氰氧化成氰酸盐。一级破氰的 pH 控制在 11.0~11.5,ORP 值为330~350 mV,反应时间为30 min。反应方程式如式(3)和式(4)所示。CN-+ClO-+H2O→CNCl+2OH- (3)CNCl+2OH-→CNO-+Cl-+H2O (4)第二阶段为完全氧化阶段,将氰酸盐进一步氧化分解成二氧化碳和氮气。二级破氰的pH控制在8~8.5,ORP 值为 600~650 mV,反应时间为 30 min。反应方程式如式(5)所示。 2CNO-+3ClO-+H2O→2CO2↑+3Cl-+ N2↑+2OH- (5)破氰后的废水进入酸碱废水收集池,由下一道工序继续处理。 3.4 酸碱废水系统调节酸碱废水pH至8.5~9.0,反应时间30 min,投加PAC混凝、PAM絮凝,进入沉淀池沉淀[6];上清液经多介质过滤器处理,去除悬浮物后,进入回用水处理系统进行回用处理。 3.5 中水回用及浓水处理系统中水回用工艺流程如图 2所示,中间水槽收集各类废水,调整pH后进入膜回用水系统[7]。柱式连续膜过滤(Cylindrical Continuous Membrane Filtra?tion,简称 CCMF)装置作为回用系统的前置,采用20 μm 袋式过滤,由 9支单段式反渗透(Reverse Os?mosis Membrane,简称RO膜)膜组件构成,设计通量为 45~60 L/(m2·h),设备产水能力 6 m3/h,配备反洗系统实现自我再生。采取逐级过滤的方式,确保系统出水水质符合浓水系统进水要求。CCMF连续超滤浓水及反洗水由于含有悬浮物及微量胶体,将其回流至酸碱水池再经沉淀处理。中水经过反渗透处理后产生一定量的浓水,存在离子浓度和 COD 超标风险。浓水处理工艺流程如图 3 所示,先将浓水 pH 调节为 3 左右,加入 H2O2 及FeSO4氧化废水中难降解物质,加入混凝剂,然后调节 pH 为 9左右进行混凝反应,废水进入 60°斜板固液分离,设计表面负荷为1.0 m2·h,上层清液进入回收水池,污泥进入综合污泥池。原水经过多介质过滤器,滤料设计吸附值≥1000 mg/ g,粒径0.44~3 mm,比表面积 700~1400 ㎡/g,确保出水污染指数(Silting Density Index,简称 SDI)≤5,去除有机物和余氯,降低色度、浊度,延长膜系统的使用寿命[8-9]。3.6 污泥处理系统各类废水经固液分离,沉淀污泥由斜板沉淀池收集,经气动泵输送至板框压滤机压干,压滤机出水排至浓水收集池。 3.7 土建和安防系统本项目新增216 ㎡使用面积,土地进行硬化防腐处理,彩钢瓦覆盖。依据《国防科技工业安全防范系统技术要求》的二级防范要求,周界设置高度2.4 m的金属栅栏,竖杆间距150 mm,配备4台高清摄像头,视频图像记录像素大于704×576(4CIF),记录帧率大于25帧/秒,图像信息保存时间大于30 d。设计门禁系统,新建应急处理池,安装水质在线监测设施并与环保局联网。 4 处理效果工程已建成投入使用,运行情况良好。加药单元采用自动控制系统,设备开停现场手动和程序自动控制,中央监控室设监控屏显示系统运行状态。处理后出水达到设计出水标准及电镀污染物排放标准(GB21900—2008),经当地环保部门验收合格。回用水可满足工件清洗质量及不影响后工序镀槽镀液质量,水重复利用率达40%。5 效益分析本套电镀废水处理设施以节能和自动化为依据,在配电设计、化学药剂的选用和自动化程度上进行优化筛选以达到节约成本的目的。工艺技术人员由电镀工艺员兼职,配备污水处理操作人员 1 人,八小时工作制。日常运行费用主要包括电费、药剂费及人工费用等,以含铬废水处理回用系统为例,其处理成本主要包括耗电费和药剂费两项,具体核算数据如表 2所示,其它废水处理系统运行成本参考表 2 核算数据进行计算,具体见表 3。按照每天 120 m3/d的废水处理量计算,废水的平均处理成本为9.6 元/m3,工程运行费用较低。6 结论与展望本文在分析企业废水来源、废水含量的前提下,做好分质分流,应用化学法处理含铬废水、含镍废水、含氰废水和酸碱废水,技术成熟、效果稳定,对重金属污染物去除适应性强;由 pH 和 ORP 控制仪控制各处理单元自动加药,操作简便。应用膜分离技术进行回水再利用,达到了清洁生产Ⅱ级要求,减少了污染物排放,且可根据需要进行扩展。安防、防腐、应急设备设施均满足要求。

厂商

2019.11.07

水力停留时间对脱磷除氮的影响!

一、生物脱氮除磷的原理污水生物脱氮的基本原理就是在将有机氮转化为氨态氮的基础上,利用硝化菌和反硝化菌的作用,在好氧条件下将氨氮通过硝化作用转化为亚硝态氮、硝态氮。在缺氧条件下通过反硝化作用将硝氮转化为氮气,达到从废水中脱氮的目的。废水中氮的去除还包括靠微生物的同化作用将氮转化为细胞原生质成分。主要过程如下:氨化作用是有机氮在氨化菌的作用下转化为氨氮。硝化作用是在硝化菌的作用下进一步转化为硝酸盐氮。其中亚硝酸菌和硝酸菌为好氧自养菌,以无机碳化合物为碳源,从NH4+或NO2-的氧化反应中获取能量。污水中磷的去除主要由聚磷菌等微生物来完成:在好氧条件下,聚磷菌不断摄取并氧化分解有机物,产生的能量一部分用于磷的吸收和聚磷的合成,一部分则使ADP与H3PO4结合,转化为ATP而储存起来。细菌以聚磷(一种高能无机化合物)的形式在细胞中储存磷,其能量可以超过生长所需,这一过程称为聚磷菌磷的摄取。处理过程中,通过从系统中排除高磷污泥以达到去除磷的目的。在厌氧和无氮氧化物存在的条件下,聚磷菌体内的ATP进行水解,放出H3PO4和能量,形成ADP,这一过程为聚磷菌磷的释放。在生物处理工艺中,水力停留时间(hydraulic retention time,HRT)是一个非常重要的参数,不同的HRT直接影响微生物与基质底物的接触时间以及传质过程,进而影响工艺对污水的处理效能,停留时间过短,反应器内不能保持足够的生物量,影响反应器的运行稳定性和处理效果;而停留时间过长,会使反应器处理能力过剩,造成浪费。而且,它不仅影响整个系统的处理效能,还直接决定了反应器容积的大小,从而影响了系统的基建费用。因此,确定合理的HRT对于保证系统的处理效能及节省工程投资都具有十分重要的意义。二、不同的HRT对脱氮的影响A2/O工艺在较长HRT条件对NH3-N有很好的去除效果,HRT过短,反应池中各微生物种群没有充分的时间生长,污泥流失过快,硝化反应和反硝化反应都没有得到充分的进行。当HRT达到一定的值时,已足够各反应器内的反应充分进行,再增加HRT,也只能是增加经济负担,对脱氮作用没有更显著的效果。但是,通过对膜生物反应器复合工艺的研究指出,试验选定的HRT范围内(4.97h-8.70h),系统对TN的去除率随着HRT的减少而增加。这是因为长HRT条件下,系统的有机负荷率降低,会使生物的内源呼吸加剧,影响污泥的活性,最终降低系统对污染物去除效果。降低HRT可使系统的有机负荷率提高,进而使系统反硝化的能力增强,最终提高氮的处理效果。三、不同的HRT对除磷的影响在SBR工艺中,HRT对PO3-4-P的去除效果影响较小,该工艺对PO3-4-P没有明显的去除效果。这可能是由于反硝化菌与聚磷菌同属异养菌,由于反硝化菌能够先于聚磷菌吸收和利用VFA进行反硝化脱氮,并且聚磷菌对于碳源的要求要严于反硝化菌,即易降解有机物优先被反硝化菌利用,导致聚磷菌吸附的碳源较少,相应地VFA也较少,在厌氧下转化生成的PHB(聚β-羟基丁酸)就减少,从而需要释放的磷产生的能量就相对减少。通过对A2/O工艺的研究,HRT升高,TP去除率不一定升高,而是呈现先升高后降低的变化趋势,HRT为8h时,TP去除率最高,去除效果最好。当HRT升高至12h时,TP去除率呈现下降趋势,除磷效果恶化。这就说明了较长的HRT有利于TP的去除。但随HRT的增大,TP去除率逐渐减小,还会对TP的去除有不利影响。这可能是因为HRT太大的话,产生污泥膨胀,在碳源一定的情况下,硝化细菌与聚磷菌之间就会形成较为激烈的竞争,而聚磷菌的存活能力低于硝化细菌,所以就会造成聚磷菌的死亡,不利于吸磷作用的进行,因此,HRT增大,TP的去除率提高幅度逐渐减小。四、总结通过以上调研发现,HRT对不同生物脱氮除磷工艺的脱氮除磷效率的影响不同,因此,要具体情况具体分析,但是每一种工艺都有其最佳的水力停留时间,在此条件下,运行效果最好,且基建成本最低。

厂商

2019.11.04

冬季污水处理厂氨氮超标 如何破解?

冬季气温低,导致水温也变低,影响了污水处理生化处理效果;生化池菌种生长速度慢、活性低,反硝化效率也变低,导致氨氮降不下来。目前,主要的降氨氮方法有生物硝化反硝化、折点加氯、气提吹脱和离子交换法等。以上方法会由于游离氨氮的生物抑制作用或者成本等原因而使其应用受到限制。冬季降氨氮的方法可以分为物化法、生化联合法和新型生物脱氮法。物化法1吹脱法在碱性条件下,利用氨氮的气相浓度和液相浓度之间的气液平衡关系进行分离的一种方法。一般认为吹脱效率与温度、pH、气液比有关。2沸石脱氨法利用沸石中的阳离子与废水中的NH4+进行交换以达到脱氮的目的。沸石一般被用于处理低浓度含氨废水或含微量重金属的废水。应用沸石脱氨法必须考虑沸石的再生问题,通常有再生液法和焚烧法。采用焚烧法时,产生的氨气必须进行处理。3膜分离技术利用膜的选择透过性进行氨氮脱除的一种方法。这种方法操作方便,氨氮回收率高,无二次污染。主要是利用以下化学反应:Mg2++NH4++PO43-=MgNH4PO4理论上讲以一定比例向含有高浓度氨氮废水中投加磷盐和镁盐,当[Mg2+][NH4+][PO43-]>2.5×10–13时可生成磷酸铵镁(MAP),除去废水中的氨氮。4化学氧化法利用强氧化剂(氨氮去除剂)将氨氮直接氧化成氮气进行脱除的一种方法。折点加氯是利用在水中的氨与氯反应生成氨气脱氨,这种方法还可以起到杀菌作用。氨氮去除剂的投加位置很多情况下,都要根据现场的工艺来决定投加位置(1)现场只有物理处理,没有生化工艺的情况下:一般这种情况现场都是只有经过投加絮凝剂的处理,然后就沉淀出水。由于氨氮去除剂投加过后都不会产生沉淀物,所以这种工艺的情况下,想在哪边投加都可以。一般建议在物理沉淀池里面投加,以确保药剂的反应完全。(2)现场是主要运用生化工艺的情况下:因为药剂的强氧化作用(这也是药剂能快速在5~6分钟内反应完全的原因),往往会对生化菌种的活性造成影响,所以一般在有生化的工艺现场中,选择在生化池后的清水池、沉淀池、过滤池等位置投加。生化联合法物化方法在处理高浓度氨氮废水时不会因为氨氮浓度过高而受到限制,但是不能将氨氮浓度降到足够低(如100mg/L以下)。而生物脱氮会因为高浓度游离氨或者亚硝酸盐氮而受到抑制。实际应用中采用生化联合的方法,在生物处理前先对含高浓度氨氮的废水进行物化处理。新型生物脱氮法近年来国内外出现了一些全新的脱氮工艺,为高浓度氨氮废水的脱氮处理提供了新的途径。主要有短程硝化反硝化、好氧反硝化和厌氧氨氧化。1短程硝化反硝化是应用最广泛的脱氮方式。由于氨氮氧化过程中需要大量的氧气,曝气费用成为这种脱氮方式的主要开支。短程硝化反硝化(将氨氮氧化至亚硝酸盐氮即进行反硝化),不仅可以节省氨氧化需氧量而且可以节省反硝化所需炭源。此外,pH和氨氮浓度等因素对脱氮类型具有重要影响。2厌氧氨氧化和全程自养脱氮厌氧氨氧化是指在厌氧条件下氨氮以亚硝酸盐为电子受体直接被氧化成氮气的过程;与传统工艺相比,基于厌氧氨氧化的脱氮方式工艺流程简单,不需要外加有机炭源,防止二次污染,又很好的应用前景。全程自养脱氮是在限氧的条件下,利用完全自养性微生物将氨氮和亚硝酸盐同时去除的一种方法,从反应形式上看,它是SHARON和ANAMMOX工艺的结合,在同一个反应器中进行。3好氧反硝化传统脱氮理论认为,反硝化菌为兼性厌氧菌,其呼吸链在有氧条件下以氧气为终末电子受体在缺氧条件下以硝酸根为终末电子受体。所以若进行反硝化反应,必须在缺氧环境下。这样就可以在同一个反应器中实现真正意义上的同步硝化反硝化,简化了工艺流程,节省了能量。实例问答01西北地区,污水厂冬季水温只有十来度,几乎就是10摄氏度,氨氮不降,又不能加温,怎么办?解答:适当提高污泥浓度,如果氨氮略高时可通过加曝来去除氨氮。现在应该从改善污泥结构入手,让污泥更适应硝化菌的定居,而不是一味加曝导致硝化菌流失。接种是最快的,或者控制进水水质,提升碳源降低进水氨氮,让污泥慢慢恢复活性。02接触曝气工艺处理生活污水,冬季水温6℃,一天100吨,多为卫生间使用水,无热水废水,无蒸汽,冬季氨氮超标,平均60mg/l.解答:冬季处理污水需要根据水量,适当延长曝气时间,适当提高污泥浓度,增加污泥龄,以保证处理效果。03自元旦开始氧化沟出水氨氮开始超标,一开始是6mg/L左右,现在都达到20多了。出水TP很低,COD基本在20mg/L左右。如今天的进水氨氮是26mg/L,而出水为24mg/L。分析是硝化菌出问题,请问具体原因是什么?怎么解决?解答:其实在冬季,污泥浓度一般都会很高,冬季出水氨氮浓度过高,一般情况下就是提高曝气量,增加水中的溶解氧,并且加大污泥的回流量既能解决。04大家对冬季处理氨氮有好的方法吗?我指的是:生活污水AAO工艺,日进水量1.8万吨,进水氨氮很高,是出水的好几倍,出水氨氮要求是8mg/l,现在好氧段溶解氧控制在4个左右,水温9.8摄氏度,外循环一直是大量,内循环间歇开,现在出水氨氮有时正常,有时达到12个多,不知道大家还有好的方法再降降氨氮。解答:推流器不要间歇开启,减少排泥,增加污泥浓度是根本办法,另外建议投加一些悬浮填料。DO高了,水温偏低,微生物活性不好,少排泥,多保留点干活的虫子。05抑制消化细菌的物质都有哪些?解答:苯胺1mg/l、乙二胺1mg/l、萘胺1mg/l、芥子油1mg/l、酚5.6mg/l、甲基引哚7mg/l、硫脲0.076mg/l、氨基硫脲0.18mg/l等对微生物硝化有抑制作用。06冬季温度过低,导致氨氮氨氮超标,如何改善?解答:这种情况多发生在北方无保温或加热的污水处理厂,因为水温低于硝化细菌的适宜温度,而且MLSS没有为了冬季代谢缓慢而提高,导致的氨氮去除率下降。分析:细菌对温度的要求比人类低,但是也是有底线的,尤其是自养型的硝化细菌,工业污水这种情况比较少,因为工业生产产生的废水温度不会因为环境温度的变化波动很大,但是生活污水水温基本上是受环境温度来控制的,冬季进水温度很低,尤其是昼夜温差大,往往低于细菌代谢需要的温度,使得细菌休眠,硝化系统异常。解决办法:1、设计阶段把池体做成地埋式的(小型的污水处理比较适合)2、提前提高污泥负荷3、进水加热,如果有匀质调节池,可以在池内加热,这样波动比较小,如果是直接进水可以用电加热或者蒸汽换热或混合来提高水温,这个需要比较精确的温控来控制进水温度的波动。4、曝气加热,比较小众,目前还没遇到过,其实空气压缩鼓风时温度已经升高了,如果曝气管可以承受,可以考虑加热压缩空气来提高生化池温度。

厂商

2019.10.30

中国电镀行业发展良好 带动电镀污水行业发展

一、电镀污水处理行业概述电镀行业虽然在国民经济中的占比很小,但对国家的基础建设意义重大。电镀行业产生的主要污染物就是废水,其中包含许多重金属,在不进行任何处理的情况下就随意排放,会对排放地的土壤、河流、农作物等造成严重的污染。这样不仅会污染生态环境,还会通过重金属的流动性质,危害生物体的健康。因为电镀所产生的废水中,金属含量较多,氰化物、除油除腊等添加剂成分复杂,所以针对其特殊性,目前对电镀废水的处理方法有四种:物理法、生物法、化学法、吸附法。电镀污水处理行业上游由鼓风机、泵、膜材料等原材料和部件生产商组成,中游为电镀污水处理设备制造商和电镀污水处理工程建设商,下游为各类需求行业。二、电镀污水处理行业现状目前我国电镀行业发展良好,市场规模稳步增长,从2013年的2349亿元增长至3530亿元。由于近年来政府非常重视环保建设,而电镀行业污染严重,所以政府鼓励电镀企业搬入电镀园区统一管理,2018年电镀园区已经达到132个,预计2023年将达到161个。电镀园区的建立方便了电镀污水大规模集中处理,及统计,2018年我国电镀污水产量达到3.97亿吨,同比增长7%,巨大的电镀污水量为电镀污水处理行业奠定了基础。据电镀污水产量及电镀污水处理费用统计测算,2018年我国电镀污水处理行业市场规模达到32.62亿元。三、电镀污水处理行业发展中的问题目前国内企业对电镀废水的处理较为单一集中,使用一种处理方法,处理多种类型废水。这种没办法达到有效处理的目的,还可能造成二次污染,所以企业在处理电镀废水过程中需要分开处理。在生产加工过程中,存在工作人员专业素养参差不齐的状态,企业应不定期的随员工进行业务培训,严格按照处理要求操作,并不断的学习新的知识、技术,争取实现创新技术,并加强员工在环保方面的意识。在另外一方面,电镀废水处理应是相关企业必须面临的问题,这块市场目前国内所做的并不多,技术也不是很到位,市场相对来说比较空白。所以在处理设备上的改革创新也是相关机械生产企业所面临的问题。四、电镀污水处理行业发展趋势随着电镀工业迅速发展和环保要求的不断提高,我国电镀废水治理由工艺改革、回收利用和闭路循环进一步向综合防治方向发展,己经进入了综合防治与总量控制阶段,多元化组合处理和自动控制相结合的资源回用技术成为电镀废水治理的发展主流。据资料统计,我国电镀行业中,单位面积电镀的能源消耗量远高于国外同类行业,这也反映出我国在电镀废水处理与回用技术中有着广阔的发展空间。电镀废水主要来源于漂洗水,采用闭路循环工艺是目前处理电镀废水最经济、最有效的方法之一,是治理电镀废水发展的方向。在电镀生产过程中,采用闭路循环工艺,能实现漂洗水的多次利用,大幅度降低了电镀废水的排放量。经实践统计,实施清洗水的循环利用工艺可节约用水量达90%以上,极大的降低了电镀废水的处理及排放费用。电镀生产工艺中用水量多,且用水点分散,不同的工艺段对用水水质要求均有所不同。为削减系统用水总量,可采用分级用水的方法,根据各工艺段对用水水质的要求,逐级用水,实现循环水的高效利用。目前,我国电镀行业生产水平参差不齐,管理水平普遍较低,产生的废水水质差异较大,且由于水资源的缺乏及国外电镀行业的引入,国家对该类废水排放限值要求极为严格。在当今全球水资源和金属资源都严重短缺的大背景下,研究高效、经济、节能的电镀废水处理技术,实现不同处理工艺的有效组合,是今后研究的主要内容和发展方向。在电镀废水处理过程中,仅采用某一种处理方法往往达不到预期效果,通常会采用多种技术综合治理,多管齐下,以保证达标排放,安全回用于工业生产。

厂商

2019.10.28

高铁酸盐去除废水中重金属及其他污染物的研究进展

重金属的污染严重威胁着水生态环境和人类健康,需要研发更加高效、绿色的水处理药剂。高铁酸钾作为新一代的水处理药剂,以其独特的氧化和混凝效果已经得到了众多研究者的深入研究。文章综述了高铁酸盐的制备方法、高铁酸钾在水处理中对重金属的去除研究以及在处理其他污染物方面的应用。重金属属于对人体危害较大的一类污染物,其毒性大小根据其形态不同而不同,部分重金属毒性较大,在水体中很难去除,而且容易聚集。目前,重金属的处理方法主要有化学吸附法、沉淀法、膜法、生物法以及材料法等。高铁酸盐作为一种环保型绿色,具有很强的氧化能力,氧化还原电位甚至高于臭氧等一些强氧化剂。高铁酸盐经反应后生成的Fe3+具有很好的吸附性,可以通过更深层次的强化吸附去除水体中污染物。本研究对高铁酸盐的实际应用现状进行综述。1、高铁酸盐的制备方法01 湿式氧化法湿式氧化法是在高浓度NaOH条件下利用次氯酸盐氧化铁盐生成高铁酸钠,由于高铁酸钠具有较高的溶解度,向溶液中加入KOH,可以析出高铁酸钾晶体。该方法虽然制备的高铁酸钾纯度高,但是制备工艺过程相对复杂,而且产率较低。02 电解法电解法即电化学氧化法,此法以铁单质或铁化合物为电极,在一定浓度NaOH溶液中,利用电氧化制得高铁酸盐,温度对其氧化效率有一定的影响,若温度发生变化,高铁酸盐的分解速率也会产生相应的改变。为解决这个问题,有研究者采用Pt或掺杂B的材料做阳极,以熔融态碱做相应的电解质,降低了制备过程中温度的影响。03 高温氧化法高温氧化法又称干式氧化法,该法是将铁氧化物和硝酸钾进行混合,然后加热到1100 ℃煅烧制得高铁酸钾,但是此法得到的高铁酸钾纯度很低,产物中铁的价态也不一,且易吸收水分,因此不太适用于制备纯度很高的高铁酸盐。2、高铁酸盐应用于单一重金属的去除01 高铁酸盐对铅的去除研究铅是一种具有毒性的元素,生物体内若含铅较高,就会造成铅中毒。高铁酸盐对铅的去除,主要依靠反应所生成Fe(OH)3的吸附作用,而且在碱性条件下,铅会以络合态存在,最终形成Pb(OH)2沉淀,从而将其从水中去除。何文丽等对高铁酸钾处理模拟高浓度含铅矿井水中的铅进行了研究,结果表明,铅的去除率随pH的改变而变化,pH在8~10范围内,铅去除率达到95%,去除效果好。苑志华等利用高铁酸钾处理模拟重金属废水,研究表明,pH是影响模拟水样中铅去除率的一个重要因素,不同pH条件下去除率有所不同,但是在一定投加量下,高铁酸钾能够使水中的铅达到国家排放标准。如上所述,高铁酸钾对模拟的含铅废水具有较好的去除效果,但是面对成分复杂、污染物浓度各异的实际水体,其具体去除效果和机理还需深入研究。02 高铁酸盐对铬的去除研究Cr(Ⅵ)是一种致癌物,其毒性大、难去除且有生物放大效应,对人类的健康危害巨大,印染、化工、金属冶炼等企业排出大量含铬废水。Cr(Ⅵ)的去除是靠高铁酸钾反应产生具有较好的吸附性的Fe(Ⅲ),同时,Cr(Ⅵ)也是强氧化剂,可与还原性物质强烈反应,生成Cr(Ⅲ),进而生成Cr(OH)3沉淀从水中去除。崔建国等利用高铁酸钾对微污染水中的Cr(Ⅵ)进行处理,研究表明,当氧化和絮凝段的pH与时间为一定值时,在相应条件下,Cr(Ⅵ)的去除率可达84.41%。证明了高铁酸钾可以高效去除水中的Cr(Ⅵ)。03 高铁酸盐对类金属砷的去除研究砷广泛分布于自然界,具有生物毒性,常称其为类金属。砷的化合物一般分为有机砷和无机砷,其中无机砷具有较强毒性。研究表明在生物体内砷的价态可互相转变;砷在水体中主要以亚砷酸离子和砷酸离子两种形态存在,在一定条件下,亚砷酸会转化成砷酸。对砷的去除方法一般有化学沉淀法、铁氧化法、膜法等,主要是经过反应生成难溶的砷化物沉淀,或者通过高铁酸钾反应生成Fe(Ⅲ)对其进行吸附絮凝,最终通过固液分离去除。As(Ⅲ)在水中的存在形式并不单一,且Fe(Ⅵ)被还原的过程中存在Fe(Ⅴ)、Fe(Ⅳ)等中间产物,所以FeO42-对As(Ⅲ)的氧化可能较为复杂。M. Fan等以H2AsO3-和HAsO32-为例提出2种可能存在的反应,反应方程见式(1)~式(2)。总反应见式(3)。Y. Lee等对pH=7时Fe(Ⅵ)、As(Ⅲ)和As(Ⅴ)的主要存在形式进行分析,探究Fe(Ⅵ)氧化As(Ⅲ)的机理,结果表明,高铁酸盐对As(Ⅲ)的氧化过程实际上是氧原子的转移机制,由于氧原子的转移,最终使As(Ⅲ)被氧化为As(Ⅴ),同时Fe(Ⅵ)被还原为Fe(Ⅲ)。Fe(Ⅵ)可以通过单电子转移过程氧化底物,产生Fe(Ⅴ)和自由基。然而,这种自由基的产生仅在Fe(Ⅵ)与有机分子(如苯酚、苯胺)的反应中可以观察到。Y. Lee等提出由Fe(Ⅵ)对As(Ⅲ)氧化的双电子转移过程也得到了实验数据的验证,与关于Fe(Ⅵ)氧化其他无机含氧阴离子(SO32-、SeO32-)的研究一致。其中,双电子转移过程中包含的从FeO42-到SO32-的氧传递也可由同位素18O示踪实验证明。但Fe(Ⅵ)对As(Ⅲ)的氧化是通过氧转移的双电子转移这一理论仍缺少实验数据验证。孙玉林对废水中As(Ⅴ)的处理研究表明,pH为2.0~3.0时,As(Ⅴ)的去除率高达到98.0%。蒋国民对高浓度含砷废水进行了深度处理研究,结果表明,在一定工艺条件下,利用高铁酸盐处理后砷的出水浓度可达到国家标准。3、高铁酸盐对多种复杂重金属的去除01 高铁酸盐同时去除多种重金属废水中的重金属离子主要由化工、冶炼等企业排入水体,不同企业排出的重金属种类、含量及各自的存在形态也不同。待处理废水中同时含有两种或两种以上重金属离子时高铁酸盐的去除效果是否受到影响也是一个值得探究的问题。M. Lim等利用高铁酸钾同时去除河水中的重金属(Cu、Mn和Zn),结果表明,高铁酸钾对重金属的去除过程中,其氧化絮凝作用非常显著,且去除效率与pH相关,而总体温度对高铁酸盐和重金属之间的反应没有任何影响。王颖馨等利用K2FeO4有效地处理了砷、铅复合污染,在K2FeO4投加量为24 mg/L时,对砷、铅的去除率分别可达到99.30%、且溶液pH小于7时,同时去除砷、铅效果较好。但与单独污染相比,低K2FeO4投加量下砷与铅存在明显的竞争关系,且K2FeO4的投加量并不是越多越好,这可能与吸附容量有关。B. Lan等将高铁酸钾用于处理砷和锑的组合污染,As(Ⅲ)和Sb(Ⅲ)被氧化后通过Fe(Ⅵ)的还原产物从溶液中吸附分离。结果表明,在双溶质溶液中2种元素的吸附速率较单溶质溶液有显著提高,证明砷和锑之间存在协同作用。02 高铁酸盐去除重金属络合物由于大量工业废水排入水环境中,导致产生重金属络合污染物,该络合污染物成分极其复杂,一般情况下,水体中都是游离态重金属、络合态重金属以及有机络合物共存。有一些研究利用Fe(Ⅵ)对这种混合体系进行处理,同样得到了较为理想的效果。L. Sailo等将高铁酸盐(Ⅵ)用于处理被金属(Ⅱ)-络合物〔即Cu(Ⅱ)-NTA、Cu(Ⅱ)-EDTA和Cd(Ⅱ)-EDTA〕污染的废水,提出在高铁酸盐(Ⅵ)的存在下,酸性条件有利于金属(Ⅱ)-络合物的降解/矿化,且提高pH至12.0的条件下可有效地同时去除游离铜或镉。同样,Cu(Ⅱ)-IDA、Zn(Ⅱ)-IDA、Cd(Ⅱ)-IDA和Ni(Ⅱ)-IDA等水中的金属-亚氨基二乙酸络合物也可先通过降低pH来提高Fe(Ⅵ)对M(Ⅱ)-IDA的解络合速率,在总有机碳(TOC)显著降低且获得游离态金属离子的情况下再将Fe(Ⅵ)处理的样品在pH=12.0时,利用Fe(Ⅵ)的氧化作用进一步去除水中的金属离子。S. M. Lee等在CN-Cu、CN-Ni或CN-Cu-Ni的混合/络合体系中使用高铁酸盐(Ⅵ)用于氰化物的氧化和同时去除铜或镍。结果表明对于CN-Cu和CN-Ni系统,在pH=10.0时CN可以发生快速且有效的氧化,在pH=13.0时铜几乎完全被去除,在CN-Cu-Ni体系中也可观察到类似的结果,其中通过用Fe(Ⅵ)处理实现CN和Cu的降解,并且部分地除去Ni。4、高铁酸盐应用于其他污染物的处理目前,富营养化问题也极为严重。通过大量研究总结发现,磷是造成多数水体富营养化的关键因素。目前单独依靠生物法除磷很难满足要求。因此,利用化学方法辅助除磷已势在必行。利用高铁酸盐除磷是利用其很高的氧化性来氧化含磷化合物,形成难溶磷酸盐沉淀物,在反应过程中,会生成一些复杂的中间络合产物,起到吸附和网捕作用,形成沉淀,从而得到去除。吴晓荣通过研究得到了除磷工艺条件,利用高铁酸钾联合聚合硫酸铁在相应的工艺条件下对磷的去除率可以达到80%左右,达到国家城镇污水排放标准的一级A标准。高铁酸钾在去除有机物、抗生素以及有毒物质等方面也有很好的效果。Jing Zhang等研究表明,高铁酸盐和亚硫酸盐的联合,会提高反应的活性,快速去除有机物。Mingbao Feng对比了吩嗪硫酸甲酯(PMS)和Fe(Ⅵ)单独对抗生素的去除效果,还通过对比二者不同比例的混合去除抗生素的效果发现,二者协同效果更好。V. K. Sharma等的研究表明,高铁酸盐对含氮、含硫污染物、抗生素、有毒物质以及重金属的去除具有显著效果。S. N. Malik等的研究结果表明单独用高铁酸盐处理色度、COD、有毒物质效果不明显,但是,将高铁酸盐和硫酸亚铁按照一定比例混合,可以提高对色度、COD、有毒物质的去除率,分别为96.5%、83%、75%。还有研究证明高铁酸盐也可应用于水处理工艺的优化中,C. Wu等提出500 mg/L的K2FeO4能够有效氧化分解污泥,提高污泥脱水性能和污泥生物降解性。E. Gombos等在细菌百分百灭活的情况下分别用低浓度和较高浓度的Fe(Ⅵ)对二级处理后的污水进行净化,结果表明,可以降低生物处理废水中的TOC,高铁酸钾氧化有机物的机理得到了更深层次的探讨,在一定条件下Ag+的存在可以促进反应过程中·OH的产生,进一步强化了高铁酸钾氧化有机物的效果,其对芳香化合物邻氯苯酚同样具有处理速度快、处理率高等优势,并且通过合理利用反应过程中不同价态Fe的化学特性,能极大提高污水处理厂的处理效率。综上所述,高铁酸盐这种具有独特性质的处理药剂将会有更好的发展前景,具有高效的实用价值。5、结论高铁酸盐在污水深度处理中的应用研究远不止上述几项,重金属污染问题日趋严峻,其造成的后果也极其严重。高铁酸盐独特的优势在于极强的氧化性和良好的混凝效果。高铁酸盐在降解污染物的过程中,通过单电子和双电子转移的机制,Fe(Ⅵ)最终被还原为Fe(Ⅲ)或Fe(Ⅱ),反应过程中,中间价态还会产生复杂络合物,产生吸附、电中和以及网捕等正向效果,其具体的反应机理途径与处理污染物本身的化学特性相关。高铁酸盐的处理效果与溶液pH的高低密不可分,因此在利用高铁酸盐处理污染物时,pH的控制也至关重要。高铁酸盐在污水深度处理中具有很高的实际应用价值,然而在实际的生产和制备过程中,也存在着很多问题,比如其稳定性以及高昂的成本限制了大规模的制备和应用,但随着高铁酸盐的合成方法不断优化、日渐成熟,这已不能成为阻碍其广泛应用的因素。虽然目前利用高铁酸盐处理水中重金属还处于实验室的研究阶段,但是近年来这个方法已经得到了广泛的认可与关注。随着对多项污染物处理条件和降解机理研究的不断深入、不断完善,将很快体现出高效的应用价值。

厂商

2019.10.23

电镀废水治理及回用技术探析

电镀行业由于自身的生产特性,在其生产过程中需要消耗大量的水资源,并排放大量的电镀废水,这使得水资源被大量消耗,同时也造成了极大的污染,包括水体污染、土壤污染等。通过对电镀废水进行处理,将大部分的水资源进行回收利用,不仅可以大幅减少电镀废水的排放,降低对环境的污染,同时也能节约大量的水资源,从而使电镀企业在创造经济效益的同时也能兼顾社会效益。文章简要阐述电镀废水的来源以及类型,介绍当前几种比较成熟的电镀废水治理以及回用的方法,并具体谈谈几种主要类型的电镀废水处理以及回用。我国属于严重缺水的国家,人均水资源拥有量严重低于世界平均水平,要保证人们正常的用水需求,节约水资源以及控制水资源污染是必然的选择。电镀行业作为三大污染行业之一,不仅对于水资源的消耗量极大,同时也会排放大量的电镀废水,对于环境的污染极为严重,加强对电镀废水治理以及回用技术的研究和利用,可以有效提升电镀行业的水资源利用效率,控制电镀废水对于环境的污染。据相关统计显示,目前我国的电镀企业超过10000家,年排放污水高达40亿m3,对此,我国政府已经制定实施了电镀废水排放标准,旨在控制电镀废水的污染,促使企业在追求经济效益的同时也要兼顾环境效益。1.电镀废水的来源以及类型1.1电镀废水的来源电镀企业电镀工艺由于表面镀层的不同而不同,镀层大多是单一金属或合金,如银、铬、镍、钛靶、锌、镉、金或黄铜、青铜等。电镀的基体材料除铁基的铸铁、钢和不锈钢外,还有非铁金属,如ABS塑料、聚丙烯、聚砜和酚醛塑料等,但塑料电镀前,必须经过特殊的活化和敏化处理。更重要的是电镀企业为了保证镀液的稳定性、使用寿命和镀层质量,在镀液中添加了很多的络合剂、稳定剂、加速剂、PH缓冲剂和光亮剂等有机溶剂。因而产生了镀前各镀件的酸洗、碱洗废水,镀件漂洗废水,镀后清洗钝化废水及其他废水等。1.2电镀废水的类型按照电镀工艺的处理阶段划分,电镀废水可以分为镀前处理废水和镀后清洗钝化废水;按照电镀废水的成分划分主要后含氰废水、含镍废水、含铬废水、含铜废水等。针对不同类型的电镀废水需要采用不同的治理以及回用技术,这样才能确保处理后的废水达到再次利用的标准。2.当前几种比较成熟的电镀废水治理以及回用的方法目前,比较成熟且应用效果相对良好的电镀废水处理及回用技术电解法、离子交换法、铁氧体法、化学沉淀法、膜分离法以及生物法等,这些处理方法对于去除电镀废水中的铬、铜、镍等重金属物质具有良好的效果。2.1电解法电解法处理电镀废水的主要原理就是利用氧化、凝聚、还原以及气浮这四种化学和物理反应净化电镀废水,是目前一种比较成熟的电镀废水治理技术,可以有效清除并回收废水当中的重金属物质,在处理过程中所产生的污泥较少,是一种比较清洁的处理方式。并且电解法处理电镀废水不需要大量的化学药品,处理过程相对比较简单,占据的空间较小,处理效果也比较理想,但是这种处理方法的成本相对比较高,中小企业一般难以负担。2.2离子交换法离子交换法处理电镀废水的主要原理是利用树脂中的离子与电镀废水中的离子进行交换,从而实现净化废水的目的。这种方法起源相对较早,是国外主要应用的电镀废水处理的方式,我国在上世纪70年代也开始进行研究,至80年代左右开始应用离子交换法处理电镀废水,此后,这种方法长期在电镀行业中被使用,效果良好。2.3化学沉淀法2.4混凝沉淀法混凝沉淀法也被称为絮凝沉淀法,其处理的电镀废水的基本原理是在一定的条件下,向废水中加入絮凝剂,然后通过反应脱稳、凝聚吸附、絮凝架桥、卷扫等一系列过程使电镀废水中的污染物质在絮凝剂的作用形成絮凝体,然后再通过气浮或者沉淀的方式将絮凝体与水进行分离,这是目前使用最为广泛的一种电镀废水处理方式。絮凝沉淀法现阶段的研究主要是针对高分子重金属,目前普遍使用的就是PAC和PAM这两种,絮凝效果良好,在电镀废水处理中效果极为良好。2.5生物法生物法是当前重点研究的电镀废水处理方式,虽然其尚处于试验研究的阶段,未在实际当中应用,但是就现有的研究成果来看,其不失为一种比较理想的电镀废水处理方式。生物法主要是利用微生物达到净化电镀废水的目的,目前主要有吸附法、化学法、絮凝法以及修复法等方式。目前生物法处理电镀废水应用于实践当中的主要障碍就是一方面难以确定处理过的微生物是否会发生变化,进而对环境造成更大的污染;另一方面是关于生物法处理电镀废水的工艺设计以及微生物的培养等存在一定的困难,导致难以在实际当中应用,但是随着科学技术的进步,相关的问题必然会得到解决,待其应用性得到确认,必然会得到广泛的应用。2.6膜分离法膜分离法处理电镀废水的主要原理就是利用膜材料透过性能对废水中的污染物质进行分离,从而实现去除废水中污染物质的目的。目前膜分离法处理电镀废水的主要技术包括电渗析(ED)、反渗透(RO)、纳滤(NF)、液膜法(LM)、超滤(UF)、微滤(MF),其中RO和ED应用的时间相对较早,发展相对比较成熟。膜分离法的优势在于其去除效果好、操作自动化、能耗较小、污染较低,同时还能实现对电镀废水中的重金属离子进行回收,经济效益以及环保效益都相对较高。日本和美国对于这项技术的研究和应用相对较早,我国在本世纪初才开始发展利用膜分离法处理电镀废水,但是随着我国对于环保的重视程度不断提升,这项技术在我国也开始普遍应用。3.几种主要类型的电镀废水处理以及回用3.1含镍废水的处理以及回用3.2含氰废水的处理以及回用处理含氰废水首先需要将废水注入破氰池,在出水后添加还原剂,将多余的氧化物还原,然后添加片碱调节废水的pH,达到标准范围后利用混凝沉淀法进行沉淀。将废水注入沉淀池后加入絮凝剂,待其中的重金属物质完全沉淀之后利用真空泵将其抽到缓冲池当中,然后利用双膜法与其他处理后的废水进行处理,处理后的水可以回用。RO浓水要排放到废水处理池中再次进行处理,达到排放标准后进行排放。3.3含铬废水处理3.4前处理废水由于前处理废水中存在表面活性剂、化学溶剂以及乳化液等物质,成分比较复杂,同时还有存在少量重金属离子,首先需要进行预处理,然后才能进入后续的处理环节。将预处理的废水集中至调节池当中,然后添加片碱调整废水的pH值,出水后进入反应池,添加絮凝剂,待其完全沉淀后,将沉淀物去除,上清液利用反渗透(RO)进行再次处理,出水后即可进行回用,RO浓水要排放到废水处理池中再次进行处理,达到排放标准后进行排放。3.5含铜废水的处理4.结语综上所述,受我国水资源现状的影响,电镀行业对废水进行治理以及回用已经是一种必然的趋势,同时电镀废水处理及回用技术也有了极大的发展,可以实现对多种类型的电镀废水进行处理回用。

厂商

2019.10.16

化学法处理氨氮废水研究进展

简介了化学法中电化学法和药剂法的优缺点及适用条件; 比较了电化学法中二维电极、三维电极及微生物电解的区别; 阐述了电化学法去除废水中氨氮的作用机制; 介绍了电化学法及药剂法处理氨氮废水的主要影响因素; 着重介绍了不同化学法对氨氮去除效果的最新研究进展; 最后,展望了电化学法和药剂法的未来研究方向。化学法处理氨氮废水还有待进一步的研究完善。近年来,随着工业化的发展,氨氮废水导致的污染问题日益严重,氨氮是破坏水体平衡,造成水体富营养化的重要因素之一; 其过量排放会给生态环境和人体造成巨大危害,它不仅会促进水体富营养化,而且还会产生恶臭,给供水造成障碍。水中氨氮主要来源于化肥、制革、养殖、石油化工、肉类加工等行业的废水与垃圾渗滤液排放,以及城市污水和农业灌溉排水。如何经济高效去除废水中氨氮已成为近年来研究热点。目前国内外对氨氮废水的处理方法有物理法、化学法以及生物法。本文就化学法处理氨氮废水热点问题展开综述,并展望未来化学法处理氨氮废水的研究方向。1 电化学氧化法电化学氧化法具有操作简单、氧化能力强、二次废料少、占地面积小等优点。近年来引起了人们的高度重视,被广泛运用于处理难生物降解有机废水、垃圾渗滤液、制革废 水、印染废水等领域。氨氮的电化学氧化主要是通过电极的催化作用产生·OH、ClO - 和 HClO 等具有强氧化活性的物质与氨氮反应,将氨氮氧化为氮气、硝态氮、亚硝态氮或其它产物,在酸性条件下,氨氮主要被羟基自由基去除,碱性条件下,氨氮主要被直接氧化去除,产物主要为氮气。常规的电化学处理氨氮废水有二维电极电解法、三维电极电解法以及微生物电解法。 1.1 二维电极常规电解法处理氨氮废水就是直接在电解质溶液中加上电流,电极通过得失电子从而使电解质溶液产生强氧化性物质,将氨氮进一步氧化去除,或者直接在负极附近将氨氮氧化。大量实验研究表明,电化学法处理氨氮废水主要依靠间接氧化所实现。王春荣通过实验研究发现在氯离子存在条件下,氨氮氧化以间接氧化为主,氨氮去除率可达到 87% ,其中直接氧化率为 8% ,间接氧化率为79% 。Chen 等的研究表明氨的直接阳极氧化效率小于 5% ,电化学氧化法去除氨主要是由于电解过程中次氯酸盐的间接氧化作用,而且电解除氨氮在中性至中碱性条件下更有效。钛基氧化物涂层电极作为一种常用的电极,因为具有较低的析氯电位,在氨氮处理技术方面得到了广泛的应用。李璇比较了 3 种 DSA 电极对氨氮的去除效果,发现与 Ti /RuO2-IrO2 电极和 Ti /RuO2 电极相比, Ti /IrO2-Ta2O5 电极具有较弱的电解氯离子能力,电化学间接氧化效率较低,并且 IrO2 的含量对电极析氧电位的提高和电极的抗腐蚀能力的加强起着重要的作用。Shu 等以 Ti /SnO2-IrO2-RuO2 为阳极,采用脉冲电解法处理氨氮废水,发现对于氨氮初始浓度为 80 mg /L 的氨氮废水去除率可达 99. 9% 。邱 江[17]采用 Ti /RuO2-IrO2-TiO2 作为阳极,对初始浓度 120 mg /L 的氨氮废水,氨氮去除率可达 100% ,实验发现设置隔膜电解槽,可以避免所添加氯离子造成二次污染,制备柠檬酸乙二醇酷络合溶剂体系及涂层表面掺杂铜元素改性可以大大提高电极的电催化活性和稳定性。除了钛基氧化物涂层电极外,铅氧化物电极在氨氮废水处理方面也有不错的效果。张弛制备出一种新型 PbO2 电极作为阳极处理氨氮废水,发现随着电流密度的增加,氨氮的电催化效率逐渐提高,初始氯离子浓度对氨氮去除的影响较大,初始氯离子浓度的增加可显著提高氨氮电催化效率,随着初始氯离子浓度的增加,能耗逐渐减小,而且新型PbO2 电极对废水中氨氮有很好的去除效果。1.2 三维电极和二维电极相比,三维电极具有电流效率高、时空产率大、传质效率高等优点,被广泛运用于处理各类高浓度废水。丁晶等比较了相同条件下二维电极和三维电极的处理效果,结果表明三维电极能够更高效地去除氨氮,电解 20 min 后,对高浓度氨氮去除率可高达 95% 。Ding 等研究了水厂实际运用中,三维电极及二维电极对氨氮的去除效果,结果表明,三维电极对氨氮的降解率是二维的 1. 4 倍。李健等以石墨板为阴极,钛基氧化物涂层的金属钛板为阳极,采用粉煤灰负载氧化钛粒子为三维电极,构建了动态循环处理模拟氨氮废水的三维电极反应器,氨氮去除率可达 99. 83% 。李亮等以 RuO2 /Ti 为阳极,不锈钢为阴极,活性炭填充三维电极对深度去除污水中的氨氮进行了研究,发现氨氮去除速率随着电流密度和氯离子浓度增加而增加,单位氨氮去除能耗随着电流增加而增加,随着氯离子浓度增加而减少。 1.3 微生物电解近年来随着微生物燃料电池的飞速发展,为电化学研究方向提供了新的思路,微生物电解法跟常规电化学法相比具有更节能、更清洁、易操作等优点,可以很好解决电化学法能耗大的缺点,具有很好的经济效应和环境效应。王海曼构建了连续搅拌微生物电化学系统( CSMES) -复氧式生物阴极微生物电化学系统( ABMES) 串联系统,并研究了串联系统对养猪废水中氨氮的去除效果,对氨氮的去除率可达 88. 4% ,同时可获得 1. 298 kWh /m3 的净能量。郑贤虹构建了一种 MEC-SANI( 异养硫酸盐还原、自养反硝化、硝化一体化工艺) 耦合系统,实验发现氨氮去除率可达 96. 9% 。刘明[27]将生物阴极微生物燃料电池与间歇曝气相结合,处理含盐氨氮废水,氨氮的去除率可达 95. 76% ,外加电路断路有利于 MFC 中氨氮硝化反应的进行。 2 药剂法化学试剂法具有操作简单、见效快、去除率高等优点,常用作废水预处理,但是也存在着价格昂贵、存在二次污染等缺点。将化学试剂法与其他处理工艺耦合处理氨氮废水将会是未来的主要研究方向。 2.1 氯氧化法常规处理氨氮废水的氯氧化法一般包括折点加氯、次氯酸钠氧化、二氧化氯氧化以及次氯酸钙氧化法等。折点加氯法。李婵君等采用计量式连续加药的方式,使用折点加氯法处理低浓度氨氮废水,结果表明,控制 pH 在 5. 5 ~ 6. 5,m( Cl2 ) ∶ m( NH +4 ) = 8. 0 ~ 8. 2 之间时对氨氮的去除效果最好。罗宇智等采用化学沉淀-折点加氯法处理氨氮废水,处理后稀土氨氮废水氨氮仅为 8. 35 mg /L,且在折点氯化后投入适量 Na2 SO3 可有效降低水中余氯。白雁冰针对折点加氯法除氨氮后水中的余氯去除做了相关研究,结果表明,折点加氯进水氨氮宜在60 mg /L 以下,使用活性炭吸附浓度在 333 mg /L 以下的余氯具有很好的效果,余氯去除率可达 100% 。次氯酸钠法。Hao 等比较了次氯酸钠、次氯酸钙、二氧化氯在相同条件下对氨氮废水的处理效果,结果表明次氯酸钠的去除效果最好。岳楠等研究了次氯酸钠氧化氨氮初始浓度为 200 mg /L 的废水的处理效果,结果表明,在 n( Cl2 /NH3-N) 为 1. 7,pH 值 7 ~ 9 的条件下去除效果最好,同时表明可通过氧化还原电位( ORP) 变化为运行控制提供依据。胡小兵等采用次氯酸钠氧化法去除电镀废水中的氨氮,效果显著,最佳工况下出水氨氮仅为6. 12 mg /L。章启帆等以三氧化二镍作为催化剂,研究了次氯酸钠催化氧化对氨氮的去除效果,发现三氧化二镍的投加能加快反应终点的来临,但是不能减少次氯酸钠的投量,处理高浓度氨氮废水具有很好的处理效果。 2.2  臭氧催化氧化法臭氧因其具有很强的氧化性、使用方便等优点,被广泛运用于污水处理研究,臭氧氧化去除废水中污染物质的机理有两种: 一是臭氧利用自身的强氧化性直接与污染物质反应,而是在水溶液中其他物质的作用下产生氧化性更强的羟基自由基与污染物质反应,间接氧化去除污染物。 2.2.1 金属/金属氧化物催化臭氧氧化 由于单独采用臭氧氧化法处理氨氮废水存在着反应时间较长、臭氧利用率较低、氧化能力不足等问题。在实际运用中,为提高臭氧的使用效率,常加入催化剂以提高羟基自由基的生成数量从而达到好的处理效果,镁氧化物及其改性后的物质是不错的催 化 材 料。Chen 等研究了不同制备条件下 MgO-Co3O4 复合金属氧化物催化臭氧氧化处理氨氮废水的效果,发现对氨氮的去除率可达 85. 2% ; 此外,在实验中发现 SO2 - 4 和 HCO-3 能抑制氨根离子的降解,而 CO2 - 3 和 Br - 则能促进氨根离子的降解,使用多次后 MgO-Co3O4 复合催化剂仍能在催化中发挥较好作用。熊昌狮分别比较了 MgO、Fe3O4、Co3O4、NiO、CuO 五种金属氧化物作为催化剂对臭氧氧化去除氨氮的影响,研究发现, MgO 具有最高的催化活性,对氨氮的去除率可达90. 2%,但对产物氮气的转化率仅为 7. 9%,而 Co3O4催化臭氧氧化氨氮虽然活性不高,但其对产物氮气的转化率可达 17. 2%。氧化镁煅烧改性对其催化活性有很大的影响,郭琳等发现 500 ℃ 下煅烧得到的MgO 的催化活性最高,氨氮去除率可达到 96%,相比较于其他煅烧温度,提高了近 1 倍。 2.2.2  非金属催化臭氧氧化 金属氧化物虽然有较高的催化活性,但是由于成本原因,难以被广泛应用,活性炭作为应用广泛的吸附材料,其多孔的结构特性,能够提供强大的活性位点,并且其来源广泛,价格低廉,具有广阔的应用前景。尚会建等采用活性炭催化臭氧氧化法处理低浓度氨氮废水,发现活性炭的投加可显著提高臭氧的利用率,高 pH 条件下有利于氨氮的去除,在初始氨氮质量浓度为35 mg /L、活性炭投加量为 10. 0 g /L、臭氧流量为30 mg /min、pH 为 11 的条件下,反应 90 min 后,氨氮去除率可高达 97. 6% 。除催化材料外,共存离子对催化效果也有很大影响。Tanaka 等研究了共存离子对臭氧氧化降解废水中氨氮的影响。结果表明,溴离子的存在能明显促进臭氧对氨氮的降解,氯离子及碘离子的存在对氨氮降解没明显作用。Luo 等采用二段臭氧氧化法处理氨氮废水,在初始 pH 为 11 的条件下,经 过 第 1 阶段臭氧氧化氨氮的去除率可达59. 32% ,pH 降低至 6. 63,经过第 2 阶段臭氧氧化后,氨氮去除率可达 85% ,通过对氧化产物的检测结果表明,氨氮主要转化为硝态氮,少部分转化为亚硝态氮,不转化为氮气。 2.3 磷酸铵镁法高浓度氨氮废水常常是常规的生化处理的难点,近年来研究表明,磷酸氨镁法是处理高浓度氨氮废水的一种有效方法,它不仅能够高效处理高浓度氨氮废水,还能回收废水中的氮磷资源,磷酸铵镁沉淀经过简单处理后就能够作为氮磷肥料用于农作物,具有很高的经济价值和社会价值。磷酸铵镁法去除氨氮的反应原理如下:磷酸铵镁法处理效果主要取决于三个因素,分别是 Mg∶ N∶ P 摩尔比、废水 pH 值以及废水中的金属离子。Liu 等构建了一种回收废水中氮磷的装置,采用曝气 CO2 气提法调节 pH,考察了曝气速率及 Mg∶ P 比对氮磷回收的影响,结果表明,随着Mg∶ P 摩尔比和曝气速率的增加,氮磷回收比例明显增加,在 0. 8 ~ 1 摩尔比和 0. 73 L /L·min 的曝气速率条件下效果最好,总氮回收率可达 67% 。溶液中的 Ca2 + 对磷酸铵镁法的去除效果也会有一定的影响,往溶液中加入 Na2CO3可以对废水中的钙离子完全去除。王浩等采用响应面分析法对磷酸铵镁沉淀反应中的参数进行优化,并投入 Na2CO3以消除钙离子对沉淀效率的影响,结果表明,投加Na2CO3 可以对废水中的钙离子完全去除,在 pH = 9. 03,n( Mg) ∶ n( N) = 1. 20,n( P) ∶ n( N) = 1. 10,反应时间 30 min,搅拌速率 1 000 r/min 的条件下,氨氮的去除率可达 95. 4% 。磷酸铵镁法去除废水中的氨氮对镁源和磷源具有很大的依赖性,经济成本也在一定程度上制约了磷酸铵镁法的发展,如何开发出一种经济高效的镁、磷源成为了沉淀法的迫切需要。Huang 等[49]采用了一种低成本磷酸盐、镁源磷酸氨镁沉淀法去除垃圾渗滤液中氨氮的方法,采用了化工厂的废磷酸为磷源,将菱镁矿煅烧而得的 MgO( 镁含量 53% ) 作为镁源,处理高氨氮垃圾渗滤液,在 Mg∶ N∶ P 摩尔比为3∶ 1∶ 1的条件下,氨去除率可达 83% 。经济分析表明,与投加纯化学品相比,投加低成本 MgO 和废磷酸可节省 68% 的成本。 3 结论与展望电化学法作为一种清洁、安全的方法,在处理中低浓度氨氮废液方面有着独到的优势,可以在相对较低的电流密度下取得很好的处理效果,但是依然存在着能耗较高的问题,微生物燃料电池的发展,为电解法处理废水提供了新的思路,但是针对产电菌培养的研究还是较少,单纯微生物电解效率不高,还得外加电源的支撑。常规电解法未来的研究方向可放在新型电极材料的研究以及如何提高电流效率上; 微生物电解法未来研究方向可着重于产电菌机理研究以及高效产电菌培养上。药剂法是一种高效便捷的处理方法,也是现阶段处理高浓度氨氮废液效率最高的方法,但是成本较高以及容易造成二次污染等问题限制了药剂法处理氨氮废液的发展,为节约成本,常作为污水处理工艺的预处理方法。氯氧化法未来的研究重点可放在低成本液氯的应用及余氯处理上; 臭氧氧化法未来研究方向可放在高效催化材料的研制上; 磷酸氨镁沉淀法未来研究重心可放在低成本镁、磷源的实际应用以及沉淀物再利用上。

厂商

2019.10.12

高浓度氨氮废水技术详解

高浓度氨氮废水来源甚广且排放量大。如化肥、焦化、石化、制药、食品、垃圾填埋等均产生大量高浓度氨氮废水。排入水体不仅引起水体富营养化,造成水体黑臭,而且将增加给水处理的难度和成本, 甚至对人群及生物产生毒害作用。吹脱、蒸氨、生物法是三种国内外公认处理高浓度氨氮废水的技术,也是处理高浓度氨氮废水的主要方法。氨氮废水处理吹脱工艺特点andanfeishuichulichuituogongyi吹脱工艺通常主要针对废水中的氨氮浓度在2000mg/l以下:氨氮在水中以NH3和NH4+存在,它们之间存在如下平衡:NH3+H2O NH4++OH-平衡受PH影响,PH升高则水中的游离氨升高,平衡向右移动,游离氨的比例较大,当PH=7,氨氮大部分是以NH4+存在。当PH上升至11.5时,氨氮在废水中98%是以游离氨存在。pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式的平衡,温度升高,平衡向右移动。氨氮废水吹脱处理要点andanfeishuichuituochuliyaodian影响氨氮吹脱效率的主次因素顺序为pH>温度>吹脱时间>气液比,根据以往运行经验污水pH>10,温度>30℃,气液比3000:1,吹脱时间1h,则吹脱氨氮去除效果可达到90%。根据氨氮废水的特点,通常一级吹脱可达到85%以上的去除率,如果要求90%以上的去除率通常设计二级吹脱,吹脱技术具有成熟高效的特点。氨氮废水吹脱控制要点andanfeishuichuituokongzhiyaodian根据水质pH数据通常通过变频调节,使废水进塔前保证废水pH值11.5。吹脱水温通常控制在50℃以上。pH调整槽出水通过提升泵进入一级吹脱塔吹脱,一级吹脱塔吹脱后pH会下降。从而加入液碱进一步调节pH值.保证进入二级吹脱的废水pH≥l1.5,氨氮吹脱塔,采用二级逆流方式。氨氮废水处理工艺说明andanfeishuichuligongyishuoming在碱性条件下(pH=11.5),废水中的氨氮主要以NH3的形式存在,让废水与空气充分接触,则水中挥发性的NH3将由液相向气相转移,从而脱除水中的氨氮。吹脱塔内装填塑料板条填料(不易结垢),采用乱堆装填方式,填料间距为40mm,填料高度6m(分3层)。空气流由塔的下部进入,与填料反复溅水形成水滴,使气液相传质更充分、更迅速,废水最终落入塔底集水池。氨氮废水吸收处理工艺特点andanfeishuixishouchuligongyitedian吹脱塔排放的尾气中含有大量氨气,直接排放对厂区周围环境造成很大影响因此吹脱出的NH3吹入吸收塔。塔型采用填料塔形式,酸槽中的30%稀硫酸用耐腐蚀泵抽至吸收塔塔顶经分布器均匀喷洒,沿填料表面形成液膜下流,与自下而上的NH3气体充分接触,生成的(NH4)2SO4流入酸槽循环使用用作后续pH调整。达到一定浓度后(NH4)2SO4可回用于车间,从而达到环境效益和经济效益平衡。吹脱塔和吸收塔材质通常采用碳钢内衬FRP材质。氨氮蒸氨工艺特点andanzhengangongyitedian蒸氨塔从属于解吸塔,适合氨氮浓度在5000mg/l浓度以上的氨氮废水处理。蒸氨是使溶解于循环水中的氨气通过热载体的传热而挥发释放出来的操作设备。工作原理为:采用一般的载热体水蒸汽作为加热剂,使循环水液面上氨气的平衡蒸汽压大于热载体中氨气的分压,汽液两相逆流接触 ,进行传质传热,从而使氨气逐渐从循环水中释放出来 ,在塔顶得到氨蒸汽与水蒸汽的混合物,在塔底得到较纯净的循环水。总之,加碱源的目的是使固定铵盐转化为挥发铵盐。蒸氨塔工艺技术特点zhengantagongyitedian蒸氨塔的塔壳、塔板设有泡罩,泡罩下边缘为锯齿状,将泡罩溢出的气体均匀分割成多股气流进入液相中,消除了气流在液相中的偏析现象,使得气液充分接触,传质效果好,蒸氨效率高,去除氨氮效率高。采用常压操作,塔顶操作温度约为105℃,塔底操作温度约为110℃。利用蒸汽循环工艺对含氨废水进行汽提脱氨,选用SS316L材质。蒸氨塔氨回收方式zhengantaanhuishoufangshi针对蒸氨工艺,氨气回收方式通常按照硫酸铵或液氨的方式回收。如果采用硫酸铵方式回收则配套提供氨气吸收塔,把排出的含氨蒸汽送入氨气吸收塔的底部,利用由塔顶喷淋下来的30%左右的稀硫酸吸收其中的氨,在塔底部生成30%左右的硫酸铵溶液。如果采用液氨方式回收,则提供冷凝器方式。蒸氨处理工艺特点zhenganchuligongyitedian蒸氨塔塔釜高温水与废水进行热交换,充分利用热量并保证废水进脱氨塔的温度。采用高通量、低阻降、高分离效率、抗结垢、抗颗粒的塔板与塔内件。低能耗,运行装机功率小,整个系统自动化程度高。

厂商

2019.10.11

氨氮废水的来源与危害

随着工农业的发展和人民生活水平的提高,含氮化合物废水的排放量急剧增加,已经成为环境的主要污染源而备受关注。含氮物质进入水环境的途径主要包括自然过程和人类活动两个方面。含氮物质进入水环境的自然来源和过程主要包括降水降尘、非市区径流和生物固氮等。人类的活动也是水环境中氮的重要来源,主要包括未处理或处理过的城市生活和工业废水、各种浸滤液和地表径流等。人工合成的化学肥料是水体中氮营养元素的主要来源,大量未被农作物利用的氮化合物绝大部分被农田排水和地表径流带入地下水和地表水中。随着石油、化工、食品和制药等工业的发展,以及人民生活水平的不断提高,城市生活污水和垃圾渗滤液中氨氮的含量急剧上升。近年来,随着经济的发展,越来越多含氮污染物的任意排放给环境造成了极大的危害。氮在废水中以有机态氮、氨态氮(NH4+-N)、硝态氮(NO3--N)以及亚硝态氮(NO2--N)等多种形式存在,而氨态氮是最主要的存在形式之一。废水中的氨氮是指以游离氨和离子铵形式存在的氮,主要来源于生活污水中含氮有机物的分解,焦化、合成氨等工业废水,以及农田排水等。氨氮污染源多,排放量大,并且排放的浓度变化大。大量氨氮废水排入水体不仅引起水体富营养化、造成水体黑臭,给水处理的难度和成本加大,甚至对人群及生物产生毒害作用。氨氮废水的一般的形成是由于氨水和无机氨共同存在所造成的,一般上pH在中性以上的废水氨氮的主要来源是无机氨和氨水共同的作用,pH在酸性的条件下废水中的氨氮主要由于无机氨所导致。废水中氨氮的构成主要有两种,一种是氨水形成的氨氮,一种是无机氨形成的氨氮,主要是硫酸铵,氯化铵等等。高氨氮废水的危害主要有以下方面:一方面是废水中的氨氮是水体富营养化和环境污染的重要物质,易引起水中藻类及其他微生物大量繁殖,自来水处理厂运行困难,造成饮用水异味,严重时会使水中溶解氧下降,鱼类大量死亡,甚至会导致湖泊的干涸灭亡。另一方面,氨氮还会使给水消毒和工业循环水杀菌处理过程中增大用氯量;对某些金属(铜)具有腐蚀性; 当污水回用时,再生水中氨氮可以促进输水管道和用水设备中微生物的繁殖,形成生物垢,堵塞管道和用水设备,并影响换热效率。其次,氨在硝化细菌的作用下氧化为亚硝酸盐及硝酸盐,硝酸盐由饮用水而诱发婴儿的高铁血红蛋白症,而亚硝酸盐水解后生成的亚硝胺具有强烈的致癌性,直接威胁着人类的健康。· 氨氮废水排放标准 ·我国现行的相关环保标准中涉及氨氮废水排放指标的有《地表水环境质量标准》(GB3838-2002)、《地下水环境质量标准》(GB/T14848-93)、《污水综合排放标准》(GB8978-1996),以及相关行业型水污染物排放标准,氨氮标准限值范围为0.02mg/L~150mg/L。《地表水和污水监测技术规范》(HJ/T91—2002)把氨氮列为河流、湖泊水库和集中式饮用水源地的必测项目。钢铁工业、焦化、化肥(氮肥)、合成氨工业、纺织染整业、食品加工、屠宰及肉类加工、饮料制造业、航天推进剂、船舶工业、管道运输业、宾馆、饭店、游乐场所及公共服务行业、生活污水等排水单位,也把氨氮列为必测项目。因此,氨氮指标的监控,在环境质量和污染控制中是十分重要的。上述标准中规定的分析方法大多为蒸馏和滴定法、纳氏试剂比色法和水杨酸分光光度法,2008年实施的相关环保标准中增加了《水质氨氮的测定气相分子吸收光谱法》(HJ/T195-2005)。

厂商

2019.10.08

脱氮除磷系统药剂投加的正确姿势!

脱氮除磷是污水处理系统的一项重要功能,要保障脱氮除磷处理达标,很重要的一点就是要保证给微生物提供充足的有机物。有效的反硝化需要易生物降解的碳源,生物除磷需要短链挥发性脂肪酸,在一些天然水质较软的地区, 需要补充碱度以维持整个曝气池硝化过程所需的pH条件;另外,如果使用化学除磷,无论是作为生物除磷过程的补充还是作为主要的除磷手段, 都需要添加金属盐和聚合物。本文讨论各种药剂投加方法的基本原理、投加量计算和操作要求。一、反硝化的碳源投加1、什么时候需要加药剂?生物脱氮需要完成硝化和反硝化两个过程。废水中的氨氮首先必须被硝化或转化成亚硝酸盐和硝酸盐, 然后在反硝化过程中, 硝酸盐将被作为细胞呼吸过程中氧化简单碳化合物的供氧体被还原成氮气。因此, 以去除硝酸盐为目标的反硝化过程必须要有易生物降解的碳源存在。其来源包括进水中溶解性BOD、内源反硝化过程中细胞的腐烂物和各类上清液回流等。当进水溶解性有机物不足而脱氮要求很高时, 则需要通过补充化学物质以提供反硝化过程所需要的碳源。2、有哪些碳源?投加在哪个位置?反硝化所用的人工碳源有甲醇、乙醇、变性乙醇、醋酸及醋酸钠等纯化学药剂, 或者是工业生产过程中的废糖、糖蜜和废醋酸溶液等。其中甲醇的使用最普遍, 且被证明是最合适的碳源。对于常规的生物脱氮工艺, 甲醇应直接投加在缺氧段, 并通过缺氧段内的搅拌器与进水及混合液充分混合, 需防止水流剧烈紊流导致甲醇从液相中挥发至空气, 也应防止因多余的氧气存在造成部分甲醇被细菌好氧呼吸消耗。如果污水厂采用四阶段或五阶段活性污泥工艺, 在后续的缺氧段(第二缺氧段) 投加碳源可以获得比内源呼吸更高的反硝化速率, 能进一步去除硝酸盐;对于三级反硝化系统, 如反硝化滤池、反硝化好氧生物滤池等, 则补充碳源对于系统的运行非常重要。因为反硝化过程在主体曝气工艺的下游,进水中的所有溶解性BOD都已经被去除,所以甲醇通常投加于反硝化进水中。3、投加量怎么计算?甲醇的投加量受硝酸盐(NO3-N) 、亚硝酸盐(NO2-N) 以及溶解氧影响。甲醇的需要量可以通过式(1) 计算。甲醇需要量:2.47NO3-N+1.53NO2-N+0.87DO (1)实际运行中通常按每反硝化去除1 mg/L硝酸盐投加3 mg/L甲醇考虑, 然后根据污水厂的实际负荷及运行情况进行调整。甲醇投加量的正确控制对三级反硝化系统的运行非常重要。过量投加不仅浪费化学药剂而且会增加反硝化系统出水中BOD的浓度。这对于出水BOD浓度要求不高的污水处理厂, 问题不会太大, 但是对于BOD限值约为5 mg/L或更低的污水处理厂来说, 则是需要重点考虑的问题。4、甲醇投加系统的安全措施甲醇的闪点为12 ℃,是高可燃性物质。甲醇的储存池、管道及其附件和电气系统需要考虑相应防爆措施。甲醇投加系统通常宜安装在室外, 并远离其他设备。甲醇储罐应安装浮动式顶盖和压力释放阀与灭火器。二、生物除磷中挥发性脂肪酸的投加1、为什么需要投加VFA?生物除磷的机理是通过厌氧区中吸收挥发性脂肪酸(VFA), 同时释放出存储的磷, 而在好氧条件下聚磷细菌吸收过量的磷。为保证聚磷细菌的繁殖以及有效的生物除磷作用, 需要有充足的挥发性脂肪酸。污水处理厂的进水中可能有VFA存在, 包括收集系统的停留时间较长、设有多级提升泵站的原水和生物脱氮除磷系统厌氧段中复杂的有机化合物分解产生。若自然产生的VFA含量不足, 就需要在厌氧段外加VFA。2、常用的VFA是什么?投加量怎么计算?对于生物除磷系统而言, 醋酸与丙酸的混合液是外加VFA的选择。实践中使用最普遍的是醋酸溶液。若需要投加VFA (例如在进水中增加溶解性BOD, 其中部分将通过厌氧段的发酵过程转化为可用的VFA), 则外加VFA的需要量通常为去除每毫克磷需要5~10 mg的VFA。通常醋酸为冰醋酸(近似百分百溶液) 和84%及56%的溶液形态。冰醋酸虽然不像乙醇那样易挥发,但具有相对较低的闪点(40 ℃) 以及17 ℃的冰点,因此应按规范要求考虑防止燃烧, 同时必须采取措施防止凝固。储存池、管道以及附件等都需采用金属材料。3、醋酸的安全存放措施醋酸具有腐蚀性, 通常采用316号不锈钢。若在温暖的气候条件下使用冰醋酸, 由于其相对较低的闪点, 需要考虑采用惰性气体垫层或浮顶。实际应用中建议采用低浓度的醋酸水溶液。当然, 投加VFA并不能完全去除系统出水的TP浓度;如果需要出水TP很低, 仍然需要采用化学除磷,通过投加化学药剂将磷沉淀去除。三、碱度的投加1、什么情况需要投加碱度?碱度是衡量污水对酸的中和能力的指标。碱度与pH密切相关, 对于生物脱氮除磷工艺的污水厂至关重要。硝化过程中碱度的消耗导致污水pH下降, 利用铁盐或铝盐进行化学沉淀除磷也会造成碱度下降。pH下降导致硝化反应速率降低, 当pH约为6时硝化停止;pH值低于7时, 聚糖菌会与聚磷菌发生竞争, 影响聚磷菌利用VFA能力, 从而影响生物除磷效果。另外, 碱度也反映了污水的缓冲能力, 即应对不同进水水质pH变化的能力。因此,为保证硝化反应的进行,一些污水处理厂需要外加碱度。有许多化学药品可以用来补充碱度。化学药品的选择受到当地自然条件、当地化学品价格以及操作人员偏好的影响。2、可以用于补充碱度的化学物质有哪些?投加量怎么计算?可以用于补充碱度的化学物质有氢氧化钠(NaOH)、氢氧化钙(消石灰)[Ca(OH)2]和氧化钙(生石灰) (CaO) 等。氢氧化钠价格较高, 但是与氢氧化钙相比, 使用操作更方便, 储存及投加系统的年运行费用较低;氢氧化钙通常以固体物质的形式出售, 在使用前必须成浆, 石灰浆池易发生结垢;氧化钙需熟化, 熟化操作过程的劳动环境恶劣且劳动强度大, 维持设备运行需耗费大量人力。补充碱度投加系统设计时, 一般采用50~100 mg/L(CaCO3计) 作为出水的目标碱度。实际运行时每个厂都必须进行单独评估, 以确定多大的出水碱度能保证出水pH值稳定。在确定投加量时, 需要考虑后续工艺对出水pH和碱度的影响。通常氯气会增加酸度,进一步降低出水的pH值;次氯酸钠会增加碱度;用铁盐或铝盐沉淀除磷, 当好氧池中铝盐或铁盐过量投加时, 产生氢氧化物沉淀会增加碱度消耗。通常对于铝盐, 产生每毫克氢氧化铝需要消耗5.56 mg 的CaCO3。对于铁盐, 产生每毫克氢氧化铁需要消耗2.69 mg的CaCO3。3、氢氧化钠的安全存放措施氢氧化钠属于强碱, 若投加过量, 会造成pH明显上升。稀释后的氢氧化钠溶液必须在低于0 ℃的条件下冷冻保存。50%的氢氧化钠溶液的冰点约为12.8 ℃, 因此其储存池及管道必须加热并保温。一旦液体温度低于12.8 ℃, 氢氧化钠将结晶并从溶液中析出。发生结晶的氢氧化钠很难被再次溶解。氢氧化钠用厂内供水或饮用水进行现场稀释, 在混合点易出现结垢现象。因此, 稀释系统混合点处的管道接口应设计成易清洗的形式;氢氧化钠的投加点也容易发生结垢, 建议氢氧化钠投加于回流污泥管, 因回流污泥管中流量较大, 可以保护管线防止结垢。四、化学除磷中的药剂投加1、化学除磷的投加位置化学除磷的基本原理是将溶解性的磷转化为化学沉淀物, 在污泥沉淀过程中去除。用于废水中化学沉淀除磷的化学物质有铁盐、铝盐和钙盐, 其中铁盐较为常用。化学除磷药剂的投加量需结合整个处理系统进行考虑。应充分利用生物除磷作用对磷的吸收, 使化学药剂得到有效利用, 并使污泥的产量最小化。根据出水中的磷浓度的不同目标, 化学药剂可以在不同的投加点投加, 如图所示。若在初沉池中进行化学除磷,还需要考虑下游微生物对磷的需求。若投加药剂去除了过量的磷, 则生物系统将面临营养物质缺乏的问题。铁或亚铁化合物可以在初沉池前投加, 并在初沉池中沉淀。铁盐的除磷效果取决于反应时间的长短。完全反应需要5 ~ 10 min, 因此需要铁盐与污水的混合反应区以形成难溶沉淀物。若没有条件设置混合反应区, 则需将药剂投加在更上游的区域, 以保证足够的停留时间。铁盐也可以在二沉池前投加, 铁盐沉淀物在沉淀池上游形成, 并在沉淀池中从系统中分离。亚铁盐在曝气池前投加, 因为亚铁离子氧化成铁离子需要消耗额外的氧气;过量投加会增加出水中的离子浓度, 因此亚铁离子不能在二沉池中投加。过量或未反应的亚铁离子一旦被带入消毒系统, 将消耗氯气, 同时形成沉淀(提高出水总悬浮固体TSS浓度)。此外, 若采用紫外线消毒系统, 铁会干扰紫外线的吸收, 在灯管上形成淤积, 加快灯管的清洗频率。建议每个污水处理厂进行小试, 以确定达到出水溶解性磷目标值所需的实际摩尔投加量。2、化学除磷的投加量通常磷沉淀所需的铁盐摩尔投加量基于出水期望的溶解性磷浓度而非进水磷浓度。若初沉池将磷的浓度降低到1 mg/L,需要投加的铁盐Fe3+∶ P的摩尔比为1.67 ∶ 1或质量比3 ∶ 1;在二级处理系统中去除0.5 mg/L溶解性磷需要投加的铁盐Fe3+∶ P的摩尔比2.27 ∶ 1或质量比4.1 ∶ 1。此外, 投加铁离子无法使出水中溶解性磷浓度低于0.10 mg/L。要达到这个浓度, 则需要投加的铁盐与磷的摩尔比为12 ∶ 1。3、药剂存储和操作问题铁盐或亚铁盐呈酸性, 因此需考虑存储和操作的问题。可用玻璃纤维增强塑料(FRP) 或聚乙烯存储池来存储氯化铁、氯化亚铁、硫酸铁或硫酸亚铁。计量泵可采用蠕动泵、螺杆泵或隔膜泵。应尽量在接近投加点附近添加, 以减少电镀作用的影响。泵体需采用聚氯乙烯(PVC) 材料。管道、阀门及配件需采用PVC或过氯乙烯(CPVC) 材料。五、化学药剂投加要点1、投加化学药剂肯定会增加设施建设费用和日常运行费用, 所以是否需要投加化学药剂应根据排放或利用的标准确定;2、药剂的有效利用取决于准确的投加剂量和适当的混合措施;3、必须强调要做好可靠的防护措施, 保证运行维护人员的安全和健康。

厂商

2019.09.29

环境监测分析技术——地表水中总氮的测定

地表水中总氮测定方法选择作业指导书推荐方法:基本概念:总氮:在本标准规定的条件下, 能测定的样品中溶解态氮及悬浮物中氮的总和, 包括硝酸盐氮、 亚硝酸盐氮、 无机铵盐、 溶解态氨及大部分有机含氮化合物中的氮(HJ 636)。有机氮化合物:蛋白质、 肽、 氨基酸、 核酸、 尿素以及化合的氮, 主要为负三价态的有机氮化合物。工作原理:在120~124℃下,碱性过硫酸钾溶液使样品中含氮化合物的氮转化为硝酸盐,采用紫外分光光度法于波长220nm和275nm处,分别测 定吸光度A220和A275,按公式计算校正吸光度 A,总氮(以N计)含量与校正吸光度A成正比。注解:220nm的波长下测定的是硝酸盐氮,氮的浓度在11mg/L以内时,硝酸盐氮的校准曲线符合朗伯-比尔定律。溶解的有机物既在220nm处有吸收,也在275nm处有吸收,而硝酸盐氮在275nm处不吸收,所以需要在275nm作一次测定,扣除有机物在两个波长下的吸收值。样品前处理1. 取适量样品用20g/L氢氧化钠溶液或( 1+35) 硫酸溶液调节pH值至5~9。2.量取10.00ml试样于25 ml具塞磨口玻璃比色管中,加入5.00ml 碱性过硫酸钾溶液, 塞紧管塞,用纱布和线绳扎紧管塞, 以防弹出。3. 将比色管置于高压蒸汽灭菌器中, 加热至顶压阀吹气, 关阀, 继续加热至120℃, 开始计时,在120℃~124℃之间保持30min。4.自然冷却、开阀放气,移去外盖,取出比色管冷却至室温, 按住管塞将比色管中的液体颠倒混匀2~3次。5.每个比色管分别加入(1+9)盐酸溶液1.0 ml,用水稀释至25ml标线,盖塞混匀。6.使用10 mm石英比色皿, 在紫外分光光度计上,以水作参比, 分别于波220nm和275nm处测定吸光度。样品测定测定方法分别量取0、 0.20、 0.50、 1.00、 3.00和7.00ml 硝酸钾标准使用液, 其对应的总氮( 以N计) 含量分别为0、 2.00、 5.00、 10.0、 30.0和70.0g, 加水稀释至10.00ml, 按照样品的测定步骤进行测定。计算公式:关键环节问题与讨论1. 水样中酸碱度对总氮测定的影响水样在pH为5~9的范围内数据的波动较小, 在此范围外的数据变化无明显规律, 但在pH为1的强酸条件、pH为 10以上的强碱条件下有大的波动。2. 样品空白过高的原因和解决方法1)氢氧化钠纯度:含氮量应不超过0.0005%,市售氢氧化钠质量参差不齐,氮含量与标称含量不一致。2)碱性过硫酸钾配制方式:采用三种方式配制方式进行实验:A 直接将过硫酸钾和氢氧化钠混合,加纯水溶解。B 分别溶解过硫酸钾、氢氧化钠, 然后待冷却至室温后混合。C 首先水浴溶解过硫酸钾, 然后向过硫酸钾溶液中直接加入氢氧化钠。3).碱性过硫酸钾加热温度水浴温度高于60oC时,浓度较高的标样2和标样3均在范围内,标样1低于结果下限。当水浴温度低于60oC时,标样均合格且温度在60oC时更接近真值。配制碱性过硫酸钾溶液的温度为50~60oC。4). 碱性过硫酸钾存放时间碱性过硫酸钾在 27~30℃ 环境下,存放超过 3d, 空白值就会大于 0.030;建议实验时尽量根据最近 3d 的需求量配制, 存放尽量不要超过 3d。存放在聚乙烯瓶中。5).消解时间3. 干扰及消除1)碘离子含量相对于总氮含量的2.2倍以上,溴离子含量相对于总氮含量的3.4倍以上,对测定产生干扰;2)水样中六价铬离子和三价铁离子对测定产生干扰,可加入5%盐酸羟胺溶液1~2ml消除。

厂商

2019.09.27

电镀含铬废水处理技术现状与发展趋势

近年来,中国工业化的步伐加快,环境问题日益突出,在工业生产过程中,大量含铬电镀废料水对我们的环境造成了严重的危害,甚至危及人们的生命。本文分析了电镀含铬废水的处理现状及技术特点,致力于探究如何废水的回收技术,进一步提高电镀废水的处理技术。引言就环境保护方面而言,重金属废水不仅不易沉淀,还会造成一系列的污染现象,对人类和水生生物的生存构成严重的威胁。铬是一种相对常见的元素,并广泛存在于人们生活的环境中。废水中,铬也是一种常见的物质,其具体的浓度基本恒定不变,大约在50左右,可以对其进行适当的处理。根据土壤中铬的含量,可知其在废水中的含量与土壤及工业发展情况有关。铬的存在形式是多元化的,既可能造成严重的工业影响,也可以通过污染水资源,导致水中重金属含量过高,对电镀行业也有一定影响。1 电镀含铬废水处理技术的研究现状处理1.1 化学沉淀法采用钡盐和铅盐的沉淀法,中和沉淀法更为成熟。采用旧的钡盐法和置换反应原理,使用阳离子碳酸盐等钡盐与铬酸反应,在受污染的水中形成沉淀的铬酸钡,然后从石膏过滤中除去残留的钡离子,并使用塑料聚氯乙烯微孔管,去除硫酸钡沉淀。该方法主要用于含Cr(VI)的废水处理,工艺简单有效,在通过石膏除钡后,可以重复使用受污染的水,并且BaCO3和再生铬酸进行回收。钡盐这一方法的独特优势,体现为可以实现科学的废水处理,其缺点是微孔塑料过滤管容易堵塞,清洗不充分,处理过程复杂;此外,药物的来源困难且昂贵,并且因用于水渣分离的微孔材料的加工较复杂而被淘汰。并且根据丁建初的研究,来自钡盐生产的废物可以作为沉淀剂。1.2 电解法根据电解的原理,可以在除去铬的同时,保留废水中的主要机理铁离子,Cr(VI)在酸性条件下还原成cr(III)。当污水中的氢离子下降时,pH值会增加,这有利于处理Cr(III)。同时,可以保证废水中的氢氧化物含量,从而防止pH的生长,从而使废水中铬离子形成沉淀并分离出来。采用这种方法的缺点是相对而言会造成一定程度上的消耗。此外,为减少能源消耗,通常将盐加入污水(约1g处理/1处理L)以增加电导率;同时也增加了盐水含量,处理后的废水不能回收利用。基于现阶段主张绿色循环,所以这种方法有待完善。1.3 利用活性炭一般而言,活性炭可以有效吸附污水中的Cr(VI)。但是,使用过程中,必须对活性炭的具体吸附剂进行调试,既保证其可以逐步清洁表面污垢,也需要保证废水的可回收利用。本文所研究的活性炭以稀释的HNO3处理氧化,用氢氧化钠和NaCl的混合的方法来解决的活性炭吸附行为的缺点。碳活化虽然具有优异的性能,但它仍然具有吸附剂成本高,单吸附型和再生困难的缺点。近年来,已开发出许多低成本材料,具有吸附丰富的资源,其中一种便是使用工业和农业废物作为吸附剂。胡等人,研究岩浆纳米粒子对Cr(VI)的吸附,将吸附容量与活性炭进行比较,并发现其不受其他共存离子的影响,它易于再生,可用于回收污水中的cr(VI)。另一种类型使用改性材料,例如吸附剂,改性木屑用铁屑和硫化亚铁和硝酸则需处理24小时。2 含铬废水处理技术流程铁屑和铁粉在废水处理的过程中,具有其自身的特色,这一点与处理重金属废水差异较大。其体现在许多还原和置换反应的过程中,需要对结合中和效应加以利用,同时利用相关的介质对其进行吸附。可以用废盐酸通过在处理槽中处理,然后进入中和沉淀池处理。在此基础上,运用沉淀氢氧化物对其进行处理,在适当借鉴铁粉的优势时,适当注入一定量的废酸液,产生化学还原反应,并将废水泵入铁中。利用粉末过滤罐,加入碱中和沉淀物,出水通过过滤罐过滤,水排出污泥进入浓缩罐,并在浓缩处理后进行。通过将体积分数为5%的盐酸注入过滤槽中20分钟,重复两次,然后使用自来水约15分钟后再进行实验。与此同时,可以积极利用再生铁粉的自身优势,结合浸泡废液的特点,在酸化的处理基础上,促进铁氧体法进程发展。当然,铁氧体法也存在一些弊端,对此,需要减少科学规避废水可能造成的影响,适当分离各种金属离子。铁氧体晶粒是磁性的,它与实际的金属离子形成过程紧密联系,为满足其工业要求,甚至参与了铁氧体的形成过程。该过程可分为铁盐、pH调节、氧转移转化、固液分离和沉淀处理。3 电镀含铬废水处理的发展趋势现阶段,电镀含铬废水处理更加重视实际的含铬量,同时,也启动了科学的预防计划,循环利用和完全控制阶段。因此,需要结合废水回收实际,综合利用废物循环再生。处理的内容众多,包括新技术和现阶段高度重视的微生物技术,这些技术也被运用到计算机应用技术中,对于技术的开发有积极作用。对各种水处理技术应用的综合研究具有重要意义。其主要发展优势如下3.1 低碳经济随着对处理技术要求的提高,现阶段已经出现许多经济的废水处理方式,其中包括资源的合理利用,其结合实际的市场需求,提高废水处理的经济效益。因此,除了能够达到良好的处理效果外,低廉的价格,降低加工成本和损耗,电镀行业引进了许多处理含铬的电镀污水的高技术生物技术。这些技术涉及微生物领域,已经逐步发展成为成熟的处理项目,并且具备安全标准。3.2 高效率含铬的铬电镀污水处理技术也应具有强大的效率,在保证处理技术达标的基础上,还需要不断提高技术的效率,保证能够高效地处理废水进行废水回收。许多处理废水的流程相对操作复杂,但是可以在提高效率的基础上对其进程进行把握,在控制处理时间的同时,根据实际的设计参数对效率进行参考,保证处理技术的难度和规律。例如,在选择吸附剂材料的过程中,可以结合实际的市场情况,并保证低价的同时寻求含有铬电镀废水处理技术,达到吸附的Cr处理的效果。在重金属的回收过程中,必须意识到这种方法只是一个临时解决方案。由于许多公司正在不规范处置这些吸附材料,因此,在实施这些技术时应特别小心谨慎处理。3.3 全面节能根据行业的一些经验和处理方法,可知现阶段许多废水处理工艺已经得到较大的提高,目前的的发展趋势主要趋向于节能、安全和稳定方向。当实施两种或更多种方法组合时,可以实现额外的,经济的和有效的处理效果。例如,可以正确看待离子的交换过程,通过结合实际的离子交换优势,进行洗脱和再生回收,并且,洗脱液是高含量的铬浓缩液。另外,通过化学还原沉淀,污水可以达到标准排放。与全面节能方法相比,传统的废水处理不仅效率低下,还容易造成遗留问题,在这种组合基础上,高铬含量的溶液也可以用于储层中。由此可知,这种组合工艺虽然已经逐步成熟,但依旧存在不足,现阶段大多数都处于试验阶段。洗涤液是强酸性或碱性,所以酸为基础的输入剂增加的成本和适当的还原剂的选择变得更加高效新的挑战。它应在企业推广并且该过程是更加成熟。结语:在处理含铬电镀废水的过程中,必须处理根据实际的工艺技术,结合废水污染程度,对其进行多种处理优化,同时不断提高处理设备和水质条件,争取达到高效、低能、处理安全的效果,实现环保与经济的优化组合。

厂商

2019.09.20

医药化工高盐废水的处理技术研究与应用

针对医药化工高盐废水处理技术的应用,结合几种常用的处理技术,做了简单的分析。从技术研究和应用实际情 况方面,在常规技术的基础上,不断优化和完善,推出了诸多新型处理技术。其中,膜技术、铁碳装置 +PSB 生化处理系统的应用, 能够提高废水处理效率,达到处理标准,具有推广应用价值。高盐废水作为废水的主要类型之一,含有大量的有机污 染物以及无机盐,比如 C1- 等。若直接排放,必然会造成极大 的危害。在节能环保以及资源节约的发展背景下,作为高盐 废水排放的重要主体,医药化工行业必须要不断加大处理技 术的研究,承担起环境保护的责任,提高废水利用率,进而 持续发展,带动着处理技术的研究以及应用。 1 医药化工废水的特点 从医药化工生产情况来说,产生的废水,具体包括生产 期间的排水、辅助生产产生的排水和冲洗水、厂区的生活用水。 具体如下 :①生产废水。具体包括废母液和滤液等,废水含 有的化合物类型较多,而且成分较为复杂,增加了处理难度。 ②辅助生产产生的废水。主要包括工艺冷却水以及机械设备 的冷却水,含有溶剂介质污染物以及有毒有害物质,若处理 不到位,则会造成很大的危害。③工作人员生活废水。生产 作业产生的高盐废水,其总盐度可以达到100 000mg/L ;并且 CODcr 可以超过50 000mg/L,处理难度较大。 2 医药化工高盐废水处理技术研究现状 从当前医药化工高盐废水处理技术研究实际情况来说,提 出了大量的处理技术,在实际应用中,获得了不错的效果。具 体如下:①常规处理技术。按照方法来说,包括物理法、化学法、 生物法。其中,常用的物理方法较多,包括重力沉淀法以及过 滤法等。此方法应用于固体和液体分离处理等方面,有着极大 的优势,操作较为便捷。不过在可溶性废水处理方面,效果不 佳。化学方法,比如化学氧化法,其通过氧化反应,去除有机 污染物,实现废水净化。生物法是利用微生物具有的新陈代谢 功能,降解并且转化有机物。在废水处理中,应用此方法,要 做好温度和水分 pH 值等的把控。②非常规处理方法。利用磁 分离技术、声波技术以及光氧化技术等,进行高盐废水的处 理,可获得一定的成效。其中,磁分离技术的应用,是通过 将磁种以及混凝剂添加到废水中,利用磁吸附作用,促使颗 粒物能够相互吸引进而变大,最终将其去除 ;声波技术的应 用,通过降解分离的方式,实现废水处理;光氧化技术的应用, 结合运用了光辐射以及氧化剂,进行高盐废水的处理。 从现有的医药化工高盐废水处理技术来说,每个技术的应 用范围和效果都不同。在实际应用中,需要结合运用多种技术, 比如物理处理技术和化学处理技术等,才能够达到废水处理标准。随着国家对环境保护和资源利用的重视不断增加,对 医药化工行业废水处理的要求不断提高。基于此,行业人员 不断加大技术研究力度,提出了新型处理工艺。比如,铁碳 装置 +PSB 生化处理技术。从技术的应用效果来说,对 CODcr 的去除率能够达到40%~60% ;B/C 可以提高0.1~0.3。废水处 理能够达到国家排放标准,应用成绩是达到了一级处 理标准。 3 医药化工高盐废水处理技术的具体应用 现结合铁碳装置 +PSB 生化处理工艺的应用实践,对高盐 废水的处理技术应用进行分析。 3.1 处理工艺 结合医药化工生产废水的特点,工艺前端采用的是新型 铁碳装置 + 芬顿反应工艺 ;后端采用的是 PSB 生化系统 +A/ O 生化系统,对生产的废水进行处理。其中,新型铁碳装置 的稳定性以及可靠性较强,弥补了传统铁床的应用不足,比 如钝化以及结疤等缺陷。除此之外,经过体系化设计,使得 装置的结构更加紧凑,废水处理效果较好。具体措施如下 : 使用扁状填料 ;设计的装置,污水可以在其内外筒内部循环。 不仅处理效率高,而且处理效果好。使用的 PSB 生化系统, 配置的 PSB 菌种较为特殊,为带颜色的细菌。在实际应用中, 具有能力高并且抗冲击能力较强等优势,而且装置内部的蓄 泥量较大。此系统的使用,不仅处理效率高,能够获得较好 的处理效果,而且节能效果很好。 3.2 处理效果 以某医药公司为例,其应用了此工艺,进行废水处理。 日处理量是500t,废水水质情况如下:① CODcr 为20 000mg/L; ②盐分为30 000mg/L。经过处理后,CODcr 为500mg/L,符合 三级处理标准。由此可见,经过优化的铁碳装置 +PSB 生化处 理工艺,在高盐废水处理中,能够发挥积极的作用。 4 结束语 医药化工高盐废水具有成分复杂的特点,为保证处理效 果,要结合自身废水情况,做好处理技术的选择和优化。不 断提升处理效果,进而实现废水处理效益目标。文中结合医 药化工高盐废水处理技术的研究和应用,结合实例,分析了 铁碳装置 +PSB 生化处理工艺的应用效果。从应用实际来说, 其具有推广应用价值。

厂商

2019.09.17

含镍电镀废水中镍离子的去除工艺研究

以某含镍电镀废水为试验原料,采用化学沉淀法处理含镍电镀废水。试验通过调节溶液pH值、反应温度、双氧水的加入量对处理效果的影响,确定化学沉淀法处理含镍废水的条件为:溶液pH为11、反应温度为60℃、双氧水添加量/含镍废水量为3%。处理含镍离子浓度为7840mg/L的含镍废水时,废水中镍离子去除率可达99.99%,处理后残留镍离子浓度小于1mg/L,达到国家污水综合排放一级标准(GB8978-1996)。工业行业中,为了增强产品表面的耐腐蚀性以及加强外表美观,常常会用到电镀技术,镍、铬、锌、铜等都是常用的镀层金属。根据要求达到的处理效果不同,选用的金属也不同。一般的电镀行业需要大量使用镍及化合物,人们都知道它是重金属,但镍的毒性,以前却未被很多人认识了解,最近科学实验 证明,虽然镍盐或金属镍的经口毒性较小,但一些镍的化合物,如狱基镍和镍尘都被认为是致癌物质。世界卫生组织(WHO)所属的国际癌症研究机构(IARC)公布的39类对人致癌物质中,镍被列为其中之一。因此,为控制镍对人的危害,国家已制定了排放标准。另外,由于镍离子属于有价金属,有很高的回收价值,故大多数电镀厂都尽可能的做回收处理。目前,含镍废水的处置方式主要分为3类:(1)通过化学反应:化学沉淀法,还原法等化学反应方法达到去除重金属。(2)通过吸附分离、离子交换和生物膜等。(3)借助微生物的絮凝、富集等作用。这些方法中,其中化学反应法也是目前最广泛最简便的方式,它具有较好的适应性。在废水中加入适量的沉淀剂,使废水中的镍离子以不同形态的化合物形式沉淀,从废水中去除。本文是以氢氧化钠为沉淀剂,30%双氧水为氧化剂,聚合氯化铝为混凝剂。废水经处理后可达到国家排放标准(GB8978-1996)。1 实验仪器和试剂Varian AA 240火焰原子吸收分光光度计、pHS-25型pH计、氢氧化钠(分析纯)、30%双氧水、聚合氯化铝、某含镍废水(镍含量7840mg/L)。2 结果与讨论2.1 pH值对镍离子去除率的影响量取6个1L的过滤后含镍废水,用氢氧化钠调节 pH值至8,反应20min,在25℃下再依次调节pH为9、10、11、12、13,反应5min。然后分别加入4‰的高分子絮凝剂聚合氯化铝,用磁力搅拌器搅拌均匀后,沉淀30min后,取上清液过滤后,测量其镍离子含量,得到镍离子的去除率与pH值的关系如下。从图1可以看出,镍离子的去除随着pH值的提高而增大,当pH值在11时,废液中镍离子去除率随之平缓。在pH值9~10的时候,加入的氢氧化钠主要于废液中的其他离子反应,氢氧化钠对镍离子的去除不起作用;pH值调节至11时,镍离子的去除率达到了一个高峰。此时废液中加入的氢氧化钠主要与废水中的镍离子反应。pH值再提高,镍离子的去除率变平缓,证明此时氢氧化钠与镍离子反应已经接近饱和。2.2 双氧水对镍离子去除率的影响量取6个1L的过滤后含镍废水,用氢氧化钠调节pH值至8,反应20min,在25℃下再次加入氢氧化钠调节废液的pH为11,反应5min。然后加入4‰的高分子絮凝剂聚合氯化铝,用磁力搅拌器搅拌均匀,在沉降过程中分别缓慢加入30%双氧水10mL、20mL、30mL、40mL、50mL、60mL,反应30min后,沉淀后取上清液过滤,测量其镍含量,得到镍离子的去除率与双氧水的用量关系如下。从图2中可以看出,随着双氧水的加入量的提高,镍离子的去除效率随之增大,当双氧水的量/含镍废水量达到3%时,镍离子的去除率达到大;随着双氧水的持续滴加,镍离子的去除率变化不大。2.3 反应温度对镍离子去除率的影响量取6个1L的过滤后含镍废水,用氢氧化钠调节 pH值至8,反应20min,分别在25℃、30℃、40℃、50℃、60℃、70℃下再次加入氢氧化钠调节废液的pH为11,反应5min。然后加入4‰的高分子絮凝剂聚合氯化铝,在沉降过程中缓慢加入30mL的30%双氧水,反应30min后,沉淀后取上清液过滤,测量其镍含量,得到镍离子的去除率与温度的关系如下。由图3我们可以看出,随着反应温度的提高,镍离子的去除效率随之提高,当温度提高至60℃时,镍离子的去除率随之平缓。反应温度的提高有利于镍离子和氢氧化钠的反应及双氧水的破络作用,在60℃时达到一定的饱和状态。3 结语综上所述,通过实验研究可以得出工艺方案为:pH值为11,双氧水用量/含镍废水量为3%,反应温度60℃。在此条件下镍离子的去除率达到99.99%。镍离子含量为0.978mg/L,达到国家排放标准(GB8978-1996)。

厂商

2019.09.11

电镀废水中铜的回收方法

氰化镀铜废水在破氰时铜离子转化成碱式碳酸铜细小沉淀物颗粒,需要加入大计量的助凝剂吸附,然后再加絮凝剂才能使其沉淀分离,处理成本较高。在破氰时用石灰代替烧碱调节pH,破氰产生的二氧化碳与氧化钙反应生成碳酸钙大颗粒沉淀,碱式碳酸铜与碳酸钙共沉积,解决了沉淀分离困难的问题。用石灰处理焦磷酸盐镀铜废水,氧化钙能与焦磷酸根反应生成焦磷酸钙沉淀,同时氧化钙又与铜离子反应生成氢氧化铜,从而实现铜的回收。用石灰处理焦铜电镀废水,可实现达标排放。建立环保型和节约型电镀模式是当前电镀行业可持续发展的两大主题。在世界有色金属资源紧张,电镀金属材料成本持续上升的情况下,采用节约型电镀技术,是当前电镀业界最为关注的话题。我国民营电镀企业发展时间较短,发展初期资金短缺,加上技术落后,大部分小型电镀厂对电镀废水中金属材料的回收还缺少认识,更谈不上对回收方法的研究。对于氰化镀铜和铜合金电镀废水,在破氰后二价铜生成的沉淀物颗粒细小,沉淀分离比较困难,分离成本较高。为此,研究了新的回收工艺,用石灰调节破氰池的pH和作助凝剂,解决了铜回收成本高的问题。1 方法原理1.1 氰化镀铜和铜合金废水的处理用次氯酸钠破氰时,需要将含氰废水的pH调节至11~12,传统的工艺是加氢氧化钠。破氰过程中氰化物转化成二氧化碳和氮气,一价铜离子被氧化成二价铜离子后生成碱式碳酸铜细小颗粒悬浮在废水中,如果自然沉降,用一整天以上的时间仍不能完全沉淀,需要加入大计量的助凝剂,并加入絮凝剂后才能够使沉淀完全分离。在没有回收氰化镀铜和铜合金废水中的铜之前,是将破氰后的废水混入综合含酸废水中,含酸废水用石灰法处理[1],碱式碳酸铜吸附在综合废水中的沉淀物上,之后沉淀分离。为了回收铜,新的破氰过程为,在破氰时加石灰调节pH,破氰产生的二氧化碳与氧化钙反应生成碳酸钙,同时碱式碳酸铜与碳酸钙共沉积生成大颗粒沉淀物。1.2 其它含铜废水的处理酸性光亮镀铜废水中的二价铜离子与石灰反应生成氢氧化铜,硫酸与石灰反应生成硫酸钙和水。在焦磷酸盐镀铜废水中,焦磷酸根与铜离子以络合物的形式存在,用石灰处理时,焦磷酸根与氧化钙反应生成焦磷酸钙沉淀,铜离子与氧化钙反应生成氢氧化铜。2 回收工艺2.1 含铜废水的组成含铜废水有氰化镀铜、铜-锌合金、铜-锡合金、酸性光亮镀铜和焦磷酸盐镀铜等几种废水,氰化镀铜、铜-锌合金和铜-锡合金废水流入含氰废水调节池,酸性光亮镀铜和焦磷酸盐镀铜废水流入含铜废水调节池。氰化镀铜和铜合金废水中含氰化钠、酒石酸钾钠和硫氰酸铵等络合剂,它们与铜离子反应生成铜的络合物;焦磷酸盐镀铜废水中含有焦磷酸铜络合物。氰化镀铜和铜合金废水约占含铜废水总量的90%,酸性光亮镀铜和焦磷酸盐镀铜废水约占10%。2.2 铜络合物的氧化过程在回收铜之前,首先要将电镀废水中铜的络合物破坏,同时将Cu+离子氧化成Cu2+离子,本文采用次氯酸钠溶液和双氧水组合法破坏氰化物和酒石酸钾钠等络合物[2]。设有三个破氰池,用泵分别将含氰废水和含铜废水输入到一级破氰池中,向池中加石灰乳调节pH=11~12,用pH控制系统调节石灰乳的加入量,同时向池中加次氯酸钠溶液破坏氰化物。在第二级破氰池中加双氧水继续破氰和氧化酒石酸钾钠等,由于反应速度较慢,所以增设了第三级破氰池,在第三级破氰池中根据化学分析数据和经验检查氰化物和酒石酸钾钠等络合剂的破除情况。随着氧化反应的完成,废水中的Cu+完全转化成Cu2+,并生成碱式碳酸铜和氢氧化铜沉淀。在上述过程中,焦磷酸盐镀铜废水与石灰反应后,铜与焦磷酸根生成的络合物被破坏,生成氢氧化铜。分析数据表明,用本工艺处理氰化物和铜络合物等,可使废水达标排放。在处理含氰和含铜废水时,加石灰调节pH和沉淀铜离子,降低了处理成本。同时,石灰又起到了助凝剂和完全沉淀焦磷酸根的作用。2.3 铜的回收在上述过程中,电镀废水中的铜离子转化成碱式碳酸铜沉淀,如果石灰加入量较大,铜离子也能转化成氢氧化铜沉淀。由于需要用石灰沉淀焦磷酸盐镀铜废水中的焦磷酸根,石灰的加入量不能过小,使用石灰的成本很低,在处理过程中可以适当过量加入石灰。含氰和含铜废水经过三级破氰池处理后流入絮凝池,在絮凝池中加焦亚硫酸钠还原过量的双氧水,同时加聚丙烯酰胺絮凝剂使沉淀物颗粒长大。如果在絮凝池中不加焦亚硫酸钠,那么破氰后残余的过氧化氢分解产生氧气,该气体吸附在沉淀物颗粒的表面上,使沉淀物上浮,焦亚硫酸钠的加入量以沉淀物不上浮为准,适当过量即可。废水经过絮凝池后流入斜管沉淀池,沉淀物与水分离后进入沉淀浓缩池,然后经压滤机过滤,滤饼回收,滤液流回调节池。含铜滤饼回收后,由专业公司收购,送往专业厂家生产硫酸铜,也可以生产电解铜。3 效 益我公司四个电镀车间产生含铜废水,分析监测数据表明,氰化镀铜废水中铜的质量浓度平均值为345mg/L,即每吨废水中含铜0.345kg,每月氰化镀铜废水的总量约为4600t,其中含铜1587kg,加上其它含铜废水中的铜,每月可回收铜约1700kg,公司每月销售含铜泥渣的收入人民币30000~40000元。公司对电镀废水中的铜进行回收后,避免了金属铜的无效消耗,既降低了电镀成本,又减少了电镀污泥对环境的二次污染,取得了良好的经济效益和社会效益。电镀是重度污染行业,在我国目前对电镀废水处理工艺和技术都比较落后的情况下,积极研究电镀废水中有色金属的回收方法,对建立节约和环保型电镀模式,保持电镀行业的可持续发展具有重要的意义。

厂商

2019.09.06

化工制药废水的处理工艺

近年来,由于化工制药的发展极为迅猛,因此使得化工制药废水量逐年增加,并逐渐成为环境的污染源之一。在我国的环保规划中,制药工业是其中的重点治理行业,这是因为化工制药的化学成分种类繁多、生产工艺复杂,从而导致化工制药废水的成分十分复杂,并且不易处理,为我国的环境保护带来了极大的挑战。因此为了高效处理化工制药废水,我们就需要对废水成分进行分析,以此来使用有效的处理工艺。化工制药废水的成分十分复杂,并具有毒性高、难降解等特点,因此单一的生化处理方式无法彻底处理废水。为此,我们就需要根据废水所含物质的实际情况,采用合适的预处理工艺,以此来提高化工制药废水的可降解性。之后再利用厌氧生物处理工艺,对废水进一步处理,从而使其达到排放标准。同时我们还需要对处理工艺进行更加深入的研究,以此来保护我国的水体环境。为此,在接下来的文章中,将围绕化工制药废水的处理工艺方面展开分析,希望能够给相关人士提供重要的参考价值。1.化工制药废水的特点1.1 COD含量高、成分复杂课后我们查阅相关可知,化工制药废水中的COD以及BOD5的含量相对较高,有时高达几万,严重时就会高达几十万,但是B/C的值相对较低。因此这样的废水排放在正常的水体之中,就会消耗水中大量的溶解氧,发生水体缺氧的现象,使水中的自然生物无法存活。不仅如此,化工制药废水的成分也很复杂,并且变化性极强,从而使有机物浓度高、种类多,以至于发生营养元素比例失衡的情况。1.2 无机盐浓度高在化工制药的废水中无机盐浓度很高,因此这些无机盐就会抑制水体中微生物的生长。据相关资料显示,当水中的氯离子浓度超过300mg/L的时候,那些未经驯化微生物的生长就会受到明显的抑制,从而对废水的处理效率带来了严重影响,不仅会造成污泥的膨胀,还会致使大量的微生物死亡,为环境造成了极大的破坏。1.3 存在生物毒性物质对化工废水进行分析我们可以知道,废水中不仅含有COD、BOD5、无机盐等物质,还含有酚、氰或者是氮杂环、芳香族胺以及多环芳香烃化合物等多种化学成分,并且这些化学成分难以降解,从而对水体环境造成了极大的破坏。2.化工制药废水的处理工艺2.1 废水处理流程首先,对化工制药废水进行一级处理,使用隔油池、沉淀池、沉砂池、筛网、格栅、调节池等构筑物,将废水中的浮油、固体悬浮物等去除,调整废水的pH值,降低化工制药废水的腐化程度。一般情况下,经过一级处理以后,BOD去除率只有25%-30%;其次,二级处理,通过化学方法或者生物处理方法,去除化工制药废水中的胶体污染物和可降解有机物,二次处理以后,BOD去除率可达到85%-90%。然后,三级处理,去除化工制药废水中氮、磷和生物难以降解的病原体、无机污染物、有机污染物等,经过上述处理后,才使用膜分离技术、离子交换、吸附等物理化学法以及化学沉淀、化学氧化等化学法,实现对化工制药废水的深度处理。2.2 化工制药废水处理的预处理工艺首先,物化法。制药废水如果浓度比较高的话,也会具有更强的生物毒性,很难生化,想要将废水毒性进行有效的降低可以对其进行物化处理,将其可生化性增强从而为后续处理工艺正常进行提供保障。为了让排放尽量符合标准,也可以使用物化处理的方式来处理那些很难达标的废水。例如吸附、高级氧化、混凝沉淀等都是比较常见的废水处理物化工艺。近年来在制药废水处理方面发展非常迅速,研究出了许多新技术,尤其是高级氧化这方面的研究成效卓然。在Fenton废水氧化生化性中我们得知,pH值为7.0以及3.5的时候最适宜进行絮凝和氧化,COD的摩尔比为150~250的时候可以实现去除效率;如果只有155的摩尔比,就只能达到45%~65%的去除率。而Martinez的研究表明,COD在0.3mol/L铁离子浓度以及3mol/L过氧化氢浓度的情况下,可以达到56.4%的去除率。Sirtori研究了Fenton以及生物联合技术以后认为,首先要利用光将可生化性提高,然后再使用生物法进行处理,当投加了66mmol/L的H2O2的时候可以实现完全降解。一些有机物以及副产品使用生物处理进行降解的效果较差,可以通过Fenton处理工艺来将废水的可生化性有效增强,从而为生物处理成果提供保障。对于Gotvajn湿式氧化法来说,利用制药发酵液来进行处理以后可以有效地降低微生物毒性,从而极大地改善了制药生化性。气浮、反渗透、沉淀、吸附等都是我国处理废水常见的方法。另外,生物法。好氧生物处理早于上世纪40年代的时候就已经在废水抗生素处理中得到了应用;到了50年代以后,美、日等发达国家研发出了曝气充氧等工艺技术,生物处理技术得到了很大进步;70年代的时候在生物滤池、曝气、接触氧化等多种废水处理工艺中均广泛应用了生化处理。而循环式活性曝气等各种变形以及SBR工艺于80年代之后也纷纷被研发出来,并且在活性污泥中获得了良好的效果。针对SBR以及CASS等工艺没有普遍利用在制药废水处理中的问题,人们已经开始了针对性的研究,因为好氧生物处理工艺对进水的要求比较特殊,其中只能含有很低的COD浓度,所以必须要稀释进水才能有效提高制药行业中生物处理技术的应用率。2.3 化工制药废水处理的生物性处理工艺首先,厌氧生物处理厌氧生物处理指的是在没有分子氧的环境中,利用厌氧菌以及兼性菌的代谢功能,对化工制药废水中的有机污染物进行有效降解,使其分解成为二氧化碳、甲烷、水等。这种处理方式的优点是低成本、低能耗、污泥产量小等,缺点是处理过后的水质相对较差,一般都是需要进一步处理才可以达到排放标准。在我国国内,处理化学制药废水的厌氧工艺主要有三种,分别是:上流式厌氧污泥床、厌氧复合床以及厌氧折流板反应器。其中对于上流式厌氧污泥床的研究相对较多,并且应用也是最为广泛的。其优点是不易堵塞,同时还可以将气、固、液进行一体化分离、污泥颗粒化处理。但是这项工艺还不是十分成熟,仍存在一些亟待解决的问题。另外,固定化技术。固定化技术的使用就是将水体中的微生物固定在特定区域内,并且保持微生物原有的生物功能,从而达到反复利用的目的。目前固定化技术已经被应用到了许多种类的化工制药废水处理过程中,比如扑尔敏、四环素、布洛芬等制药废水。此外,固定化技术还可以在SBR法中应用,从而处理氨氮含量相对较高的化工制药废水。结论简而言之,随着国民经济的不断增长,我国医药行业得到了巨大的发展,并且老师在上课时也为我们普及过,我国的药品种类近万种,年产量可达数百万吨。根据医药的产品种类我们可以将其分为三大类,分别是生物制药、中草药制药以及化工制药。其中化工制药废水的处理难度相对较大,因此本文将对化工制药废水的处理工艺进行分析研究,为我国环境的改善带来一定的积极影响。

厂商

2019.09.03

总磷超标,可以来看看!

    近年来随着工农业生产快速增长、人口剧增、含磷洗涤剂和农药化肥大量使用致使磷在环境中过量导致水环境污染和水体的富营养化日益严重,研究开发经济、高效的除磷的污水处理技术已成为水污染控制工程的研究重点。   生物除磷的原理   生物除磷的基本原理是利用一种被称为聚磷菌的细菌在厌氧条件下能充分释放其细胞体内的聚合磷酸盐;而在好氧条件下又能超过其生理需要从水中吸收磷,并将其转化为细胞体内的聚合磷酸盐,从而形成富含磷的生物污泥,通过沉淀从系统中排出这种富磷污泥,达到从废水中除磷的效果。   1.在厌氧区内的释磷过程。在没有溶解氧和硝态氮存在的厌氧条件下,兼性细菌通过发酵作用将溶解性BOD转化为挥发性有机酸(VFA),聚磷菌吸收VFA并进入细胞内,同化合成为胞内碳源的储存物—聚-β-羟基丁酸盐(PHB),所需的能量来源于聚磷菌将其细胞内的有机态磷转化为无机态磷的反应,并导致磷酸盐的释放。   2.在好氧区内的吸磷过程。聚磷菌的活力得到恢复并以聚磷的形态储存超出生长需要的磷量,通过对PHB的氧化代谢产生能量用于磷的吸收和聚磷的合成,能量以聚磷酸高能键的形式储存起来,磷酸盐从液相去除。产生的高磷污泥通过剩余污泥的形式得到排放,从而将磷从系统中去除。   影响生物除磷的因素   (1)溶解氧   生物除磷要求创造适合聚磷菌生长的环境,从而使聚磷菌群体增殖。在工艺上可设置厌氧、好氧交替的环境条件,使聚磷菌获得选择性增长。   首先必须在厌氧区控制严格的厌氧环境。这直接关系到聚磷菌的生长状况、释磷能力及利用有机基质合成PBH的能力。   其次是必须在好氧区提供充足的溶解氧。以满足聚磷菌对储存的PHB进行降解,释放足够的能量供其过量摄磷之用,以便有效的吸收废水中的磷。   一般厌氧段的DO要严格控制在0.2mg/L以下,二好氧段的DO要控制在2mg/L以上。   (2)硝酸盐   硝酸盐在厌氧阶段存在时,反硝化细菌与聚磷菌竞争优先利用底物中甲酸、乙酸、丙酸等低分子有机酸,聚磷菌处于劣势,抑制了聚磷菌的磷释放。只有在污水中聚磷菌所需的低分子脂肪酸量足够时,硝酸盐的存在才可能不会影响除磷效果。   (3)pH与碱度   污水生物除磷好氧池的适宜pH为6~8。污水中保持一定的碱度具有缓冲作用,可使pH维持稳定,为使好氧池的pH维持在中性附近,池中剩余总碱度宜大于70mg/L。   (4)BOD5/TP   聚磷菌厌氧释磷时,伴随着吸收易降解有机物贮存于菌体内,若BOD5/TP比值过低,影响聚磷菌在释磷时不能很好地吸收和贮存易降解有机物,从而影响其好氧吸磷,使除磷效果下降。 一般认为,进水BOD5/TP大于15,才可以获得理想的除磷效果。为此,可以采用部分进水和跨越初沉池的方法,获得除磷所需的BOD5量。   (5)污泥龄   生物除磷主要是通过排除剩余污泥来实现的,因此剩余污泥的多少会对除磷效果产生影响,污泥龄短的系统产生的剩余污泥较多,可以取得较高的除磷效果。   (6)温度   一般来说,温度在10~30℃,都可以取得较好的除磷效果。   污水生物除磷工艺   除磷工艺流程可分为主流程除磷工艺和侧流程除磷工艺两类。   主流除磷工艺的厌氧段在处理污水的水流方向上,其代表工艺有A/O、A2/O、Bardenpho 工艺、Phoredox 工艺、UCT、改良型UCT、SBR以及氧化沟工艺。   测流除磷工艺的厌氧段不在水流方向上,而是在回流污泥的测流上。具体方法是将部分含磷回流污泥分流到厌氧段释放磷,再用石灰沉淀去除富磷上清液中的磷。   常用生物除磷工艺:   1、A2/O 工艺   A2/O工艺是在 A/O 工艺的基础上增加了一个缺氧阶段,使好氧区中的混合液回流至缺氧区使之反硝化脱氮,从而使除磷和脱氮相结合。缩小了曝气区的体积。   但是由于存在内循环,系统排放的剩余污泥中只有少部分经历了完整放磷吸磷过程,其余基本上未经厌氧状态而直接由缺氧区进入好氧区,这对于系统除磷是不利的。而且为了降低回流污泥中的硝酸盐,必须提高混合液回流量,从而增加电耗。   2、Phostrip 工艺   该工艺把生物法和化学除磷法结合在一起,将一部分回流污泥 (约为进水流量的 10%~20%)分流到厌氧池除磷,污泥在厌氧池中通常停留 8~12 h,聚磷菌则在厌氧池中进行磷的释放,脱磷后的污泥回流到曝气池中继续吸磷。含磷上清液进入化学沉淀池,投加石灰生成沉淀。它除磷效率可达 90%以上,处理出水含磷量可低于 1mg·L-1,对进水水质波动的适应性较强,较少受进水 BOD的影响,加之大部分磷以石灰污泥的形式沉淀去除,因此污泥处理不像高磷剩余污泥那样复杂。   3、氧化沟工艺   氧化沟工艺由于其特殊的运行方式,在空间上形成了缺氧、好氧的交替变化,达到了硝化、反硝化和生物除磷的目的。其可在低负荷和较长的泥龄条件下运行,由于无需回流,比一般工艺节能 10% ~20%。若水量大或负荷高,则工艺占地面会很大。   生物除磷处理设施运行管理的注意事项   1、厌氧段是生物除磷关键的环节,其容积一般按0.5~2h的水力停留时间确定,如果进水容易生物降解的有机物含量较高,应当设法减少水力停留时间,以保证好氧段进水的BOD5含量。   2、如果磷的排放标准很高,而所选除磷工艺不能满足出水要求,可以增加化学除磷或过滤处理去除水中残留的低含量磷。   3、在污泥处理过程中如果出现厌氧状态,剩余污泥中的磷就会重新释放出来。重力浓缩容易产生厌氧状态,有除磷要求的剩余污泥不能采用这种方法,而应当使用气浮浓缩、机械浓缩、带式重力浓缩等不产生厌氧状态的浓缩方法。如果只能选用重力浓缩时,必须在工艺流程中增设化学沉淀设施去除浓缩上清液中所含的磷。   4、泥龄是影响生物脱氮除磷的重要因素。脱氮要求越高,所需泥龄越长,对除磷越不利。尤其是在进水BOD5/TP小于20时,泥龄要控制的越短越好。但如果进水BOD5偏低,活性污泥增长缓慢,就不可能将泥龄控制的太短,此时需要化学法除磷。

厂商

2019.08.30

重金属废水污染及其处理方法简介

随着我国工业的不断发展,水环境中的重金属污染物已经成为一个日益突出的环境问题。本文介绍了重金属废水的定义、来源以及危害,并且对重金属废水的主要处理技术进行了总结。探讨了我国重金属废水治理的发展前景。1.前言近年来,中国水环境污染问题突出,以工业废水和城市污水为主的重金属污染具有长期性和不可逆的特点。为使污水中所含的重金属达到排水某一水体或循环使用的水质要求,必须对其进行净化[1]。目前,重金属废水处理的方法大致可分为三大类:(1)化学处理法;(2)物理处理法;(3)生物处理法。因此本文综述了重金属废水的污染现状及其防范技术概况,并且讨论了重金属污染防治技术的未来发展前景。2.重金属废水的来源及其危害重金属一般是指密度大于4.5 g/cm3的金属,主要包括汞、镉、铅、铬、钒、锰、铜、锌及镍等有毒重金属元素。重金属是地壳的重要构成元素,广泛地分布于自然界中,并在自然环境中迁移、转化、循环。水体中的重金属主要来自两部分:自然源和人为源。通过自然循环进入水体中的重金属浓度一般较低,不会影响人体健康,人为源是造成水体重金属污染的主要原因。由于一些人为因素,大量的重金属向环境中排放并不断累积,使其远远超过了环境的本底含量,从而造成了严重的重金属污染。采矿、冶金、石油化工、电子生产、制革等工业生产过程中均会产生含重金属离子的废水和废渣,其中冶金和采矿是最重要的重金属污染源[2]。水体流经被重金属污染的土壤及含重金属的大气沉降物排入水中,也能使水中重金属含量急剧升高,进一步加剧水体重金属污染。重金属在水中不断的迁移转化,形态也可能发生变化,并有可能被水中胶体物质等吸附,浓度随着pH和水温的变化不断变化。但是重金属不能被生物降解,因此水中重金属的总量不会减少。进入水中的重金属部分被水生生物所摄取,并在食物链中放大,而且有可能转化成毒性更大的形态,富集在人体内;直接饮用含重金属的水或者食用含重金属的水浇灌的农作物也会使重金属进入人体内。重金属能够使蛋白质结构发生不可逆转的改变,蛋白质的功能也随之丧失,从而影响人体的正常代谢活动,导致各种疾病的发生和机体紊乱。世界八大公害事件中的水俣病和骨痛病都是由于重金属中毒引起的。其中,水俣病是工厂排放废水中汞所引起的,汞被水生生物食用后在体内转化成甲基汞,甲基汞的毒性是汞毒性的100倍,而且甲基汞更容易溶于脂肪,主要侵犯中枢神经系统[3-4]。3.重金属废水常见的处理方法处理含重金属废水的传统方法有:化学沉淀法、离子交换法、膜分离法、吸附法、生物法等。3.1化学沉淀法化学沉淀法是向废水中加入与作用机理相适应的反应剂,使水中溶解状态的重金属离子转化成不溶于水的金属化合物,再将其从水中分离出去的方法。该方法技术成熟、操作简单、处理成本低等优点,但容易造成二次污染,其最主要的影响因素是pH。难溶盐沉淀法又包括硫化物沉淀法、碳酸盐沉淀法、钡盐沉淀法,其主要优点是处理后的废水pH大约是7~9,不用再进行中和处理,而且还可以回收废水中的重金属,具有一定的经济效益。铁氧体法主要是在含有重金属离子废水中加入铁盐或亚铁盐,形成铁氧体,通过吸附、包裹和夹带作用使重金属离子形成复合铁氧体沉淀析出。该方法处理条件温和、处理量大、处理效果明显、能回收磁性材料,在工业上得到了广泛的应用[5-6]。3.2离子交换法离子交换法是利用离子交换剂中的可交换基因与废水中的重金属离子交换能力的不同来分离的方法。常用的离子交换剂有阳离子交换树脂、阴离子交换树脂、螯合树脂、腐殖酸树脂等。离子交换法可对废水中的重金属离子选择性的分离,通过再生回收再生液,可实现重金属离子的回收,还具有交换容量大、吸附-再生可逆性好等优点[5],但适用范围有限,且容易造成二次污染[6]。3.3膜分离法膜分离法是利用一种特殊的半透膜,在外界压力作用下,不改变溶液的化学形态使溶质和溶剂进行分离和浓缩的方法。根据膜的不同可以分为扩散渗析、电渗析、反渗透、液膜、纳滤、超滤等。膜分离技术具有能耗低、无相变、操作简单、无二次污染、分离产物易回收等优点,目前已在国内外重金属废水处理中得到了广泛的应用。Hafez[7]等利用反渗透膜对废水中的铬进行的回收处理试验中对铬的平均回收量高达99.8%。但是膜分离法存在膜组件价格贵、膜污染等问题亟待解决。3.4吸附法吸附法是利用多孔性吸附剂表面的各种活性基团与废水的重金属离子形成离子键或共价键将重金属离子吸附于吸附剂表面,从而达到吸附金属离子的目的。活性炭是传统常用的吸附剂,具有巨大的比表面积,对重金属的吸附能力强、去除率高。姜玉娟[8]在利用活性炭吸附处理络合镍重金属废水的试验中,镍离子的去除率达到95.65%。近年来,对吸附法的研究主要是寻找更加廉价、高效的吸附剂。国内外许多研究发现生物材料对重金属也有很好的吸附能力,如香蕉皮、木桔叶、花生壳、褐藻、啤酒酵母等。3.5生物法生物法就是利用微生物或植物的絮凝、吸附、积累及富集等作用将重金属离子从水中分离出来或降低其毒性,从而达到重金属废水治理的目的。根据生物去除重金属离子的机理不同可分为生物絮凝法、生物吸附法、生物化学法以及植物修复法。4.结语综上所述,随着政府与公众对重金属废水污染的重视,如何进行有效的污染物控制并回收有毒有害的金属成分,减少对环境的危害已成为目前亟待解决的问题。从技术角度出发,今后的发展趋势将集中在新兴技术的开发与多种技术的集成与交叉方面,并且生物技术将成为主导方法,相信生物法在今后的重金属废水污染治理领域会有更大的发展。

厂商

2019.08.26

氨氮、总氮不达标?可以来看看!

除了氨氮超标需要严格管控,由于目前污水排放标准趋严,很多污水处理的总氮也管控起来了,所以,今天给大家解读一下常见的氨氮、总氮超标问题。  氨氮为什么超标?  01有机物导致的氨氮超标  CN比小于3的高氨氮污水,因脱氮工艺要求CN比在4~6,所以需要投加碳源来提高反硝化的完全性。投加的碳源是甲醇,因为某些原因甲醇储罐出口阀门脱落,大量甲醇进入A池,导致曝气池泡沫很多,出水COD,氨氮飙升,系统崩溃。  分析:大量碳源进入A池,反硝化利用不了,进入曝气池,因为底物充足,异养菌有氧代谢,大量消耗氧气和微量元素,因为硝化细菌是自养菌,代谢能力差,氧气被争夺,形成不了优势菌种,所以硝化反应受限制,氨氮升高。  解决办法:  (1)立即停止进水进行悶爆、内外回流连续开启;  (2)停止压泥保证污泥浓度;  (3)如果有机物已经引起非丝状菌膨胀可以投加PAC来增加污泥絮性、投加消泡剂来消除冲击泡沫。  02内回流导致的氨氮超标  内回流导致的氨氮超标有这几方面原因:内回流泵有电气故障(现场跳停扔有运行信号)、机械故障(叶轮脱落)和人为原因(内回流泵未试正反转,现场为反转状态)。  分析:内回流导致的氨氮超标也可以归到有机物冲击中,因为没有硝化液的回流,导致A池中只有少量外回流携带的硝态氮,总体成厌氧环境,碳源只会水解酸化而不会完全代谢成二氧化碳逸出。所以大量有机物进入曝气池,导致了氨氮的升高。  解决办法:  内回流的问题很好发现,可以通过数据及趋势来判断是否是内回流导致的问题:初期O池出口硝态氮升高,A池硝态氮降低直至0,pH降低等,所以解决办法分三种情况:  (1)及时发现问题,检修内回流泵就可以了;  (2)内回流已经导致氨氮升高,检修内回流泵,停止或者减少进水进行闷爆;  (3)硝化系统已经崩溃,停止进水悶爆,如果有条件、情况比较紧迫可以投加相似脱氮系统的生化污泥,加快系统恢复。  03pH过低导致的氨氮超标  pH过低导致的氨氮超标有三种情况:  (1)内回流太大或者内回流处曝气开太大,导致携带大量的氧进入A池,破坏缺氧环境,反硝化细菌有氧代谢,部分有机物被有氧代谢掉,严重影响了反硝化的完整性,因为反硝化可以补偿硝化反应代谢掉碱度的一半,所以因为缺氧环境的破坏导致碱度产生减少,pH降低,低于硝化细菌适宜的pH之后,硝化反应受抑制,氨氮升高。这种情况可能有些同行会遇到,但是从来没从这方面找原因。  (2)进水CN比不足,原因也是反硝化不完整,产生的碱度少,导致的pH下降。  (3)进水碱度降低导致的pH连续下降。  分析:pH降低导致的氨氮超标,实际中发生的概率比较低,因为PH的连续下降是一个过程,一般运营人员在没找到问题的时候就开始加碱去调节pH了。  解决办法:  (1)pH过低这种问题其实很简单,就是发现pH连续下降就要开始投加碱来维持pH,然后再通过分析去查找原因。  (2)如果pH过低已经导致了系统的崩溃,pH在5.8~6时,硝化系统还没有崩溃的情况,首先要把系统的pH补充上来,然后闷爆或者投加同类型的污泥。  04DO过低导致的氨氮超标  高硬度的废水,特别容易结垢,开始曝气使用微孔爆气器,运行一段时间曝气头就会堵塞,导致DO一直提不上来导致氨氮升高。  分析:曝气的作用是充氧和搅拌,曝气头的堵塞造成两种都受到影响,而硝化反应是有氧代谢,需要保证曝气池溶氧适宜的环境下才能正常进行,而DO过低则会导致硝化受阻,氨氮超标。  解决办法:  (1)更换曝气头,如果硬度低操作问题导致的堵塞可以考虑这种方法;  (2)改造成大孔曝气器(氧利用率过低,风机余量大和不差钱的企业可以考虑)或者射流曝气器(只能用监测池出水来进行充当动力流体,尤其是硬度高的污水,切记)。  05泥龄导致的氨氮超标  有两种情况:  (1)压泥过多,导致氨氮升高。  (2)污泥回流不均衡,两侧系统污泥回流相差过大,导致污泥回流少的一侧氨氮升高。  分析:压泥过多和污泥回流过少都会导致污泥的泥龄降低,因为细菌都有世代期,SRT低于世代期,会导致该细菌无法在系统中聚集,形成不了优势菌种,所以对应的代谢物无法去除。一般泥龄是细菌世代期的3-4倍。  解决办法:  (1)减少进水或者闷爆;  (2)投加同类型污泥(一般情况下1,2一块用效果更好);  (3)如果是污泥回流不均衡导致的问题,把问题系列的减少进水或者闷爆、保证正常系列运行的情况下将部分污泥回流到问题系列。  06氨氮冲击导致的氨氮超标  这种情况一般是工业污水或者有工业污水进入生活污水管网的系统才能遇到,之前遇到的情况是上游汽提塔控制温度降低,导致来水氨氮突然升高,脱氮系统崩溃,出水氨氮超标,污水处理现场氨味特别浓(曝气会有部分游离氨逸出)。  分析:氨氮冲击目前还没有明确的解释,分析是因为水中游离氨(FA)过高导致的,虽然FA(游离氨)对AOB(氨氧化细菌/亚硝酸细菌)影响比较弱,但是当FA(游离氨)浓度在10~150mg/L时就开始对AOB(氨氧化细菌/亚硝酸细菌)产生抑制作用,而游离氨(FA)对NOB(亚硝酸盐氧化细菌/硝酸菌)影响更敏感,游离氨(FA)在0.1~60mg/L时对NOB(亚硝酸盐氧化细菌/硝酸菌)就起到的抑制作用,众所周知,硝化反应是亚硝酸菌和硝酸菌共同完成的,对亚硝酸菌的抑制直接就可以导致硝化系统的崩溃。  解决办法:  保证pH的情况下,下面三种方法同时进行效果更好更快:  (1)降低系统内氨氮浓度;  (2)投加同类型污泥;  (3)闷爆。  07温度过低导致的氨氮超标  这种情况多发生在北方无保温或加热的污水处理厂,因为水温低于硝化细菌的适宜温度,而且MLSS没有为了冬季代谢缓慢而提高,导致的氨氮去除率下降。  分析:细菌对温度的要求比人类低,但是也是有底线的,尤其是自养型的硝化细菌,工业污水这种情况比较少,因为工业生产产生的废水温度不会因为环境温度的变化波动很大,但是生活污水水温基本上是受环境温度来控制的,冬季进水温度很低,尤其是昼夜温差大,往往低于细菌代谢需要的温度,使得细菌休眠,硝化系统异常。  解决办法:  (1)设计阶段把池体做成地埋式的(小型的污水处理比较适合);  (2)提前提高污泥浓度;  (3)进水加热,如果有匀质调节池,可以在池内加热,这样波动比较小,如果是直接进水可以用电加热或者蒸汽换热或混合来提高水温,这个需要比较精确的温控来控制进水温度的波动;  (4)曝气加热,比较小众,目前还没遇到过,其实空气压缩鼓风时温度已经升高了,如果曝气管可以承受,可以考虑加热压缩空气来提高生化池温度。  08工艺选型问题  脱氮选用的工艺是单纯的曝气池、接触氧化、SBR等等这些工艺,其实,在保证HRT(水力停留时间)和SRT(泥龄)足够长的情况下,这些工艺是可以脱氨氮的,但是,实际中不经济,也达不到!  解决办法:  (1)延长HRT和SRT,例如改造成MBR提高泥龄等等;  (2)前面增加反硝化池。  总氮为什么会超标?  01氨氮超标  参考上个单元的氨氮为什么超标?  02缺少碳源  在硝化反硝化过程中,去除TN要求的CN比理论为2.86,但是实际运行中CN(COD:TN)比一般控制在4~6,缺少碳源,是很多朋友TN不达标的最多的原因之一!  解决办法:按CN比4~6,投加碳源。  03内回流r太小  以AO工艺为例,AO工艺的脱氮效率和内回流比成正比,根据脱氮效率公式,内回流比r越大脱氮效率越高,有些污水处理内回流泵部分损坏或者选型太小,会导致脱氮效率低!  解决办法:提高内回流比r在200~400%  04反硝化池环境破坏  这种情况的出现的标志是,反硝化池DO大于0.5,破坏了缺氧环境,使兼性异养菌优先利用氧气来代谢,硝态氮无法脱除,整体导致TN的升高,反硝化池缺氧环境破坏,后面往往带来的可能是氨氮的超标,原因是硝化细菌无法形成优势菌种,不过曝气池足够大,还是没有问题的!  解决办法:  (1)内回流过大,导致携带DO过多的,调小内回流比或者关小内回流处曝气;  (2)其他问题导致的DO高,例如进水与水面相隔过高,导致跌落充氧,要减少高度差等。  05含N杂环有机氮  有些含氮有机物,特别是含N杂环,普通的生化无法破环,导致无法脱除,这种情况比较少见,主要是某一类废水上,这种情况下主要是工艺选型问题,没有考虑有机氮氨化(有机氮转化成氨氮)的过程。

厂商

2019.08.23

焦化废水减排及清洁生产措施探讨

焦化废水成分复杂,污染浓度高,根据废水来源,按照清洁生产理念,分析焦化行业废水减排及清洁生产措施。焦化废水成分复杂,含有数十种无机和有机污染物,污染物浓度高,难降解,是一种典型的有毒难降解有机废水。本文从原料、生产工艺及技术等方面分析该行业的废水减排及清洁生产措施。 1 焦化废水组成 焦化企业废水主要包括酚氰废水和生活污水,也包括冷却塔排污水、脱盐水站排水等。其中酚氰废水成分复杂,主要包括酚、氨、氰、H2S 等,有毒有害且难降 解,是废水治理的难点之一。 酚氰废水来源包括煤中的分子水和化合水,主要由以下几类废水组成: (1)剩余氨水:是煤干馏及煤气冷却过程中产生的 废水,其数量占全部废水量 1/2 以上。为进一步将剩余氨水中的氨提取利用,一般会将剩余氨水送到蒸氨塔 中精馏,在塔顶得到浓氨气,用于生产硫铵或作为氨法 脱硫的碱源,在塔底得到含氨较少的氨水即为蒸氨废 水;含有较高浓度的氨、酚、氰、硫化物及石油类污染物。 (2)煤气净化过程产生的废水:如煤气终冷水和粗苯分离水等;含有一定浓度的酚、氰和硫化物,水量不大,但成分复杂。 (3)其他废水:焦油、粗苯等化工产品精制及其他场合(如煤气水封、冲洗地面、油品槽等)产生的废水; 大多为间断性排水,含有酚、氰等污染物。 (4)初期雨水:装置区降雨初期时的雨水,这部分雨水因污染物浓度较高需单独收集处理,一般排入厂 区酚氰废水处理站处理。 2 污染物减排及清洁生产措施从工艺、废水组成可知,焦化废水来源的主要途径有:(1)原料煤;(2)蒸汽是化产生产过程的主要能源介质,其使用后变成冷凝水造成生产污水增加;(3)传统 熄焦采用湿法熄焦,水量消耗较多,会产生大量的熄焦 水;(4)装置中各种余热没有有效回收。根据焦化废水来源分析,按照清洁生产理念,从原 料、工艺、污染治理等方面分析废水减排措施,可从以 下几个方面着手: (1)原料煤调湿技术利用外加热能将炼焦原料煤在炉外进行干燥、脱水的预处理工艺,进而调节入炉煤水分,控制炼焦能 耗,提高焦炭质量。(2)熄焦方式 ①水分熄焦技术。在低水分熄焦系统中,熄焦水在一定压力下以柱状水流喷射到焦炭层内部,使顶层 焦炭只吸收了少量的水,大量的水迅速流过各层焦炭 至熄焦车倾斜底板。当熄焦水接触到红焦时,就转变为蒸汽,水变为蒸汽时的快速膨胀力使蒸汽向上流动通过焦炭层,由下至上地对车内焦炭进行熄焦[5]。该技术可减少缩短熄焦时间和节约熄焦用水。②干熄焦技术。利用惰性气体作为循环气体与炽 热红焦炭换热从而熄灭红焦,同时回收显热生产蒸汽; 比湿熄焦节约用水,同时减少焦化废水产生量。 (3)化产回收工艺①焦化脱硫废液处理技术。采用湿式氧化法脱硫工艺的焦化企业,在煤气净化脱硫工段不可避免地发 生副反应,生成 NH4CNS、(NH4)2S2O 等盐类,根据脱硫 废液成分,可采取提盐或制酸工艺对其进行处理。提盐工艺主要是利用蒸发釜在负压状态下浓缩脱硫液,提 取废液中的盐,处理后的废液回用;制酸工艺指脱硫废液经预处理、焚烧、余热回收、净化、干燥、转化、吸收等 工序生产硫酸。②负压蒸氨工艺。依靠减压操作条件降 低剩余氨水的沸点温度,使氨的相对挥发性提高,从而更加容易分离,且降低蒸氨能耗,减少蒸氨废水产生量。③间接蒸氨工艺。根据蒸汽是否直接进入蒸氨塔, 可将剩余氨水的蒸馏工艺分为直接蒸氨工艺和间接蒸氨工艺。直接蒸氨工艺中,由于蒸汽直接进入蒸氨塔底,蒸汽冷凝水就变为蒸氨废水,使废水量加大。间接 蒸氨工艺是通过循环使用的热传递介质(蒸汽或导热 油)加热蒸氨塔再沸器从而对剩余氨水进行蒸馏,减少蒸氨废水产生量。④负压(或间接)粗苯蒸馏工艺。同蒸氨工艺一样,传统的粗苯蒸馏工艺是蒸气直接蒸馏法,蒸汽冷凝后会产生含酚废水,增加废水产生量。负压蒸 馏是降低塔内气压,降低苯沸点,节省蒸馏热量;同时也可采用热循环油(蒸汽间接加热等)提供热量,减少废水产生量。 (4)废水处理及回用 焦化废水处理主要包括物化处理、生化处理和深 度处理;物化处理主要是对高浓度废水进行蒸氨、脱酚 等处理,生化处理主要是活性污泥法,多数焦化废水经 过生化处理后就直接排放或用于湿法熄焦。 ①焦化废水深度处理。为节约水资源,减少废水外排量,对于采用干熄焦、且焦化废水无处消纳的焦化企业而言,可在酚氰污水处理后段增设废水深度处理系统(膜处理),处理后中水回用循环水系统;剩余少量废焦化废水可用于焦炭加湿、洗煤厂补水等。②蒸汽冷凝水回用。对厂区焦油原料及产品贮槽保温、硫铵干燥等间接加热工段产生的冷凝水,可以有条件收集回用,降低新鲜水耗。结语焦化废水是煤炼焦、煤气净化、化工产品回收和精 制过程中产生的废水[1],组成复杂而多变,是一种典型的有毒难降解有机废水。为减少焦化行业的废水排放量,改善区域水环境,焦化企业应积极寻求节能减排技术,推动行业技术不断进步。

厂商

2019.08.19

重金属废水处理技术探讨

随着经济的快速发展,大量的生产废水随之排放,导致水源和土壤受到影响,重金属含量增多,污染越来越严重。重金属废水具有累积性、持续性、难降解性和毒害性等特点,废水的长期排放会导致排污口附近生态环境恶化,生物多样性逐渐减少,并通过食物链最终影响到人体。因此,关于重金属废水处理技术的探讨具有重要的意义。本文详细探讨了重金属废水处理技术,旨在实现重金属废水的回收利用。重金属离子的废水主要来自于化工工业以及矿山开采以及机械加工等行业,其所排放的重金属废水由于不能通过被生物降解的方式进行处理,长期沉积便会对于存在的水体产生相当严重的危害,一旦危害出现,可能所导致就将是极度严重且无法挽回的重大损失。因此,污水处理企业对于重金属废水的排放一定高度的重视,并采取科学有效的方式进行污水有效处理,以从根本上保障重金属污水处理的科学有效,保障水质安全。1 化学处理法1.1.化学沉淀法化学沉淀法是通过向重金属废水中投加药剂,发生化学反应使重金属离子变成不溶性物质而沉淀分离出来的方法。包括中和沉淀法、硫化物沉淀法、钡盐沉淀法、铁氧体沉淀法等。化学沉淀法处理重金属废水具有工艺简单、去除范围广、经济实用等特点,是目前应用最广泛的处理重金属废水的方法。但这种方法很容易受到沉淀剂和反应条件的影响,需要对沉淀剂投加量及反应条件进行准确控制。1.2电化学法电化学法应用电解的基本原理,使废水中重金属离子在阳极和阴极上分别发生氧化还原反应,使重金属富集,废水中的重金属离子在阴极得到电子被还原,这些重金属或沉淀在电极表面或沉淀到反应器底部,从而去除废水中的重金属,并且可以回收利用。这种方法不会将废水中重金属离子的浓度降低很多,且耗能大,比较适合重金属离子浓度较高且回收价值高的电镀废水。2 离子交换法离子交换法是利用重金属离子与离子交换树脂发生交换反应,使废水中重金属浓度降低的方法。离子交换树脂是一种含有离子交换基团的高分子材料。离子交换树脂不溶于酸、碱及有机溶剂。离子交换树脂可分为阳离子交换树脂、阴离子交换树脂和螯合树脂等。有些离子交换树脂对不同离子的亲合力不同,可以实现对不同重金属离子的选择性分离。离子交换树脂交换吸附饱和后需进行再生。离子交换法具有处理容量大,处理水质好,可以回用等优点,在重金属废水处理中,离子交换树脂主要用于回收有价的贵金属和稀有金属。离子交换法处理电镀行业重金属废水已有几十年的历史,早在1980年左右,仅沈阳市就有100多家电镀厂采用离子交换树脂除铬;上海市造船厂等企业采用强酸性阳离子交换树脂净化镀铬浓废液也有多年历史,还有些厂家采用阳离子交换树脂,处理镀锌、镀铜钝化液。离子交换纤维是近年来发展较快的一种新型离子交换材料,在重金属废水处理、分离、提取中的应用研究越来越广泛。颗粒状离子交换树脂相比,离子交换纤维吸附效果明显,交换能力强,吸附容量大,再生效果好,强度大,再生频率高。提高离子交换树脂的吸附容量、交换速度、再生利用性及机械强度是离子交换法重要的发展方向。3 膜分离技术膜分离技术是以压力为推动力,依靠膜的选择性进行分离、纯化与浓缩的技术总称。根据膜截留物质直径大小的不同和膜本身的性能差异,常见的膜分离技术主要有以下几种:微滤、超滤、纳滤、反渗透、电渗析等。膜技术作为一门新型的分离技术,具有无相变化、能耗低、占地少、操作方便、运行及维修费用低、系统运行稳定和出水水质好且稳定等优点。膜分离技术应用到重金属废水的处理中,不仅使渗透液达到排放标准或回用生产,而且能回收有价资源。纳滤(NF)膜由于其特殊的孔径范围和荷电性,对二价、多价离子及分子量200以上的有机物有较高的脱除性能,已在水处理、生物制药等领域获得广泛应用。4 生物处理法4.1植物修复法植物修复法是利用植物通过吸收、沉淀和富集等作用降低被污染土壤或地表水的重金属含量,以达到治理污染、修复环境的目的。在植物修复技术中能利用的植物有藻类、草本植物和木本植物等。植物修复法实施较简便、成本较低且对环境扰动少,在治理污染的同时还可以获得一定的经济效益。但该法治理效率低,不能治理重度污染的土壤和水体。4.2生物絮凝法生物絮凝法是利用微生物或微生物产生的代谢物进行絮凝沉淀的一种除污方法。目前已开发出具有絮凝作用的微生物有细菌、霉菌、放线菌、酵母菌和藻类等共17种,但对重金属有絮凝作用的只有12种。生物絮凝法处理废水安全无毒、不产生二次污染、絮凝效果好,但目前也存在生产成本高、保存困难、难以工业化生产的困难,大部分生物絮凝剂还处于研究探索阶段。4.3生物吸附法生物吸附法是利用生物体本身的化学结构及成分特性来吸附溶于水中的金属离子,再通过固液两相分离去除水溶液中的金属离子的方法。生物吸附剂主要是藻类,还有细菌、真菌等。由于许多微生物具有一定的线性结构,有的表面具有较高的电荷和较强的亲水性或疏水性,能与颗粒通过各种作用(如离子键、吸附等)相结合,如同分子聚合物一样起着吸附剂的作用。3 结束语综上所述,关于重金属废水处理技术的探讨对实现重金属废水的回收利用具有重要的作用,因此要进一步提高和完善重金属废水处理技术,这样才能改善重金属废水的质量,促进社会的发展。

厂商

2019.08.16

化学沉淀法处理含重金属废水的分析与研究

重金属废水的排放会造成严重的环境污染,农业种植与养殖也会由于重金属元素的富集而对食用者的身体健康带来影响。本文首先就重金属废水处理中的化学沉淀方法进行简要介绍,进而探讨化学沉淀法处理含重金属废水的有效方法,以期有效减少废水中的重金属含量,避免对自然环境带来较大的影响。重金属元素包括汞元素、铅元素、镉元素、铜元素与砷元素等,重金属元素在自然环境中无法实现自然降解,但会进入生物的食物链中,富集于各种动植物体内,对动植物的正常生理代谢活动造成破坏。就目前而言,重金属元素的污染已经成为挤压人类生存空间的重要问题。一、重金属废水处理中的化学沉淀法对于市政管理工作而言,对于废水的处理工作是其中重要的工作环节,市政工作所需处理的废水包括生活废水、农业废水与工业废水等,其中工业废水中,重金属废水是指化工、冶金、电子、仪表等工业生产过程中所产生的含有重金属离子的废水,具体重金属离子包括镉离子、镍离子、汞离子与锌离子等,这类重金属废水的排放,会对环境造成较为严重的污染,且废水中的重金属离子无法发通过自然分解与破坏,需要通过对重金属位置与形态进行转换与处理,应通过改革生产工艺进行处理。除此之外,针对重金属废水,还应当采用合理有效的方式对重金属离子进行分离处理,提高废水的排放标准。化学沉淀法是较为常见的重金属废水的处理方法,是指向废水中投入化学药剂,使废水中的溶解物质转化为非溶解物质,以实现固液分离,以实现废水中重金属元素的有效处理。通过化学沉淀的方法降低废水中的金属浓度,实现硬水软化处理。相较于其他重金属废水的处理方法,化学沉淀法的应用较为简单便捷,高效易行,且具备较高的经济优势,因此在实际的市政重金属废水处理中的应用十分广泛。二、化学沉淀法在重金属废水处理中的实际应用2.1加碱沉淀方法对污水中的重金属物质进行沉淀处理时,可采用加碱沉淀的方式加以实现,通过向废水中投放氢氧化物进行废水pH值调节,所产生的溶液为碱性溶液,该碱性溶液内部的重金属离子会与氢氧化物发生反应,形成重金属氢氧化物,以实现重金属离子的沉淀与分离。这种方式操作简单,且经济性较强,因此该技术的应用在市政废水处理时的应用较为常见。在技术发展过程中,有学者提出采用分层双吸收氢氧化物与碱性介质沉淀方法进行重金属废水的沉淀处理,或采用含碳酸盐的层状氧化镁铝材料进行重金属离子吸附,以更好地保证重金属离子沉淀的稳定性效果。另外也可以利用氢氧化钙对废水中的汞离子进行沉淀处理,当废水处理的pH值为8时,向废水中投入氧化钙材料,经过10分钟反应处理,可起到较好的处理效果,废水中的汞离子会大大下降,低于国家对于废水排放所出台的技术标准限值。在采用氢氧化钙进行废水汞离子沉淀处理时,需要适当提高废水pH值,在完成沉淀处理之后,应当降低废水pH值,以满足废水排放的技术要求。废水中个别金属离子的颗粒较小,仅仅采取氢氧化钙材料进行沉淀处理时,无法对其中金属粒子加以全部清除,因此还应当加入絮凝剂以起到更好地废水处理效果。另外,必要情况下,应当对废水进行预处理。2.2硫化物沉淀方法对于废水进行处理时,采用硫化物进行金属离子沉淀时,可通过硫化钠等元素加以实现。对硫化物与氢氧化物进行废水处理的方式加以对比,硫化物沉淀方法的应用要求沉淀环境为中性环境,因此无需对废水进行过多处理,且络合物具备较强的稳定性。对于废水中的镉离子进行沉淀处理,可采用硫化钠、硫酸铝进行处理,在中性化废水环境中进行重金属离子的沉淀处理,可添加5mL/L硫化钠、18H2O8mL/L硫酸铝及3mL/L聚丙烯酰胺,经过25分钟的搅拌处理,静置15分钟,所达到的镉离子去除率高达99%[1]。采用生物浸出与硫化沉淀的方式可进行铅锌离子的沉淀处理,通过生物反应器溶解金属离子。通过向废水中添加生物浸出液,进而投入硫化钠材料,实现金属沉淀向硫化物相进行转化,通过这种方法可以实现定量与有选择的金属沉淀生成。又或者也可采用硫化物沉淀法对贵重金属炼制废水中的重金属离子进行沉淀处理,重金属离子具体包括二价锌、二价铜与二价镉,向废水中添加1.5倍的絮凝剂进行沉淀处理,沉淀pH值为5,沉淀处理温度为50℃,经过20分钟的处理,废水排出的pH值在8~9之间,经过处理的废水金属离子含量能够达到国家对于废水排放的规定标准[2]。但这一方法的应用也存在一定的技术缺陷,主要在于:其一,技术应用条件为酸性条件,因此在废水处理中会产生硫化氢等刺激性气体;其二,相较于其他沉淀处理方法,硫化物沉淀法的应用过程中,与重金属离子相结合,所产生的沉淀物颗粒较小,且形成聚合物的可能性较高,容易导致废水过滤的堵塞。2.3铁氧体沉淀方法该沉淀方法的应用具备较大的经济优势,因此在实际废水处理中的应用较为常见。随着近年来废水处理受到愈发广泛的重视,铁氧体处理方法的应用愈发常见,在实际的技术应用中,将铁离子及铁氧体投入废水当中,对沉淀反应的处理条件进行有效控制,比如控制沉淀酸碱环境、沉淀反应的催化剂、沉淀反应温度等,在合适的条件下,重金属离子会与铁盐生成相对稳定的固体混合物,进而通过废水沉淀处理与固液分离处理去除金属离子。经过沉淀处理与固液分离的重金属离子还可以进行烘干与电解回收处理,提高重金属回收利用价值。有研究提出采用硼氢化钠,通过对氯化铁的还原反应生成纳米零价铁颗粒,可采用间歇平衡实验的方式对重金属离子的去除效果加以确定[3]。另外,还可采用铁锰双金属氧化物纳米球进行废水重金属离子的沉淀处理,铁锰双金属氧化物纳米球材料具备较大的比表面积,具备较为丰富的表面官能团,在实际废水处理中,可以形成内球表面复合物,因此在实际应用中并不会受到竞争阴离子的影响。在实际的沉淀处理中,可以利用这种沉淀处理方法,实现对于废水中砷与铬的重金属离子进行有效的沉淀处理,具备强有力的沉淀吸附效果。通过实践证明,这一方法的应用,可以有效实现对于废水中重金属离子的去除,形成重金属离子聚合胶团,经过固液分离加以处理。同时,铁氧体与重金属离子的相互结合,可以产生性能良好的半导体材料,但在实际应用中,这种处理方式的应用需要经过70℃以上的升温处理,需要经过缓慢氧化,因此处理时间较长[4]。三、结语化学沉淀法应用较为成熟,且经济成本的投入较小,且具备较高的自动化程度,因此在实际应用中可以起到较好的效果。但同时,化学沉淀法的应用也具备一定的弊端,比如不利于对重金属离子浓度较小的废水处理工作,重金属废水处理会产生较多的聚合元素,从而导致过滤膜堵塞问题,这些都是技术应用有待完善的部分。

厂商

2019.08.12

高氨氮预处理技术-吹脱法去除氨氮

常用的处理氨氮废水的方法主要有吹脱法、生化法、离子交换法、折点氯化法和磷酸铵镁沉淀(MAP)法等。目前,国内多采用生化法和吹脱法,国外则多采用生化法和磷酸铵镁沉淀法。吹脱法多用于处理中高浓度、大流量氨氮废水,吹脱出的氨可以回收利用,但有容易结垢、低温时氨氮去除效率低、吹脱时间长、二次污染、出水氨氮浓度仍偏高等缺点,所以明确影响吹脱法的关键因素,提高氨氮去除率,对于氨氮处理成本控制、水污染得到控制、实现城市的可持续发展具有重要的意义。一、吹脱原理吹脱法的基本原理是利用废水中所含的氨氮等挥发性物质的实际浓度与平衡浓度之间存在的差异,在碱性条件下使用空气吹脱,由于在吹脱过程中不断排出气体,改变了气相中的氨气浓度,从而使其实际浓度始终小于该条件下的平衡浓度,最终使废水中溶解的氨不断穿过气液界面,使废水中的NH3-N得以脱除,常以空气作为载体。氨吹脱是一个传质过程,推动力来自空气中氨的分压与废水中氨浓度相当的平衡分压之间的差,气体组份在液面的分压和液体内的浓度符合亨利定理,即成正比关系。此法也叫“氨解析法”,解析速率与温度、气液比有关。吹脱法的基本原理是气液相平衡和传质速度理论。废水中的NH3-N通常以铵离子(NH4+)和游离氨(NH3)的状态把持平衡而存在的当PH为中性时,NH3-N主要以铵离子(NH4+)形式存在,当PH值为碱性,NH3-N主要以游离氨(NH3)状态存在吹脱法是在沸水中加入碱,调节PH值至碱性,先将废水中的NH4+转化为NH3,然后通入蒸汽或空气进行解吸,将废水中的NH3转化为气相,从而将NH3-N从水中去除。常用空气或水蒸气作载气,前者称为空气吹脱,后者称为蒸汽吹脱。二、优缺点优点:吹脱法用于处理高浓度氨氮废水具有流程简单、处理效果稳定、基建费和运行费较低等优点,实用性较强。缺点:进出水需要调整PH、如果没有酸性吸收吹脱出来的氨气随空气进入大气引起二次污染、硬度高的废水结垢严重。三、影响因素吹脱法一般采用吹脱池(也称“曝气池”)和吹脱塔两类设备。但吹脱池占地面积大,而且易污染周围环境,所以有毒气体的吹脱都采用塔式设备。塔式设备中填料吹脱塔主要特征是在塔内装置一定高度的填料层,使具有大表面积的填充塔来达到气—液间充分接触。常用填料有纸质蜂窝、拉西环、聚丙烯鲍尔环、聚丙烯多面空心球等。废水被提升到填充塔的塔顶,并分布到填料的整个表面,水通过填料往下流,与气流逆向流动,废水在离开塔前,氨组份被部分汽提,但需保持进水的pH值不变。空气中氨的分压随氨的去除程度增加而增加,随气水比增加而减少。影响吹脱法处理氨氮废水去除率主要是pH值、温度、气液比/吹脱水位深度、吹脱时间等因素。(1)PH水中的氨氮,大多以氨离子(NH4+)和游离氨(NH3)保持平衡的状态而存在。其平衡关系式如下:NH4++OH?NH3+H2O (1)式(1)受pH 值的影响,当pH值高时,平衡向右移动,游离氨的比例较大,当pH 值为11 左右时,游离氨大致占90%。(2)温度氨与氨离子之间的百分分配率可用下式进行计算:Ka=Kw /Kb=(CNH3·CH+)/CNH4+ (2)式中:Ka—— —氨离子的电离常数;Kw—— —水的电离常数;Kb—— —氨水的电离常数;C—— —物质浓度。由式(2)可以看出,pH 值是影响游离氨在水中百分率的主要因素之一。另外,温度也会影响反应式(1)的平衡,温度升高,平衡向右移动。表(一)列出了不同条件下氨氮的离解率的计算值。表中数据表明,当pH值大于10 时,离解率在80%以上,当pH 值达11时,离解率高达98%且受温度的影响甚微。(3)气液比气液比:指空气(蒸汽)和吹脱对象(含氨废水)的体积比。影响氨气从水中向大气转移的因素有两个:一是水气界面处的表面张力;二是界面处的氨浓度差表面张力最小,气态氨释放量就大。如果形成水滴,气态氨转移量的增加将会很小。因此,反复形成水滴有助于氨的吹脱。水和大气中氨氮的浓度差是气态氨转移的动力。为使水滴周围环境中的氨氮浓度最小,必须将空气快速循环,用含低浓度气态氨的空气搅动水滴,有助于加快氨的释放。对确定的废水量而言,增大气体量,传质推动力相应增大,有利于氨氮吹脱去除。但气量太大,气速过高,将影响废水沿填料正常下流甚至不能流下,即引起液泛现象。因此,对一定废水量,最小液气比受液泛气速控制;但是进水量较小时,会消耗大量的能源,所以一般氨氮吹脱工艺将气液比控制在3000左右。4、吹脱时间减小吹脱时间,有利于加快反应速度,提高处理量,减少设备的容积。徐颖采用吹脱法处理垃圾渗滤液,吹脱段pH值为11,气液比在2000~2300,吹脱时间9h,反应条件达到吹脱效率才达到52.0%。卢平等采用吹脱—缺氧—两级好氧工艺处理垃圾渗滤液,垃圾渗滤液取自香港某垃圾填埋场,氨氮浓度1400mg/L,pH值为9.5,吹脱时间12h,经吹脱后氨氮去除率为60%。傅金祥等采用吹脱法垃圾渗滤液,进水氨氮浓度1800mg/L,pH值为11,气液比为360∶1,空气量为3.0L/min,吹脱时间为1h,去除效率可达88.75%。由此可看出处理相同的废水吹脱时间也相差很大,可能是因为采用的填料不同、装置设计的合理性等原因造成,吹脱处理后能够很好地进行后续处理和控制运行成本。

厂商

2019.08.08

污水处理工艺选择时要考虑的7个因素!

      污水处理流程的选择应综合考虑各项因素,进行多种方案的技术经济比较才能得出结论,其中包括:废水水质、污水处理程度、建设及运行费用、工程施工难易程度、当地的自然和社会条件、污水的水量和二次污染七个方面。  处理工艺流程选择,一般需考虑以下因素。   1  废水水质   生活污水水质通常比较稳定,一般的处理方法包括酸化、好氧生物处理、消毒等。而工业废水应根据具体的水质情况进行工艺流程的合理选择。特别需要指出的是,对于采用好氧生物处理工艺处理废水来说,要注意废水的可生化性,通常要求BOD5/COD>0.3,如不能满足要求,可考虑进行厌氧生物水解酸化,以提高废水的可生化性,或是考虑采用非生物处理的物理或化学方法等。欢迎关注,环保小蜜蜂!   2  污水处理程度   这是污水处理工艺流程选择的主要依据。污水处理程度原则上取决于污水的水质特征、处理后水的去向和污水所流入水体的自净能力。但是目前,污水处理程度的确定主要依从国家的有关法律制度及技术政策的要求。通常环境管理部门是根据《污水综合排放标准》及相关的行业排放标准来控制污水的排放浓度,一些经济发展水平较高的地区还规定了更为严格的地方排放标准。因此,无论是何种需要处理的污水,也无论是采取何种处理工艺及处理程度,都应以处理系统的出水能够达标为依据和前提。按照法律、法规、政策的要求预防和治理水体环境污染。   3  建设及运行费用   考虑建设与运行费用时,应以处理水达到水质标准为前提条件。在此前提下,工程建设及运行费用低的工艺流程应得到重视。此外,减少占地面积也是降低建设费用的重要措施。   4  工程施工难易程度   工程施工的难易程度也是选择工艺流程的影响因素之一。如地下水位高,地质条件差的地方,就不适宜选用深度大、施工难度高的处理构筑物。   5  当地的自然和社会条件   当地的地形、气候等自然条件也对废水处理流程的选择具有一定影响。如当地气候寒冷,则应采用在采取适当的技术措施后,在低温季节也能够正常运行,并保证取得达标水质的工艺。   当地的社会条件如原材料、水资源与电力供应等也是流程选择应当考虑的因素之一。   6  污水的水量   除水质外,污水的水量也是影响因素之一。欢迎关注环保小蜜蜂。对于水量、水质变化大的污水,应首先考虑采用抗冲击负荷能力强的工艺,或考虑设立调节池等缓冲设备以尽量减少不利影响。   7  二次污染   污水处理过程中应注意是否会造成二次污染问题。例如制药厂废水中含有大量有机物质(如苯、甲苯、溴素等),在曝气过程中会有有机废气排放,对周围大气环境造成影响;化肥厂造气废水在采用沉淀、冷却处理后循环利用,在冷却塔尾气中会含有氰化物,对大气造成污染;农药厂乐果废水处理中,以碱化法降解乐果,如采用石灰做碱化剂,产生的污泥会造成二次污染;印染或染料厂废水处理时,污泥的处置为重点考虑的问题。   总之,污水处理流程的选择应综合考虑各项因素,进行多种方案的技术经济比较才能得出结论。

厂商

2019.08.06

污水处理大神浅谈化学除磷

对设计的认识1、关于设计的价值在很多人看来,水处理工程比较容易,大部分项目看看就大概知道怎么回事了,稍微多花点心思还可以弄出来一些“创新”。这么多年下来,各种专有技术的名词层出不穷,而其实际的内容往往大同小异,各种各样的环保公司也前仆后继。在这种模仿和复制的过程中,佼佼者在慢慢积累经验和教训,也有很多人在其中跌倒而茫然不知方向。行业有句话是“好的项目经理都是拿钱砸出来的”,同时要明白的是,在不尊重客观规律的情况下,拿钱也砸不出好的项目经理。对于一个项目,工程的设计是项目控制的主线,往往起着至关重要的作用,而在复杂项目中,设计的好坏基本决定着项目的成败。设计向来不是简单的参考和细化的过程,而是一个很活泼的东西。每个项目都有着不同的外部条件,从水质水量的分析到区域的差异性,还有用户的使用习惯与投入产出预期。这些都需要进行充分的分析与沟通,并通过系统的专业化手段来进行协调,让工程经济高效地建设完成并达到预定的工艺目的。在某种程度上设计是一个创作行为,具有其核心的价值。有价值的设计应该具备以下特点:1)很好地理解了工程的工艺目的,充分保证了工程本身的功能。2)考虑了不同的用户习惯及外部环境的建筑美学等,工程各方面达到一个平衡的状态。3)工程设计与工程建设配合密切,节约了项目组织成本。2、设计与画图的区别设计和画图有着本质的区别。一般而言,设计指的是对一个完整的系统负责,包括了项目的基础设计条件的确认、设计过程中各种要素的权衡和选择,还包括了图纸设计和配合项目实施等。在实际设计的工作中,为了保证设计的正确性和合理性,前期需要花费大量的精力用于项目基本资料的收集和确认。比如现场考察及与业主沟通确认等,在设计过程中要进行各种方案的讨论与比选,还有各种因为外部条件发生变化产生的反复,有些项目还需要开展现场试验等工作。以上工作都需基于扎实的专业基础,结合项目实际情况进行综合性的判断,在条件不充分时还需要进行适当的预判,综合素质要求高。画图是设计的一部分,是设计人员应该具备的基本功。在具体的画图的工作中,工艺路线及总体方案已经确定,主要是总图及各单体的细化设计工作,细致性和重复性的劳动较多。画图首先应充分理解设计意图,才能在细化设计中少走弯路,高质量、快速地完成画图任务。3、设计需要熟悉和掌握的基本知识设计需要有良好的各方面的专业知识和专业技能的基础,主要包括以下方面:1)废水处理基本理论工艺设计首先需要掌握相关基本理论,包括了废水的组分与特性、污染物的去除机理,还需要具备基本的水力计算基础知识。工程设计最终是为工艺目的服务的,只有基于基本理论出发,设计才是有根的设计。2)国家标准、规范与手册国家标准和规范为了规范工程建设而颁布的,具有强制性,在设计中需遵守。设计手册是为了方便开展设计工作而编制的,手册较为全面地涵盖了设计中的各个方法,是重要的参考资料。设计人员要熟悉并合理地加以利用。3)常规单元的设计设计都是针对具体的项目及组成项目的各个工艺单元而言,需要对工艺单元的设计要素有着充分的了解,才能开展工艺设计工作。4)工程制图基础工程设计是通过图纸语言来阐述的,了解基本的投影理论、国家基本的制图规定、图纸的构成和深度要求等,可以让图纸设计有一个规范的开始。AutoCAD软件是通用的绘图软件,需要掌握基本的绘图技巧。5)设备、仪表与管道等知识设备、仪表与管道等都是工程必不可少的组成部分,需要掌握相关知识,熟悉其规格参数及使用条件才能进行合理的选型和设计,使工程建设符合设计需求。6)辅助专业常规知识工艺设计人员还需要了解建筑结构、电气自控等辅助专业的常规知识,在专业配合方面才能顺利对接。4、不同阶段能力的需求对于设计人员而言,开始设计工作的切入点各有不同,但无论做那种工作,要想快速成长,需要时刻注意熟悉和掌握各种基本技能。5、关于设计的周期好的设计需要消耗大量的精力,在每个环节都进行仔细地考虑和权衡,并落实到文字和图纸上。同时还涉及到各方的配合与协调,需要合理的反馈和决策时间,综合下来形成了设计周期。成熟的有丰富积累的设计团队效率会高很多,设计周期也会短。要有更短的设计周期,除了执行能力外,考验的是设计团队的综合判断能力,特别是在条件不成熟时的预判能力,能快速在纷繁的需求中抓住项目的主线,协调解决关键问题,并指导项目的实施。开始参与设计对于新手而言,开始参与设计工作时,往往从一些简单的事情做起:1、项目现场实施配合项目现场的实施配合是设计人员应该有的经历,在协助解决现场施工和图纸的相关问题的同时,可以帮助深入理解施工图的构成,锻炼将图纸和实际工程联系起来的能力。对于一个成熟的设计工程师而言,丰富现场经验的积累是必不可少的。2、简单工艺单体的图纸设计从简单的比较容易理解的图纸绘制,开始接触设计工作,比如集水池、泵房等。在总体工作量不大的情况下,能了解和熟悉设计的过程和要点,图纸的绘制技巧,各专业之间的配合等等。在完成任务的同时,对图纸设计工作形成整体的认识。制图要养成良好的习惯,需要做到以下几点:1)不抄图:提高设计效率的有效途径是参考外部图纸,但同时设计中最容易犯的错误的是简单的抄图。其中区别在于,参考图纸是以基本理论和设计规范作为依据,在设计中借鉴其他的设计成果。抄图仅仅是在其他人的成果上改图,不考虑设计的适用性,容易导致设计与项目实际需求不符,出现设计错误。2)充分理解单元工艺功能:单元的工艺功能是根本,在设计经常由于外部条件变化需要适当做一些调整。只有充分理解了工艺功能,调整时才有灵活性,而且不影响工艺目的。3)谨慎面对设备安装检修需求:设备厂家一般会提供安装图纸,而设备厂家往往提供的是通用图,或其他类似项目的图纸,不一定完全匹配本项目的需求。设计中需要充分理解设备的安装检修条件,结合项目的实际外部条件和需求再进行针对性的设计考虑,才能保证设计的合理性。3、方案制作的参与在工艺路线及设计参数都比较明确的情况下,以规范和手册为基本依据,进行设计计算的校核、设备选型等工作,配合完善方案。简单的文字工作比较容易参与,同时可以熟悉基本的设计计算、设备选型等技能。设计经验的成长是一个循序渐进的过程,要想在设计能力的台阶上走得更高,尤其需要注意基本能力的积累。设计经验的成长1、良好的心态做好长期的打算。废水处理工程涉及范围广,知识面要求全,项目建设周期一般较长,成熟的设计师都需要有大量的项目经验,并经过完整项目的历练,一般至少需要3~5年以上时间。而且在工作中,大量的时间实际上是处理非常琐碎的事情,包括各种反复,但这些工作很多时候都是必要的,任何忽略可能带来一些不好的后果。设计工作需要有良好的心态,一方面琐碎的工作可以熟能生巧,另一方面,过程当中的各种错误和反复实际上也是设计能力提升的过程。2、寻根问底的习惯设计工作中尽量弄清楚各种设计考虑的原始出发点,工艺参数一般都能还原到理论依据,附属的设计一般和经济性、安装检修条件及运行方便性有关。有了寻根问底的习惯,设计才能建立在一个坚实的基础上。3、工作的技巧任务开始前,要充分理解任务的核心需求,首先满足完成基本任务,再根据自己的特点进行适当发挥。工作首先应服从总体的安排,才能提高整体效率,设计当中的理解、沟通和协调技巧非常重要,是设计能力的重要组成。4、设计能力的沉淀平时多积累问题,通过设计项目的参与、现场的考察等积累相关经验,多主动参与讨论,将各种经验转化成自己的设计能力的沉淀。有了设计能力的沉淀,才能与项目结合,形成自己对于设计的独立见解,才能真正具备独立承担项目的能力。以生活污水为例设计以下仅谈论一下生活污水的工艺流程,个人觉得工艺流程是一个方案里好下手的部分。在国内,污水组分划分远没有国外那么明细,模糊的很,基本上知道了水质水量,经过简单分析就能得出结论了。况且,最重要的是——工艺流程未必是设计说了算。现在喜欢插手的业主很多,更有甚者帮你从头到底一条路线都定死了,工艺比选神马的完全就是走个过场——谁出钱谁说了算。业主要UCT你敢上AAO?这种事情不止碰到一次了。言归正传,一般生活污水处理中重要的指标也就那么几个:SS、COD、BOD、氨氮、TN、TP,除了这些指标,主要还有大一些的垃圾或颗粒物,以及细菌和病毒,这些就是主要的考量因素。1、那么去除这些物质的主要手段分别是:SS:沉淀、过滤COD、BOD、氨氮、TN:生化TP:化学除磷垃圾/颗粒物:格栅、沉砂池细菌和病毒:消毒2、下面开始铺流程:1、一个水厂处理污水,一头一尾可以先确定下来:格栅和消毒。然后补充中间的部分,按照一级→一级强化→二级(核心工艺)→深度处理的顺序填充,水线走完还有泥线。2、格栅之后一般都是沉砂池,这个也是常规方法,中小厂可以选择旋流沉砂池,大的厂一般是曝气沉砂池,平流这几年没怎么见过。3、沉砂池之后视情况,如果水质水量波动较大的,补上一个调节池。4、再往后,视SS、COD、TP高低补上初沉池或混凝沉淀池,初沉池可以减少后续生化产泥和供气需求。5、如果有难降解有机物的(B/C比较低的,或者掺了一些工业废水的),加水解酸化和水解沉淀,增加可生化性。一级及一级强化到此结束。6、核心工艺是最没有花头的,万变不离AAO,氧化沟、UCT、VIP、JHB、SBR、CASS等等等等工艺其实都是AAO的改良或变体,请根据业主喜好及水厂用地等来确定到底用哪种。7、二沉池紧随其后,不过不是每一种工艺都需要二沉池,有滗水器的都不需要(因为已经实现了泥水分离)。核心工艺涉及膜的也不用二沉池了。没有深度处理要求的可以直接去消毒了。8、深度处理首当其冲的是化学除磷(如果你之前没用过化学除磷),生物除磷的能力毕竟有限,我们还是要靠铝盐铁盐和PAM来除磷,此处加上混凝沉淀池或者高效沉淀池(带污泥回流的混凝沉淀池),去除SS、TP疗效好。9、各种过滤,滤池或者滤布。生活污水处理到这份上还不送去消毒?10、泥线就简单多了,二级工艺泥水分离的地方一部分污泥回流,一部分剩余污泥排放,剩余污泥浓缩、贮存、脱水,有要求的就干化、堆肥等,没要求的直接外运处置。学习污水处理工艺设计的一点经验做工艺设计的自己都应该有设计计算书,根据不同的项目来调整参数,然后试着按照这个项目的参数代进去算,才算确定了整个工艺流程,之后后续的系统设计在此基础上才开始进行,这才是合理的路径。刚进公司时,工艺设计都是别人做好,我们再按照工艺路线画图和选型的,随后经过工艺培训和自己现场调试积累经验,慢慢也会做设计了,当然每次流程设计完之后还是先要让领导校对一下才好开始画图。工艺设计和系统设计其实是两个不同的工作,工艺设计本身就包含了非常丰富的知识。对一个工程来说,工艺是其灵魂,不管设计过程是简单还是复杂的,都不能否定他的地位。系统上的设计错误到现场还有机会改,工艺设计错了这个项目就注定失败了。曝气池设计小了,曝气头算少了几十个,等进水之后你想改也没办法改了。有除磷需求,但只有生物除磷的工艺,那可能你再怎么调也调不出来了。要提高工艺设计的能力,无外乎多请教别人,多讨论,自己多看书,还有积累调试经验。另外自己有调试经验是非常重要的,没去过现场,怎么能做出合理的设计。没做过对应的项目,看再多的书也会很快忘了的。如果没有很多调试的机会,或者每个项目水质情况都很雷同,那说明工艺设计并不是你们单位最看重的能力,那你应该能在很短时间里掌握好的。

厂商

2019.07.29

电镀含镍废水处理方法

电镀过程中产生的废水成分非常复杂,其中重金属废水是电镀行业潜在危害性极大的废水类别。镍是一种可致癌的重金属〔1〕,此外它还是一种较昂贵的金属资源(价格是铜的2~4倍)。电镀镍因其具有优异的耐磨性、抗蚀性、可焊性而被广泛应用于电镀生产中,其加工量仅次于镀锌,在整个电镀行业中居第二位。在镀镍过程中产生大量含镍废水。如果含镍废水不加处理任意排放,不但会危害环境和人体健康,还会造成贵金属资源的浪费。1 电镀含镍废水的产生和危害含镍电镀废水主要来自于镀镍生产过程中镀槽废液和镀件漂洗水,废镀液量少但其中镍离子浓度含量非常高,镀件漂洗水是电镀废水的主要来源,占车间废水排放量的80%以上。镀件漂洗水水量大,但其中镍离子浓度与废镀液相比要小很多。根据《电镀污染物排放标准》(GB 21900—2008)表2,允许排入水体的电镀废水中总镍质量浓度为0.5 mg/L。2 电镀含镍废水的处理技术按照不同原理可将处理含镍电镀废水的方法分为三大类:化学法、物理化学法和生物处理法。2.1 化学法利用化学法处理含镍电镀废水主要有传统的化学沉淀法、新型工艺铁氧体法,以及高效重金属螯合沉淀法。其中化学沉淀法又包括氢氧化物沉淀法、硫化物沉淀法。2.1.1 化学沉淀法李姣〔2〕在化学沉淀法处理电镀废水的实验研究中,用CaO、CaCl2、BaCl2三种破络合剂处理镀镍废水,对比发现:BaCl2的破络合效果为好,镍离子的去除率高,CaCl2的效果差。将CaO与BaCl2联用处理镀镍废水,镍离子的去除率可达99%以上,且在镍离子的去除率相同时,BaCl2的使用量比其单独处理镀镍废水时的少很多。林德贤等〔3〕首先采用Fenton试剂氧化,后采用NaClO氧化,对pH为3~5,Ni2+质量浓度为一百~150 mg/L的含镍废水进行破络预处理,后经化学沉淀处理,使出水上清液中镍离子质量浓度低于0.1 mg/L。传统的化学沉淀法处理含镍电镀废水具有技术成熟、投资少、处理成本低等诸多优点。虽然在反应过程中会产生大量污泥,甚至造成二次污染,但随着破络剂、重金属捕集剂等的不断发展应用,传统化学沉淀法的处理效果也被不断提高。2.1.2 铁氧体法在化学沉淀法中,比较新型的工艺是铁氧体法。FeSO4可使各种重金属离子形成铁氧体晶体而沉淀析出,铁氧体通式为FeO·Fe2O3〔4〕。废水中Ni2+可占据Fe2+的晶格形成共沉淀而去除。一般n(Ni2+)∶n(FeSO4)为1∶2~1∶3,废水中镍离子质量浓度为30~200 mg/L时〔5〕,采用铁氧体法处理后形成的沉淀颗粒大且易于分离,颗粒不会再溶解,无二次污染,出水水质好,能达到排放标准。常军霞等〔6〕通过实验研究了铁氧体法处理含镍废水的工艺条件。结果表明,在pH=9.0,n(Fe2+)∶n(Ni2+)=2∶1,温度为70 ℃的条件下,镍的转化率可达99.0%以上,废水中的Ni2+可从一百 mg/L降至0.47 mg/L。李静红等〔7〕研究了室温下铁氧体法处理低浓度含镍废水的工艺条件。试验结果表明,以Na2CO3为pH调节剂,在pH 为8.5~9.0,n(Fe3+)∶n(Fe2+)=1.5∶1,n(Fe2+)∶n(Ni2+)=12∶1,搅拌时间为15 min的条件下,处理效果佳。镍的去除率达到98%以上,处理后的废水中镍离子质量浓度达到0.20 mg/L以下,达到国家排放标准。Fenton法与铁氧体法2种工艺中都存在二价铁离子,江洪龙等〔8〕采用Fenton-铁氧体法联合工艺处理含铜、镍的络合电镀废水。结果表明,在废水初始pH=3,H2O2初始质量浓度为3.33 g/L,m(Fe2+)∶m(H2O2)=0.1,温度25 ℃的Fenton氧化条件下,先对废水Fenton处理60 min,之后调节废水沉淀pH=11,控制曝气流量为25 mL/min,铁与废水中金属离子的质量比为10,反应温度为50 ℃,曝气接触时间为60 min,在此条件下废水中镍离子的去除率达到99.94%,出水镍离子的质量浓度为0.33 mg/L,达到国家规定的排放标准。另外,沉淀污泥的物相分析表明,在一定工艺条件下得到的NiFe2O4、Fe3O4等铁氧体沉淀物既无二次污染又可作为磁性材料回收利用。铁氧体法处理含镍电镀废水具有处理设备简单、投资较少、沉渣可回收利用等优点。目前,铁氧体工艺正由单一工艺向多种工艺复合的方向发展,利用其本身优势并与其他水处理工艺相结合构成新工艺,使其对重金属废水的处理更加完善。2.1.3 高分子螯合沉淀法近年来在传统化学沉淀工艺中一种新型沉淀剂——重金属螯合剂的加入改善了传统工艺上的不足。刘存海等〔9〕实验合成了一种重金属离子螯合剂HMCA,将HMCA应用于镀镍废水中,在pH为6.5~7.5时,Ni2+的去除率可达98.5%以上。该螯合剂对Ni2+具有很好的捕集能力,且与Ni2+作用形成的螯合产物结构致密稳定。当金属螯合剂质量浓度为3.79 g/L时,Ni2+的质量浓度为0.45 mg/L,显著提高了对镀镍废水的处理效果。刘转年等〔10〕在碱性条件下合成了一种新型的具有絮凝、螯合双功能的重金属螯合剂——PAS,并将PAS用于重金属镍离子的螯合实验,实验结果表明,加入0.6 mL的PAS对50 mg/L的含镍废水的去除率可达98%以上,可见PAS对Ni2+是一种良好的螯合剂。2.2 物理化学法物理化学新技术、新工艺的兴起与进步使得电镀企业清洁生产成为可能,处理含镍电镀废水常用的吸附技术、离子交换技术、膜分离技术、离子浮选技术等都是基于资源回收而发展起来的新型高效水处理技术。2.2.1 吸附技术吸附法是利用吸附剂的独特结构去除重金属离子的一种有效方法。沸石、活性炭、腐殖酸等常被作为处理含镍电镀废水的吸附剂。人造沸石功能与天然沸石相似,但孔道内有机杂物比较少,应用范围更广。用斜发沸石对Ni2+进行吸附,吸附量可达13.03 mg/g〔11〕。李晶等〔12〕用丁二酮肟(DMG)对沸石表面进行修饰,用经十六烷基三甲基溴化铵(CTAB)改性的人造沸石吸附模拟废水中的Ni2+。结果表明:溶液体积为25 mL,初始质量浓度为20 mg/L,pH=7.0,温度为35 ℃时,在改性沸石投加质量为1.1 g,吸附时间为50 min条件下,吸附率达98%以上,且受其他干扰离子(Cu2+、Pb2+)的影响不大。陈尔余〔13〕采用分光光度法研究了新型改性沸石(Na-Y型)对电镀废水中Ni2+去除效果的影响。结果表明,在室温、pH=4的条件下,当加入改性沸石质量分数为0.4%、吸附时间为2 h时,废水溶液中Ni2+的去除率可达99%以上,Na-Y型沸石经HCl和NaCl混合溶液淋洗再生后可重复使用,再生后吸附量有所下降,但下降不明显。活性炭能够较为有效地去除废水中的络合镍离子,齐延山等〔14〕在静态吸附条件下,研究了粉状活性炭对水溶液中低质量浓度柠檬酸络合镍离子的吸附行为。试验结果表明:溶液初始pH=11.0,活性炭投加质量浓度为10.0 g/L时,镍离子的去除率达到72.3%。罗道成等〔15〕通过利用腐殖酸树脂处理重金属 Ni2+的实验表明:在废水pH为5.0~7.0,Ni2+质量浓度为50 mg/L,腐殖酸树脂通过离子交换和络合吸附对Ni2+的去除率可达98%以上,且处理后废水接近中性,废水中Ni2+的含量显著低于国家排放标准。目前,工业上普遍使用的吸附剂价格昂贵,制约了吸附技术的广泛应用,同时吸附剂的再生和二次污染也是吸附技术处理废水过程中应该着重考虑的问题。2.2.2 离子交换技术随着新型大孔型离子交换树脂和离子交换连续化工艺的不断发展,离子交换法作为镀镍漂洗水“零排放”的手段一度引起学术界的兴趣。侯新刚等〔16〕采用离子交换法对低浓度硫酸镍溶液进行吸附实验,结果表明:室温下,001×8型强酸性凝胶型阳离子交换树脂4.0 g,镍离子质量浓度1.0 g/L,反应时间60 min,pH 5~6,镍离子回收率能达到95%以上。动力学研究表明,吸附速率主要受液膜扩散控制。宋吉明等〔17〕通过氨基磷酸螯合树脂与其他螯合树脂对弱酸性电镀废水中的镍离子吸附性能比较试验得出:氨基磷酸螯合树脂由H+型转Na+型后对Ni2+的吸附量提高29.5%。处理后水中Ni2+质量浓度小于0.020 mg/L。T. H. Eom等〔18〕采用离子交换技术进行电镀废水处理,Ni2+去除率可超过99%。将离子交换技术与膜技术相结合,组成新型工艺用于处理含镍电镀废水得到了很好的处理效果。吴洪锋等〔19〕采用离子交换—超滤—反渗透组合工艺处理镀镍漂洗废水,该系统经过连续四个多月的运行后,监测结果显示,镀镍漂洗废水中Ni2+质量浓度由424 mg/L降至1.0 mg/L以下,Ni2+回收率大于99%,废水整体回用率大于60%,系统出水可回用到镀镍漂洗槽中。该方法具有出水水质稳定以及可回收镍资源、水资源等优点。2.2.3 膜分离技术镍既是重金属又是贵金属,利用膜分离技术既能去除废水中的镍离子又可以实现对镍的回收利用,达到清洁生产的目的。周理君等〔20〕采用超滤—反渗透组合工艺浓缩分离镀镍漂洗废水,出水水质接近纯净水。胡齐福等〔21〕采用两级RO膜系统对含镍250~350 mg/L的漂洗废水进行处理,对镍的截留率达99.9%以上。王昕彤等〔22〕利用新型纳滤膜分离电镀镍漂洗水,对镍离子的去除率达99.5%,出水可直接排放或回用于车间。李兴云等〔23〕采用膜电解法对Ni2+质量浓度为2 000 mg/L,pH=5.32的含镍模拟废水进行了处理。并对单阳膜二极室、单阴膜二极室以及双膜三极室三种不同膜电解组合处理效果进行了比较,结果表明:单阴膜电解法在电解的过程中,阳极反应产生的H+被阳极液中的OH-中和,同时阴膜也阻止H+通过,从而提高了镍的回收率。且电流效率可高达90%以上,与普通电解法相比提高30%,电解率均高于单阳膜和双膜三室电解。采用电渗析法处理含镍电镀废水要求清洗水中镍离子质量浓度≥1.5 g/L,以提高渗析率。电渗析处理后的浓缩液的浓缩比比反渗透浓缩比高,利用这一优点可实现化学镀镍液再生。国内已有试验证明,采用电渗析法可回收90%的硫酸镍,回收的硫酸镍质量浓度达到80~一百 g/L,能直接回镀槽使用〔24〕。综上可以得知,膜分离技术应用于含镍电镀废水的处理有独特优势,不仅可以有效去除废水中的Ni2+,使其以低浓度达标排放或者废水回用,而且滤膜所截留下来的含镍沉渣可以回收利用,既环保又经济。与其他技术相比,膜技术设备简单,使用范围广,处理率高,无需添加化学试剂,因此不会造成二次污染〔25〕。但膜组件昂贵,且在使用过程中会产生膜污染,这是限制膜技术广泛应用的问题所在。2.2.4 离子浮选技术采用离子浮选法处理含镍电镀废水,对镍离子有较高的去除率。戴文灿等〔26〕通过离子浮选法处理电镀废水的研究发现,离子浮选对镉、锌、铜、镍等金属离子均有很高的去除率,其中镍的残余质量浓度可达0.33 mg/L,泡沫产品中镍品位为13.2%,具有极高的资源回收价值。董红星等〔27〕采用浮选法对二元金属离子铜和镍进行处理,铜、镍的去除率可分别达到92.46%、93.14%。陶有胜等〔28〕对镍离子和铜离子采用浮选法进行单一处理和混合处理实验,单一实验中镍离子的回收率可达99.5%以上。混合实验中镍离子、铜离子的回收率都有显著提高,铜离子回收率达到百分百。离子浮选法具有萃取法和离子交换法的双重优点,在处理电镀废水中具有适应范围广、去除率高,且能回收废水中有价值金属等特点。但是,目前离子浮选法对于重金属废水的处理应用只局限于对单组分的分离,对二组分及多组分废水处理的研究较少。2.3 生物处理法目前,生物吸附法处理含镍废水的关键问题在于可用于吸附镍离子的菌种吸附量普遍较低〔29〕。李兰松等〔30〕利用射频低温等离子体对吸附镍细菌B8进行诱变,并测试突变体对镍离子的吸附能力。实验结果表明,得到的突变体Ni12(Pseudomonas cedrina)对镍离子的吸附量达到了136.7 mg/g(干菌体),比原始菌株B8提高了11.7%。以多孔陶瓷为载体,采用微生物曝气挂膜法固定突变体Ni12,对含镍离子的溶液进行处理,其吸附率可达86%。突变体Ni12对镍离子有较强的吸附性,可稳定遗传,对含镍废水的处理有良好的应用前景。赵玉清等〔31〕筛选了一种嗜镍菌并研究嗜镍菌对镍离子的吸附。通过吸附率随时间的变化曲线可知:镍离子质量浓度为25 mg/L,吸附2 h吸附反应即趋于平衡,吸附率高可达97.7%,对超标50倍的含镍废水,一次处理已接近镍的排放标准;该菌对含镍废水中的Ni2+有吸附。李娟等〔32〕用稻壳作载体对硫酸盐还原菌进行固定化,能有效去除废水中的镍离子,去除率高达99%。有实验研究表明,红杆菌对Ni2+的去除率可达90%。白腐菌(P. ysosporium)对Ni2+的吸附量可达56 mg/g〔33〕。基因重组菌E. coli JM10对Ni2+富集能力比原始菌株增加了6倍多。目前,国内外关于生物吸附的研究多处于实验室阶段,实验室已实现了固定化细胞体系的连续操作。基因工程技术在微生物吸附方面也有所应用。然而,当前对生物吸附剂和重金属之间的反应动力学和热力学以及生物吸附机理的认识还不充分,更为廉价、吸附容量更大的生物吸附剂也有待于开发。因此,生物技术要在工业上被广泛应用还有一定距离。但相信随着生物吸附技术的不断发展完善,生物吸附技术将在重金属污染处理方面发挥其独特的魅力〔34〕。3 展望新的《电镀行业污染物国家排放标准》(GB21900—2008)的颁布,相比以前的《污水综合排放标准》(GB 8978—1996),提高了含镍废水的排放要求。为达到更高要求排放标准,常用的处理方法是在絮凝处理之后加离子交换、膜处理、电渗析等工艺做进一步深度处理〔35〕,这样就增加了处理单元数,大大提高了处理费用。因此,既能提高重金属废水处理的效率又能简化处理流程,降低电镀企业废水处理成本将是处理含镍电镀废水研究的一个重要方向。高效重金属螯合剂具有处理成本低、效果稳定,且一次性处理就能达到排放标准等优点,将传统沉淀工艺与重金属螯合剂联用处理含镍电镀废水,能一次性完成废水处理达标排放,大大降低了废水处理成本,同时易于实现镍资源化,具有相当的推广应用前景。

厂商

2019.07.25

北京科诺科仪分析仪器有限公司

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位