您好,欢迎访问仪器信息网
注册
上海依阳实业有限公司

关注

已关注

铜牌9年 铜牌

已认证

粉丝量 0

400-860-5168转3383

仪器信息网认证电话,请放心拨打

当前位置: 上海依阳实业 > 解决方案 > 激光闪光法在聚合物复合材料导热系数测试中的应用研究

激光闪光法在聚合物复合材料导热系数测试中的应用研究

2018/12/23 09:10

阅读:603

分享:
应用领域:
石油/化工
发布时间:
2018/12/23
检测样品:
其他
检测项目:
热性能
浏览次数:
603
下载次数:
参考标准:
ASTM E1461 闪光法热扩散系数标准测试方法

方案摘要:

针对目前国内在激光闪光法测量聚合物热物理性能参数中存在误差大的问题,本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍了激光闪光法在聚合物材料测试中的应用评价过程,介绍了测试聚合物材料过程中的注意事项。同时针对聚合物材料的导热系数测量,给出了最好采用稳态法防护热流计法的建议。

产品配置单:

分析仪器

超短脉冲闪光法薄膜热性能测定仪

型号: ULP-02

产地: 上海

品牌: 依阳

¥80万 - 100万

参考报价

联系电话

方案详情:

激光闪光法在聚合物复合材料导热系数测试中的应用研究

Application Research of Laser Flash Method in Thermal Conductivity Measurement of Polymer Composites


  摘要:针对目前国内在激光闪光法测量聚合物热物理性能参数中存在误差大的问题,本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍了激光闪光法在聚合物材料测试中的应用评价过程,介绍了测试聚合物材料过程中的注意事项。同时针对聚合物材料的导热系数测量,给出了最好采用稳态法防护热流计法的建议。

  关键词:聚合物,导热系数,热扩散系数,激光闪光法,热流计法

1. 问题的提出

  导热系数和热扩散系数是聚合物类材料的重要热物理性能参数,相应的也存在多种测试方法。由于激光闪光法具有测试时间快、样品尺寸小、方向性强等特点,使得激光闪光法也常用于聚合物类材料的热扩散系数和导热系数测量。

  但在采用激光闪光法测试聚合物材料过程中,由于对闪光法测量原理和测试能力的理解不足,以及对聚合物材料的特性了解不透彻,从而造成使用闪光法测试中经常会出现与其他方法测试结果不一致的现象。

  本文将从标准测试方法、多种测试方法对比测试、参考材料和实际测试结果文献报道等几方面,介绍闪光法测试聚合物材料过程中的注意事项。

2. 聚合物热物性标准测试方法

2.1. 聚合物热物性标准测试方法

  聚合物材料的导热系数一般在0.2~1 W/mK范围内。对于这种低导热系数材料的测试,成熟准确的测试方法是稳态法,如稳态防护热板法和稳态防护热流计法,相应的标准测试方法有A-S-T-M C177、C518、E1530、D5470等。随着技术的进步,这些稳态测试方法对样品的最小尺寸要求是直径25 mm,厚度范围1~25 mm,测试温度范围可以达到300℃以上,测试一个温度点下导热系数大约需要30分钟左右。

  由于近十几年来瞬态测试技术的飞速发展,许多瞬态技术在聚合物材料的导热系数测试中得到了应用,如A-S-T-M E1461、D5930。为了规范聚合物材料瞬态测试方法,ISO专门针对塑料材料提出了多个瞬态测试标准方法ISO 22007。按照测试参数将ISO标准分为以下几类。

2.2. 聚合物热物性ISO瞬态测试方法分类

  (1)导热系数和热扩散系数

  瞬态平面热源法(HOT DISK法) - ISO 22007-2

  (2)热扩散系数

  温度波分析法 - ISO 22007-3

  激光闪光法 - ISO 22007-4

2.3. 激光闪光标准方法中对聚合物样品制备的规定

  在ISO 22007中对多个瞬态测试方法进行了规定,本文重点介绍对激光闪光法应用中的规定。

  对于绝大多数采用激光闪光法进行的聚合物热物性测试,基本都是采用商品化的激光闪光法测试仪器,测试过程中可调节的参数主要是激光加热功率和样品制备,而样品的制备往往是影响测量结果的重要环节。

  在ISO 22007-4第6.1条中,对激光闪光法被测样品的形状和尺寸给出了原则性的大致规定,要求样品为薄片状,直径范围为5~20 mm。样品最小厚度需要根据激光脉冲宽度和样品材料热扩散系数进行确定,即激光脉冲宽度与t1/2时间之比小于0.01,给出的聚合物典型样品厚度范围为0.5~3 mm。同时为了保证一维热流,要求样品直径与厚度之比大于3:1,另外还要求薄片样品的厚度均匀性要优于1%。

  在ISO 22007-4第6.3条中,要求被测样品对激光波长呈不透明。如果聚合物样品透明或半透明,则需在样品表面制作很薄的高导热涂层以避免激光光束进入样品,认为薄的高导热涂层对测量结果带来的影响忽略不计。

  从上所述可以看出,ISO 22007-4激光闪光法对聚合物样品的制备只给出了指导性原则,允许的操作空间很大,由此带来了一系列的测试问题,特别是聚合物样品厚度的选择上,不同厚度样品的测试结果之间存在很大偏差。另外,对于聚合物复合材料激光闪光法是否还适用也是问题,这对聚合物复合材料热物性评价中测试方法的选择提出了要求。为此,在采用激光闪光法时还需要针对聚合物材料做进一步的研究和规定,以保证测量的准确性。

3. 聚合物热物性多种瞬态测试方法对比

  在采用瞬态方法对聚合物热物性进行测试过程中,由于受多种因素的影响,测试结果往往出现很大的不一致性。如2005年Wilson Nunes等人[1]比较了使用激光闪光法和瞬态热线法获得的一系列聚合物的测量结果。对于PMMA,两种方法的热扩散系数测量值差异高达20%,导热系数值差异高达10%,也获得过导热系数高达两倍的显著差异。对于LDPE样品闪光法结果要低于热线法结果,而对于HIPS样品则闪光法结果较高,这说明了聚合物热性能准确测量的困难性。

  为了规范各种瞬态法在聚合物热物性测试中的应用,提高各种瞬态法测量聚合物热物性的准确性和可靠性,在ISO 22007的起草阶段,就对各种瞬态法在聚合物中的应用进行了评价研究,2009年Martin Rides等人[2]报道了两种聚甲基丙烯酸甲酯的导热系数和热扩散系数的测量比对,所使用的各种方法包括温度波分析法、激光闪光法、瞬态平面热源(热盘)法、瞬态热线法和稳态热流计法。在此对比测试基础上,ISO专门在ISO 22007中增加了一个标准方法,ISO/TR 22007-5“塑料 - 导热系数和热扩散系数的测定.第5部分:聚甲基丙烯酸甲酯样品的多个实验室测试结果”。将对比测试过程和结果制订为标准测试方法,这在标准测试方法中是非常罕见的,由此可见对瞬态法在聚合物热物性测试中的应用进行规范的重要性。

  在ISO/TR 22007-5对比测试中,对两种聚甲基丙烯酸甲酯(PMMA)材料进行了多个实验室对比测试,一种是浇铸料板材形式,另一种是挤出型板材形式。各种测试方法和样品信息如表31所示。

  

表3-1 各种测试方法和相应样品信息



  通过各个实验室之间的比对,尽管测试方法和样品制备之间存在明显差异,但各种方法得到的导热系数结果比较一致,其值约在±7%范围内,热扩散系数测量结果的一致性在±9%范围内,所达到的一致性水平证明了这些不同方法在聚合物热物性测试中的有效性。这些一致性保证需要注意以下几个方面的试验参数控制:

  (1)虽然所有参与者都提供了名义上相同的板材样品,但测试中使用的样品实际厚度必须调整到测试方法的规定,以便能够进行测量或确保分析中的假设是有效的。例如,对于激光闪光法,发现挤出型PMMA板的3mm厚度太大而不能进行可靠的测量,因此被测样品必须被加工的得更薄。温度波分析方法适用于厚度约为100um的薄膜或薄片,因此在测试之前必须将样品切割成该厚度。类似地,对于瞬态平面热源法,必须符合测试的厚度要求,这与热瞬态渗透到样品中的深度有关,对于较薄的2 mm厚样品,就需要通过将两个样品堆叠在一起以获得足够厚度以实现可靠测量。

  (2)除了样品厚度问题之外,还存在方法上的进一步差异。对于PMMA的激光闪光法测量,由于样品是透明的,其表面必须在测试前用不透明材料处理,否则无法进行测量,而且不透明材料要尽可能薄且均匀,并不受测试过程中温度和激光照射的影响而产生脱落现象。目前一般的样品表面处理工艺是先在样品前后两个表面溅射金涂层以阻挡激光穿透透明样品和增加热接触效果,然后再在样品表面喷涂碳层以增大样品表面的发射率、提高吸收激光能量的能力和减少对激光的反射。

  (3)采用激光闪光法测量的是热扩散系数,还需要采用其他方法测量比热容和密度。在ISO标准中,无一例外的都是采用差示扫描量热计(DSC)测量比热容,并未采用激光闪光法测量比热容。在DSC进行比热容测量时,要特别注意取样的代表性,这点在聚合物复合材料中尤为重要。

  (4)在参与对比的测试方法中,只有瞬态平面热源法属于体积导热系数测试方法,体积导热系数是厚度方向和面内方向导热系数的函数,这使得瞬态平面热源法测量的导热系数和热扩散系数值通常略高于通过其他方法获得的值,尽管通过一些技术处理使得该差异在离散范围内,因此在对各向异性聚合物热物性测试中要十分小心测试方法的选择和取样的方向性。

4. 聚合物热物性参考材料

  为了考核和验证激光闪光法测试聚合物热物性的准确性以及试验参数选择的合理性,一般都会选择合适的参考材料进行测试检验。由于聚合物材料的导热系数范围为0.1~1 W/mK,可供选择的参考材料有杜邦公司出品的聚合物材料(纯聚酰亚胺Vespel-SP1)和康宁公司出品的高硼硅玻璃Pyrex 7740。其中,在25~300℃范围内,纯聚酰亚胺Vespel-SP1的导热系数范围为0.37~0.44 W/mK[3];在-50~300℃范围内,高硼硅玻璃Pyrex 7740的导热系数范围为0.95~1.5 W/mK[4]。

  2005年Jacobs和Stroe[3]针对各向同性均质的纯聚酰亚胺Vespel-SP1(常温密度1434kg/m^3)分别采用顶杆法测量了热膨胀系数、采用激光闪光法测量测量了热扩散系数、采用DSC测量了比热容和采用稳态防护热流计法测量了导热系数。在激光闪光法测试中,样品尺寸为直径12.7mm,厚度2.032mm。在热流计法测试中,样品尺寸为直径50.8mm,厚度6.35mm。经过多次不同样品的测试,由激光闪光法、热膨胀系数测量和比热容测量计算获得导热系数值与热流计法直接测量得到的导热系数值,在整个25~300℃范围内相对偏差小于±3%。从这项工作中也可以看出,采用激光闪光法得到导热系数数值,需要进行大量的其他测试,远比热流计法直接测量复杂的多。

  另外还可以从另一方面了解激光闪光法在聚合物测试中样品厚度的选择。在美国ANTER公司(现为美国TA公司)激光闪光法测试设备中,随机配备有参考材料纯聚酰亚胺Vespel-SP1,分别有三种规格,一种是直径12.7mm、厚度0.8mm;第二种是直径20mm、厚度1mm;第三种是直径30mm、厚度也是1mm,总之样品厚度都没有超过1mm。

  高硼硅玻璃Pyrex 7740是一种透明玻璃,在使用激光闪光法验证测试过程中需要在透明玻璃表面溅射牢固的涂层,操作比较复杂,因此很少作为激光闪光法测试用参考材料,但多用于稳态法导热系数测试参考材料。1992年Yang等人[5]采用稳态AC量热计法对Pyrex 7740在20~310K的低温环境下的热扩散系数和比热容进行了测量,样品直径为12.7mm,厚度1.06mm。采用稳态AC量热计法测量Pyrex 7740并不需要对样品表面溅射涂层,同时这种厚度的选择对激光闪光法有着参考价值。

5. 闪光法测试聚合物热物性文献报道

5.1. 聚合物薄膜热物性

  聚合物材料的最终产品形式很多时候往往是薄膜形式,这时闪光法样品小的优势得以发挥,可以直接对薄膜聚合物产品进行取样而无需加工,但薄膜样品会带来影响闪光法测量准确性的其他问题,如样品厚度太薄使得激光脉冲宽度引起的误差显得突出,样品透光需要进行表面溅射涂层,而涂层在薄膜上的沉积使得被测样品形成三层结构而需要考虑涂层的影响。

  1995年Agari等人[6]报道了采用激光闪光法对四种聚合物薄膜(厚度范围200~500um)的热扩散系数和比热容进行了测试,并研究了样品遮光石墨涂层以及样品厚度等其他因素对测量精度的影响。

  2013年Chiguma1等人[7]报道了采用激光闪光法和DSC法对环氧基纳米复合材料薄膜的热扩散系数和比热容进行的测量,样品尺寸为12.7mm×12.7mm×0.134mm,样品表面喷涂石墨层。测试结果显示,对于不同的纳米复合材料,其导热系数变化范围为881~1489W/mK的超高导热系数。对于如此高的导热系数,激光脉冲宽度和样品表面的石墨涂层已经会严重影响测量结果,但文中并未提到测试数据如何处理以及测量结果准确性的评判方法。

5.2. 聚合物复合材料热物性

  在聚合物中添加高导热材料可以改进聚合物的导热性能,这类聚合物基复合材料的导热性能是材料性能表征的重要参数,但采用激光闪光法进行测试的文献报道并不多,多数的报道则是采用稳态法。

  2006年Xu等人[8]对单壁碳纳米管聚合物基复合材料的热行为进行了研究,采用激光闪光法测量热扩散系数,采用DSC测量比热容,采用TMA测量热膨胀系数,采用TG测量热重,最终计算得到导热系数。闪光法热扩散系数测量的样品尺寸为直径12.5mm,厚度为0.4~0.7mm。样品前后两表面先溅射金涂层,然后再在加热面喷涂碳层,测试温度范围为25~125℃。为了保证闪光法测量的准确性,出于对透光性的考虑,同时还对经过相同表面处理的厚度为0.5mm的Pyrex 7740参考材料进行了测量。最终测试结果表面,随着单壁碳纳米管体积含量0~49%的变化范围,室温下相应的导热系数变化范围为0.233~0.537W/mK。尽管单壁碳纳米管的导热系数标称可以达到2000W/mK,但添加了单壁碳纳米管的聚合物基复合材料的导热系数实际测量值远低于理论计算预测的导热系数范围0.2~335W/mK。

  2012年Yamamoto等人[9]在研究纤维增强聚合物复合材料层压板中,分别采用激光闪光法和稳态热流计法对层压板厚度方向上的导热系数进行了测量。采用激光闪光法分别测量了热扩散系数和比热容,计算得到厚度方向上的导热系数,其中样品尺寸为直径12.7mm厚度1mm,密度在1300~1500kg/m^3范围内,样品表面喷涂石墨层,并采用近似密度的参考材料纯聚酰亚胺Vespel-SP1进行测试验证。另外还采用热流计法对层压板两个方向(厚度方向和面内方向)上的导热系数进行了测量。测量结果显示层压板导热系数随着纤维含量的增加而增大,在纤维含量5%时,厚度方向导热系数为0.6~0.8W/mK,面内方向导热系数为0.9W/mK。两种测试方法的对比结果显示,稳态热流计法导热系数测量值始终要比激光闪光法导热系数测量值大0.1~0.2W/mK,这也是我们在聚合物热物性测试中经常遇到的现象,造成这种现象的原因是在激光闪光法测试和分析中假设了样品是各向同性和均质。

  2016年Catherine等人[10]采用激光闪光法对高导热聚合物复合材料的各向异性热物性进行了测试,样品尺寸为直径25.4mm厚度1mm左右,样品表面喷涂石墨层,测试温度范围为25~100℃,并分别采用参考材料纯聚酰亚胺Vespel-SP1(0.5W/mK导热系数)和不锈钢(16W/mK导热系数)进行测试验证。尽管文中提到了激光闪光法面内方向热扩散系数测试附件,但只给出了厚度方向上导热系数测量结果(0.5~9W/mK),并未给出面内方向导热系数测试结果,文中只提到聚合物复合材料具有明显的各向异性特征,同时也未提到比热容如何测量。

6. 稳态热流计法测量聚合物热物性

  采用稳态热流计法(A-S-T-ME1225、E1530、D5470等)可以直接对聚合物导热系数进行测量,如Jacobs和Stroe[3]对纯聚酰亚胺Vespel-SP1在25~300℃范围的导热系数测试,样品尺寸为直径50.8mm,厚度6.35mm。从样品测试可以看出,这种尺寸的样品基本可以满足所有聚合物复合材料的代表性,而激光闪光法则因为样品小而缺少代表性。

  在聚合物热物性测量方面,稳态法始终是一种常规测试方法且应用更加广泛。2004年Rudtsch和Hammerschmidt[11]介绍了针对聚合物PMMA热物性进行的五个国家共十八个实验室之间的比对测试。PMMA常温密度为1185kg/m^3,测试温度范围为-70~+80℃,对应的导热系数范围为0.18~0.20W/mK,热扩散系数范围为0.14~0.11mm^2/s。导热系数对比测试方法分为稳态法和瞬态法两类,其中稳态法包括防护热板法和防护热流计法,瞬态法包括瞬态平面热源法、瞬态热带法和探针法,而恰恰没有激光闪光法。比热容测试采用的是差示扫描量热计(DSC),根据导热系数、比热容和密度测试结果计算得到热扩散系数。

  上述对聚合物PMMA的对比测试中,PMMA的导热系数较低,在0.2W/mK以下。2011年David和Ronald[12]报道了欧盟九家机构对导热系数为0.5W/mK左右的建筑石材类材料陶土砖(密度为1950kg/m^3)进行的比对测试。其中稳态法采用了防护热板法和热流计法,瞬态法采用了热带、热盘和热桥三种瞬态平面热源法。防护热板法样品尺寸为200mm×200mm×40mm和直径100mm厚度15mm两种,热流计法样品尺寸为直径50mm厚度10mm,此尺寸样品也可用于热带和热盘法测试,而热桥法样品尺寸为100×30×5。在此次对比测试中,测试温度只有10℃和23℃两个点,只对密度和导热系数进行测试对比。在此次比对测试中还是没有选择激光闪光法。

  稳态法在聚合物热物性测试中应用的一个典型领域就是树脂基纤维编织类复合材料,这主要是因为稳态法样品尺寸要远比激光闪光法具有代表性,而且稳态法可以直接测量得到导热系数,简化了测量操作过程。2008年Sharp和Bogdanovich[13]针对树脂基三向编织结构复合材料层压板厚度方向导热系数的测试评价,比较了激光闪光法和稳态热流计法,因激光闪光法样品太小无代表性,无法对编织结构的设计和优化提供准确表征,最终确定采用稳态热流计法进行厚度方向导热系数测量。

7. 参考文献

  (1) Wilson Nunes, Paul Mummery, and Andrew Wallwork. "Thermal diffusivity of polymers by the laser flash technique." Polymer testing 24.5 (2005): 628-634.

  (2) MartinRides, et al. "Intercomparison of thermal conductivity and thermal diffusivity methods for plastics." Polymer Testing 28.5 (2009): 480-489..

  (3) Jacobs-Fedore, R. A.; Stroe, D. E. "Thermophysical properties of Vespel SP1". In Wang, Hsin; Porter, Wallace D.; Porter, Wally. Thermal Conductivity 27/Thermal Expansion 15. Knoxville, TN: DEStech Publications, Inc. 2005. pp. 231–238. ISBN 1-932078-34-7.

  (4) Tye RP, Salmon DR. “Thermal conductivity certified reference materials: Pyrex 7740 and polymethymethacrylate.”In: DinwiddieRB, Mannello R, editors. Thermal conductivity 26—thermalexpansion 14. Lancaster: DEStech Publications; 2005. p. 437–51.

  (5) Yang, G., A. D. Migone, and K. W. Johnson. "Heat capacity and thermal diffusivity of a glass sample." Physical Review B 45.1 (1992): 157.

  (6) Agari, Y., A. Ueda, and S. Nagai. "Measurement of thermal diffusivity and specific heat capacity of polymers by laser flash method." Journal of Polymer Science Part B: Polymer Physics 33.1 (1995): 33-42.

  (7) Chiguma, Jasper, et al. "Thermal diffusivity and thermal conductivity of epoxy-based nanocomposites by the laser flash and differential scanning calorimetry techniques." Open Journal of Composite Materials 3.03 (2013): 51.

  (8) Xu, Yunsheng, Gunawidjaja Ray, and Beckry Abdel-Magid. "Thermal behavior of single-walled carbon nanotube polymer–matrix composites." Composites Part A: Applied Science and Manufacturing 37.1 (2006): 114-121.

  (9) Yamamoto, Namiko, Roberto Guzman de Villoria, and Brian L. Wardle. "Electrical and thermal property enhancement of fiber-reinforced polymer laminate composites through controlled implementation of multi-walled carbon nanotubes." Composites Science and Technology 72.16 (2012): 2009-2015.

  (10) Thibaud-Erkey, Catherine, and Abbas Alahyari. Final Report for Project titled High Thermal Conductivity Polymer Composites for Low-Cost Heat Exchangers. United Technologies reserach Center, East Hartford, CT (United States), 2016.

  (11) Rudtsch, S., and U. Hammerschmidt. "Intercomparison of measurements of the thermophysical properties of polymethyl methacrylate." International journal of thermophysics 25.5 (2004): 1475-1482.

  (12) Salmon, David R., and Ronald P. Tye. "An inter-comparison of a steady-state and transient methods for measuring the thermal conductivity of thin specimens of masonry materials." Journal of Building Physics 34.3 (2011): 247-261.

  (13) Sharp, Keith, et al. "High through-thickness thermal conductivity composites based on three-dimensional woven fiber architectures." AIAA journal 46.11 (2008): 2944-2954.


下载本篇解决方案:

资料文件名:
资料大小
下载
激光闪光法在聚合物复合材料导热系数测试中的应用研究.pdf
1313KB
相关方案

高海拔低气压模拟试验箱中高精度真空度程序控制解决方案

摘要:针对用户提出的低气压试验箱中的真空度精密可编程控制,以及0.001~1000Torr的宽域真空度控制范围,本文基于动态平衡法提出了切实可行的解决方案。解决方案采用了上游控制和下游控制两路独立高精度的PID程序控制回路,基于不同量程的高精度电容真空计,分别调节进气电动针阀和排气电动球阀,可实现各种低气压环境试验箱中高精度真空压力控制。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。

航空航天

2023/12/01

高温管式加热炉真空控制系统技术升级改造解决方案

摘要:针对用户提出的高温石英管加热炉真空度控制系统的升级改造,以及10~100Torr的真空度控制范围,本文在分析现有真空控制系统造成无法准确控制所存在问题的前提下,提出了切实可行的解决方案。解决方案对原有的无PID控制功能的压强自动控制仪和慢速大口径电动蝶阀进行了更换,采用了高精度可编程PID真空压力控制器,采用了口径较小响应速度更快的电动球阀。此解决方案已在多个真空领域得到应用,并可以达到±1%的高精度控制。

航空航天

2023/11/27

宽变压环境质谱仪进样系统中的电动针阀精密压力控制解决方案

摘要:针对目前国内外各种质谱仪压差法进样装置无法准确控制进气流量,且无相应配套产品的问题,本文提出了相应的解决方案和配套部件。解决方案主要解决了制作更小流量毛细管和毛细管进气端真空压力精密控制问题,微流量毛细管的真空漏率可在-8至-3Pa.m3/s范围内定制,毛细管进样端的真空压力可在10Pa~133kPa范围内采用电动针阀调节控制,控制精度优于±1%,此解决方案的最大特点是具有很强的灵活性和适用性可满足不同的应用场合。

航空航天

2023/11/22

热重分析仪多种气体和宽量程真空压力精密控制解决方案

摘要:针对目前国内外各种真空热重分析仪普遍不具备低压压力精密控制能力,无法进行不同真空气氛环境下材料热重分析的问题,并根据用户提出的热重分析仪真空度精密控制技术改造要求,本文提出了技术改造解决方案。解决方案基于动态平衡法采用了上游和下游控制方式,通过配备的多路进气混合装置、高精度电容真空计、电控针阀和双通道PID真空压力控制器,可实现热重分析仪在10Pa~100kPa范围内多种气体气氛下的真空度精密控制。

航空航天

2023/11/17

上海依阳实业有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 上海依阳实业有限公司

公司地址: 上海市闵行区江凯路177号3号楼105; 联系人: 江先生、武女士 邮编: 201114 联系电话: 400-860-5168转3383

仪器信息网APP

展位手机站