您好,欢迎访问仪器信息网
注册
苏州纽迈分析仪器股份有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-858-9311

仪器信息网认证电话,请放心拨打

当前位置: 纽迈分析 > 公司动态
公司动态

低场磁共振中结合水和自由水

低场磁共振中结合水和自由水什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。低场磁共振中结合水和自由水检测:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。NMI20系列低场核磁共振成像分析仪(带变温系统)

应用实例

2022.12.07

核磁共振技术

核磁共振技术什么是核磁共振?核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。核磁共振技术分类?从应用上可大致将核磁共振技术分为三类:第一类是核磁共振成像,主要用于医学检测,是一种无损成像方式,可获得组织结构的二维、三维核磁共振图像,辅助医学疾病诊断和治疗。第二类是核磁共振波谱技术,主要用于化学、材料、制药领域的分子结构分析。H原子核由于化学环境不同,存在频率差异,通过核磁共振波谱技术可研究分子结构信息。第三类是时域核磁共振技术,主要用于分子运动分析、含量分析、工业质检质控等。时域核磁共振技术主要用于测试分子与分子之间的动力学信息,通过弛豫时间得到分子运动信息,分子与分子之间的作用信息;研究领域属亚微观领域(分子之间),可测定玻璃态转化温度、高分子材料交联密度、造影剂弛豫率、孔径分布及孔隙度等,广泛应用于食品工业、石油工业、医药工业、纺织工业、聚合物工业。核磁共振技术原理核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。核磁共振技术应用1). 低场核磁在食品领域的应用:◆ 棕榈油、黄油等油脂固体脂肪含量测试(SFC ,Solid Fat Content)◆ 含油种子、种子残渣含油率和含水率测试◆ 巧克力及巧克力相关产品的固体脂肪含量◆ 总脂肪含量2). 低场核磁在农业领域的应用:◆ 种子含油含水率测试◆ 种子发芽过程研究◆ 含油种子自动化选育(按含油率分选)◆ 植物根系成像研究◆ 农产品干燥研究3). 低场核磁在纺织行业的应用:◆ 纤维中油剂含量◆ 聚合物涂层含量◆ 纤维和纺织品上的氟化涂层测量核磁共振技术设备低场核磁共振仪按照仪器部件来分,主要包括工控机、谱仪系统、射频单元、梯度单元、磁体柜及温控单元六大部分;按照工作任务来分,仪器由工控机、射频系统、梯度系统、磁体、恒温系统五大部分组成。其中,工控机负责接收操作者的指令,并通过序列发生软件产生各种控制信号传递给谱仪系统的各个部件协调工作,还要完成数据处理、存储和图像重建以及显示任务;射频系统主要负责射频脉冲序列的发射和采样信号的接收;梯度系统主要负责产生梯度磁场;磁体主要负责提供均匀、稳定的主磁场;恒温系统主要负责磁体柜内的温度控制。纽迈PQ001系列核磁共振分析仪

应用实例

2022.12.07

低场核磁技术研究食品吸水和持水能力

低场核磁技术研究食品吸水和持水能力什么是持水性?动物屠宰后肌肉保持自身水分的能力被称之为持水性,是指当肌肉受到外力作用时保持原有水分的能力。肉的持水性不仅影响肉的滋味、香气、多汁性、营养成分、嫩度、颜色等食用品质,而且还直接影响肉制品的成品率,具有重要的经济价值。较低的持水性对于肉类工业意味着较大的经济损失,即肉中水分流失带来的经济损失和肉品加工品质的降低带来的损失。肌肉中的水分主要存在于肌细胞中,即肌原纤维中、肌原纤维间、肌原纤维与细胞膜之间、细胞间和肌束之间的空隙中。肌肉的持水性主要依靠肌浆中的蛋白质分子,蛋白质分子所带的静电荷与水分子极化基团静电荷之间相互吸引从而能将水分子纳入蛋白质高分子网状立体结构的空间中,这是肌肉持水性的原因。肌肉中的大部分水分被吸附于肌纤维细胞膜内的肌浆中,小部分水分靠毛细管作用滞留于肌纤维细胞膜外,由于有肌束膜包裹而不致外溢。宰后肌肉转变成食肉的过程中,其持水性有一个变化的过程。水是肉品中最主要的成分,占到肉品质量的75%左右。宰后肉品持水力的改变,不仅影响肉品的感官和食用品质,而且严重地影响其经济价值。研究猪肉的持水性降低猪肉汁液损失具有十分重要的意义。传统方法如压力(重量、面积)法、离心法、滴水损失、贮藏损失和蒸煮损失等都不能表征肉中水分存在的状态以及变化过程。低场核磁共振利用氢原子核在磁场中的自旋驰豫特性,通过弛豫时间的变化分析研究物质的含水量、水分分布、水分迁移以及与之相关的其他性质,为如何控制和避免宰后猪肉大量滴水提供了一种行之有效的方法。国外的相关研究也表明低场核磁共振可以成为研究肉品持水性能、水分分布及变化的一种理想工具。低场核磁技术研究食品吸水和持水能力基本原理生物组织含有很多水和有机化合物,而构成水和有机物的氢原子在有电荷绕核旋转的同时又不停的自转,与线圈通过电流时会产生磁场一样,所以把氢原子核看做是小磁铁,把生物组织的试样看成是由无数微小的氢原子核磁铁构成的。这些微小的原子核磁铁在磁场中有的处于高能态有的处于低能态。对样品施加射频脉冲,使氢质子发生共振,低能态氢质子就可能跃迁到高能态。停止射频脉冲后质子以非辐射的方式回到基态而达到玻尔兹曼平衡的时间就是弛豫时间。通过分析纵向弛豫时间Tl和横向弛豫时间T2,可以得到很多样品内部的信息。肉品水分的研究主要利用横向弛豫时间T2。弛豫时间越短说明水与周围物质结合越紧密,弛豫时间越长说明水分越自由。所以弛豫时间可以间接的表明水分的自由度,从而可以用核磁共振研究肉品中水分的分布和流动,进而研究肉品持水性变化的机理。

应用实例

2022.12.05

磁性纳米颗粒用于磁共振成像:弛豫评价磁性纳米颗粒用于磁共振成像:弛豫评价

磁性纳米颗粒用于磁共振成像:弛豫评价磁共振造影剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。磁性纳米颗粒在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的造影剂材料。磁性纳米颗粒用于磁共振成像:弛豫评价之弛豫率弛豫效率是超顺磁性氧化铁对比剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。造影剂弛豫率r1测试:用反转恢复序列(IR)测量其纵向弛豫时间,得到原始数据的恢复时间(t)及其相应的幅度值M(t),利用单指数模型M(t)=M(0)(1-2e-t/T1)拟合曲线t—M(t)可以得到纵向弛豫时间。

应用实例

2022.12.05

红外光谱与低场核磁共振技术简介

红外光谱与低场核磁共振技术简介红外光谱技术简介红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。低场核磁共振技术简介低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;(4)基于扩散系数的分析检测。低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。低场核磁共振技术原理低场核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。低场核磁共振由于其设备成本较低,研究使用门槛相对较低,应用领域非常广泛,且处于不断拓展之中。由于核磁共振分析技术具有速度快、精确度高、一次测量可获得多个参数、对样品无损耗、样品制备简单、对操作人员的健康和环境无影响等诸多优点,因此许多原来采用其他传统检测方法的应用目前都在探索采用核磁共振技术进行。

应用实例

2022.12.02

红外光谱与低场核磁共振技术简介

红外光谱与低场核磁共振技术简介红外光谱技术简介红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。低场核磁共振技术简介低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;(4)基于扩散系数的分析检测。低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。低场核磁共振技术原理低场核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。低场核磁共振由于其设备成本较低,研究使用门槛相对较低,应用领域非常广泛,且处于不断拓展之中。由于核磁共振分析技术具有速度快、精确度高、一次测量可获得多个参数、对样品无损耗、样品制备简单、对操作人员的健康和环境无影响等诸多优点,因此许多原来采用其他传统检测方法的应用目前都在探索采用核磁共振技术进行。

应用实例

2022.12.02

水凝胶低场核磁分析氢键强弱

水凝胶低场核磁分析氢键强弱水凝胶是一类为亲水的三维网络结构凝胶,它在水中迅速溶胀并在此溶胀状态可以保持大量体积的水而不溶解。由于存在交联网络,水凝胶可以溶胀和保有大量的水,水的吸收量与交联度密切相关。交联度越高,吸水量越低。水凝胶中的水含量可以低到百分之几,也可以高达99%。水凝胶具有良好的生物相容性、低毒性和可生物降解性等特性,用途非常广泛。水凝胶溶胀过程与水的传输和凝胶网络结构有关,因此,溶胀性能是评价水凝胶的重要参数。凝胶的溶胀性评价方法目前关于溶胀行为的研究主要是通过测量溶胀水凝胶的重量或体积变化来计算溶胀率。然而,该方法需要从溶液中取出水凝胶并用滤纸擦拭以去除多余的表面水,擦拭过程容易影响测定的准确度和重复性,从而产生意想不到的误差。水凝胶低场核磁分析氢键强弱低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、wu创、无损的测定水组分分布的方法。低场核磁可标准氢键与周围水分子之间的相互作用。对于水凝胶,不同环境中的水,如凝胶内水或外水,可能表现出不同的弛豫性质。T2组分对应的幅度可以定量并计算膨胀率。此外,基于T2值与水凝胶网络网孔尺寸之间的比例关系,可以描绘溶胀过程中由于浓度效应引起的水凝胶网络网孔尺寸变化。因此,低场核磁共振(LF-NMR)可以作为研究水凝胶溶胀过程中水的动态传输和微观结构变化的有力工具。此外,低场核磁共振(LF-NMR)不需将水凝胶从溶胀体系中取出,即可直接原位测量水凝胶的T2分布。

应用实例

2022.12.02

低频核磁共振与水产品保鲜研究低场核磁反演方法研究意义

低场核磁反演方法研究意义无论是低场核磁纵向弛豫还是低场核磁横向弛豫,对于决大多数样品来说,低场核磁弛豫信号都可以用多指数函数来表达。通常情况下,分别利用CPMG实验和IR实验来检测样品的横向弛豫过程和纵向弛豫过程,低场核磁弛豫信号的数学表达式如公式(1)和公式(2)所示:其中fi表示样品中第i种成分的信号强度,总信号的大小是所有成分产生信号大小的总和,T2i和T1i表示样品中第i种成分的横向弛豫时间和纵向弛豫时间。低场核磁反演方法研究:弛豫信号反演的目标是通过上面的公式(1)、公式(2)来计算样品中的每个值(或者称为样品中质子分布的密度函数,也称为T1分布或T2分布)。下面采用矩阵的形式重新改写上述数学表达式:Y=A * F低场核磁反演技术实例:以多组分T2反演为例,如下图,左边是回波串,右边是反演结果(T2分布)。下式表示每一个回波的等式系统。一般物质的T2分布是一个连续函数,但是为简化反演,计算使用一个多指数模型,并假定T2分布包含有m个独立的弛豫时间T2i,对应的幅值分量为fi。T2i的值是预先选定的(如0.5ms,1ms,2ms,4ms,8ms,16ms,32ms,64ms,128ms,256ms,512ms,…)。反演的过程主要是确定每个分布的孔隙度分量.低场核磁反演方法研究意义(T2分布)定组分反演和二维反演在原理上和多组分反演都是一致的,是一个设置模型不断寻优的过程。不同的方法间,模型函数和寻优方法会有稍许不同。

应用实例

2022.11.30

表面疏水性变为亲水性过程研究-低场核磁共振技术

表面疏水性变为亲水性过程研究-低场核磁共振技术什么叫亲水性和疏水性亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。颗粒在水中会发生聚团,如混疑、选择性聚团、疏水聚团和油团聚等已在矿物加工,水处理及食品加工等行业获得广泛的工业应用。在粉体技术、化工、涂料和医药等领域中,聚团的逆过程(颗粒分散)则是提高工艺效率,改善产品质量和性能的关键技术手段。低场核磁共振技术材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。颗粒分散体中溶剂的弛豫速率与可用颗粒表面积成线性比例。与游离聚合物相关的溶剂或聚合物环和尾部内的溶剂在弛豫速率方面没有显著变化,因为它们仍然具有很高的流动性。当聚合物在颗粒表面形成吸附层时,由于水分子在近表面区域的比例和/或停留时间增加,总的弛豫速率增强。通过低场核磁技术的弛豫差异,即可描述颗粒分散性。

应用实例

2022.11.30

原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析

原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析什么是抗冻蛋白?抗冻蛋白是一种能抑制冰晶生长的蛋白质或糖蛋白质.自二十世纪发现以来,研究对象先后从极区鱼类,昆虫,转移到植物材料上。抗冻蛋白是生活在寒冷区域的生物经过长期自然选择进化产生的一类用于防止生物体内结冰而导致生物体死亡的功能性蛋白质。对于抗冻蛋白抗冻机制的研究有助于揭开冰晶成核、生长和冰晶形貌调控的分子层面的机理。抗冻蛋白生长机制的模型抗冻蛋白吸附在冰晶表面,通过EAFC3效应抑制其生长.机制的模型为:一般晶体的生长垂直于晶体的表面,假如杂质分子吸附于冰生长通途的表面,那么需要在外加一推动力(冰点下降),促使冰在杂质间生长.由于曲率增大,使边缘的表面积也增加.因表面张力的影响,增加表面积将使体系的平衡状态发生改变,从而冰点降低。通过对抗冻植物抗冻活性的研究,认为抗冻植物形成了一种特殊的控制胞外冰晶形成的机制,即抗冻蛋白和冰核聚物质的协同作用.在植物体内,热滞效应并不明显,而冰重结晶抑制效应显著.吸附抑制学说是否适应于植物有待于进一步的证实.原位变温低场核磁共振系统用于抗冻蛋白分子动力学分析原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。 原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:

应用实例

2022.11.28

变温低场核磁系统用于食品冻融稳定性的研究

变温低场核磁系统用于食品冻融稳定性的研究速冻食品通常采用快速冷冻和低温储存的工艺,通过降低食品中水分含量和水分活度来减少微生物繁殖的风险、降低酶活性以及延缓食品原料间化学变化,以此达到延长产品货架期和方便消费者食用的目的。然而,速冻食品在运输、储存和消费过程中,都会面临无法保证低温冷藏条件的问题。温度波动所导致的产品品质变化往往让消费者难以接受,如产品口感变差、失水变硬、蒸煮后表皮开裂、失去弹性等。淀粉冻融通常是指低温(如-18℃)下对糊化或未糊化淀粉进行冷冻后再放置室温或者更高温度(如30℃水浴)下使淀粉融化的过程。在此过程中,淀粉理化性质及颗粒结构的变化趋势和程度反映了淀粉的冻融稳定性,也直接影响了相关速冻食品的质构特性。淀粉冻融稳定性的研究有助于进一步了解淀粉分子的内部结构,推动相关产品工业化生产条件的优化。冻融过程对淀粉影响冻融过程通过水分子和温度的作用改变淀粉的内部结构,对淀粉的颗粒形态、质构特征、结晶状态和功能特性产生显著影响。一般而言,这些影响效果不利于淀粉在冻融过程中保持结构的稳定。淀粉在冻融过程中,循环过程形成的冰晶和微机械力会对淀粉颗粒造成损伤。经过多次冻融循环后,淀粉颗粒棱角出现损伤,表面变得更粗糙且出现许多凹洞。冻融过程中冰晶不断融解和再形成,反复对淀粉颗粒表面进行挤压,从而造成了上述的机械损伤并伴随部分淀粉的游离溢出。原位变温低场核磁共振系统?原位变温低场核磁共振系统是指可以实现在线原位改变样品温度,并在设置温度下对样品进行原位测量的低场核磁共振系统。该系统可同时实现弛豫分析和磁共振成像功能。传统的低场核磁共振系统是常温测试系统,测试过程中样品的温度保持与实验室温度(环境温度)一致,检测到的数据与样品在室温下的特性相关。而原位变温低场核磁共振系统可对样品进行程序控温(高低温),并进行原位检测,可研究不同温度下样品的特性。可对样品进行冷冻过程、干燥过程、蒸煮过程、样品冰点、食品变性过程等相关研究。原位变温低场核磁共振系统是在常规低场核磁共振系统上加配了变温探头、控温硬件以及控温软件。系统样机如下图:

应用实例

2022.11.28

低场核磁反演方法研究

低场核磁反演方法研究无论是低场核磁纵向弛豫还是低场核磁横向弛豫,对于决大多数样品来说,低场核磁弛豫信号都可以用多指数函数来表达。通常情况下,分别利用CPMG实验和IR实验来检测样品的横向弛豫过程和纵向弛豫过程,低场核磁弛豫信号的数学表达式如公式(1)和公式(2)所示:其中fi表示样品中第i种成分的信号强度,总信号的大小是所有成分产生信号大小的总和,T2i和T1i表示样品中第i种成分的横向弛豫时间和纵向弛豫时间。低场核磁反演方法研究:弛豫信号反演的目标是通过上面的公式(1)公式(2)来计算样品中的每个值(或者称为样品中质子分布的密度函数,也称为T1分布或T2分布)。下面采用矩阵的形式重新改写上述数学表达式:Y=A * F低场核磁反演方法研究实例:以多组分T2反演为例,如下图,左边是回波串,右边是反演结果(T2分布)。下式表示每一个回波的等式系统。一般物质的T2分布是一个连续函数,但是为简化反演,计算使用一个多指数模型,并假定T2分布包含有m个独立的弛豫时间T2i,对应的幅值分量为fi。T2i的值是预先选定的(如0.5ms,1ms,2ms,4ms,8ms,16ms,32ms,64ms,128ms,256ms,512ms,…)。反演的过程主要是确定每个分布的孔隙度分量.低场核磁反演方法研究(T2分布)定组分反演和二维反演在原理上和多组分反演都是一致的,是一个设置模型不断寻优的过程。不同的方法间,模型函数和寻优方法会有稍许不同。

应用实例

2022.11.28

低场核磁共振法用于淀粉玻璃化转变温度研究

低场核磁共振法用于淀粉玻璃化转变温度研究淀粉不仅是食品中的重要的组成成分,而且也是有用的食品工业原料,应用用途十分的广泛。大家都知道,淀粉由直链淀粉和支链淀粉组成,直链淀粉为一条直链的结构,分子量较小,支链淀粉是高度分支,分子量通常较高。由于来自不同种植物的淀粉在结构,组成和分子状态方面的差异,来自不同的来源的淀粉具备各自的使用功能。食品的玻璃化转变可能会引起食品的货架寿命和质构等的改变,已成为当今的研究热点。玻璃化转变温度的这个概念目前被广泛的应用在食品科学的领域当中。玻璃化转变是一种二级相变,物质不会放出潜热,不发生相变,他的宏观上在物质的物理、电学、热及力学等其他性质上,表现出变化或者不连续性。当食品处在玻璃态时,食品的分子分散的速率就会减慢,产品的品质就会提高,然而,当食品发生了玻璃化转变之后,它的理化性质就会发生明显的改变。淀粉的玻璃化转变对机械性能的影响很大,如引起淀粉的质构特性和产品老化等重要影响。因此,研究淀粉的玻璃化转变温度是非常重要的。聚合物在比较低的温度下,分子的热运动所需要的能量就很低,只有分子中的链节、支链等比较小的运动单元可以运动,而链段和分子链处于被冻结的状态,聚合物在外界作用下只能发生微小的形变,这个时候聚合物表现出来的力学性质和玻璃相似,所以把这种状态叫做玻璃态。聚合物发生了玻璃化转变时的温度称为玻璃化转变温度(Tg)。当食品处在玻璃态的时候,受扩散控制的食品的品质变化的反应就会变得非常的缓慢,有的甚至不会发生。这时的食品的各个方面的性质就会非常的稳定,对于食品的保存和新鲜程度等品质的保持就十分有利。大部分的谷物类食品是以淀粉为原料的,如小吃、焙烤食品等。面包在储藏的过程会发生老化(硬化),严重影响面包的品质,淀粉结晶就是影响面包老化的重要因素。当储藏温度低于Tg时,淀粉就不会发生结晶,所以将面包在玻璃态时储藏,对抑制面包老化很有效。食品中的玻璃化转变会影响食品的货架寿命和质构等。低场核磁共振法测定玻璃化转变温度:NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃芳位、定量的研究样品。玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其zui低点,即为相转变点,所对应温度为Tg。

应用实例

2022.11.25

低场核磁检测新拌浆体水泥基材料

低场核磁检测新拌浆体水泥基材料水泥基材料作为一种多相复合材料,其水化硬化过程中的相组成和转变一直是人们关注的热点。水作为水泥基材料的重要组分,与水泥粉体混合后初始以液相状态填充在水泥颗粒的间隙,在随后的水化硬化过程中,一部分参与水化反应变成化学结合水,成为凝胶产物微晶的一部分,这部分水通过干燥蒸发的方法也不能去除,因而也被称为不可蒸发水;其余可蒸发水则继续残留在硬化浆体微结构中,并根据所在孔的大小不同分为毛细水和凝胶水。现代水泥基材料科学的研究表明,不可蒸发水的含量与材料水化反应的程度和产物的晶体结构相关,而可蒸发水的含量及其状态与材料的抗冻性、抗腐蚀性、徐变、干燥收缩等性能关系密切。由于水泥水化反应随时间变化的连续性,不可蒸发水和可蒸发水的含量及状态也在不断变化。研究水泥基材料中水的相转变,探索不同状态的水的演变规律,对于充分认识水泥基材料的组成和结构,揭示材料的劣化机理具有重要意义。核磁共振是具有自旋特性的原子核所特有的物理现象,其基本原理可以表述为:对于被恒定外磁场B0磁化后的核自旋系统,根据量子力学原理,核自旋系统将发生能级裂分,大部分核自旋处于低能态,少部分处于高能态,如果在垂直于B0的方向加一个射频场B1,且该射频场的频率ω与特定原子核的Larmor频率ω0相等,核自旋系统将发生共振吸收现象,即处于低能态的核自旋将通过吸收射频场提供的能量,跃迁到高能态,这种现象被称为核磁共振。低场核磁共振很早就被用来分析水泥的反应的过程,通过测试混合水泥浆液在不同反应时间下的弛豫时间谱,以水分布的变化反推水泥的反应过程。借助低场核磁共振技术,可研究新型水泥的水化反应过程。低场核磁共振技术可在非破坏条件下连续监测水泥基材料孔结构的发展。在水泥基材料的孔隙中,通常填充有水分。在一定的射频能的激发下,处在磁场中的水分子会发生共振现象,进而表现出弛豫行为,其弛豫时间的长短与水分子所在的孔隙尺寸有着定量的关系,因此能够间接地得到孔结构的信息。受限流体的弛豫主要受制于表面弛豫的影响。对于特定介质而言,t2与多孔介质的比表面积相关,在孔隙率相同时,孔径越小,比表面积越大,表面相互作用的影响越强烈,t2就越短。对多孔介质流体弛豫的研究提供了孔结构方面的信息。

应用实例

2022.11.25

石墨烯表面疏水性能研究-低场核磁共振技术

石墨烯表面疏水性能研究-低场核磁共振技术什么叫亲水性和疏水性?亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。石墨烯材料独牛寺的结构、大的比表面积,使得它拥有优异的力学、热学、电学和磁学性能,在各个领域的应用价值逐渐突显,逐渐成为很多领域研究的焦点。比表面积是其一个重要的性质,是衡量石墨烯材料性能的一项非常重要的参量,低场核磁共振技术是一种先进的测试悬浮液颗粒表面特性的方法,低场核磁共振法测试时间短,不需要繁琐的样品处理过程,无需引入外部试剂。在监测悬浮液状态下颗粒与溶剂之间的表面化学、亲和性、润湿性等方面具有独牛寺的优势。低场核磁共振技术用于石墨烯表面疏水性能研究基本原理材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

应用实例

2022.11.23

超顺磁性氧化铁注射剂研究-磁共振快速弛豫分析仪

超顺磁性氧化铁注射剂研究-磁共振快速弛豫分析仪磁共振注射剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,注射剂同样分为Tl注射剂或T2注射剂。国外注射剂的研究十分活跃,已有多种注射剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的注射剂有7种。磁针注射剂的需求量还在迅速增加。因此,新型注射剂的研制与开发具有非常重要而深远的意义。超顺磁性氧化铁注射剂:早在1980年就已经有制备Fe304纳米颗粒的方法,主要采用的是基于物理研磨晶化的自上而下的手段。随着化学合成手段的发展和先进仪器研发水平的突破创新,人们开始对纳米颗粒的合成有更为深入的理解,从而发展了多种合成纳米颗粒的手段,例如水热法、共沉淀法、热分解法、溶胶法等等。对于生物应用的纳米材料而言,纳米尺度和良好单分散性的要求显得更为重要。通过调控表面活性剂的体积和比例、反应温度和时间以及种子生长的方法,可以得到直径约为4、6、12 m的Fe304纳米颗粒。这些Fe304纳米颗粒具有良好的单分散性而且表现出明显的超顺磁性,是一类理想的生物应用材料。在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的注射剂材料。磁共振快速弛豫分析仪用于超顺磁性氧化铁注射剂研究弛豫效率是超顺磁性氧化铁注射剂关键指标之一。弛豫效率高的样品,可以使用最为少的量达到最为好的效果;在注射剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试注射剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为注射剂产品的研发与改进提供快速可靠的检测手段。PQ001磁共振快速弛豫分析仪

应用实例

2022.11.23

低场核磁研究完荃相容共混物的玻璃化转变温度

低场核磁研究完荃相容共混物的玻璃化转变温度聚合物的相容性聚合物的相容性就是聚合物之间的相互溶解性,是指两种聚合物形成均相体系的能力。大量的实际研究结果表明,不同聚合物对之间相互容纳的能力,是有着很悬殊的差别的,某些聚合物对之间,可以具有及好的相容性,而另一些聚合物对之间则只有有限的相容性,还有一些聚合物对之间几乎没有相容性。由此,可按相容的程度划分为完荃相容、部分相容和不相容。相应的聚合物对,可分别称为完荃相容体系、部分相容体系和不相容体系。测定聚合物共混物的玻璃化转变温度Tg,并与一组分玻璃化温度进行对比的方法,是测定与研究共混组分兼容性的最为常用的方法,其主要是基于聚合物共混物的玻璃化温度与两种聚合物分子级的混合程度有直接关系。什么是玻璃化转变温度?玻璃化转变温度Tg是材料的一个重要特性参数,材料的许多特性都在玻璃化转变温度附近发生急剧的变化。以玻璃为例,在玻璃化转变温度,由于玻璃的结构发生变化,玻璃的许多物理性能如热容、密度、热膨胀系数、电导率等都在该温度范围发生急剧变化。根据玻璃化转变温度可以准确制定玻璃的热处理温度制度。对高聚物而言,它是高聚物从玻璃态转变为高弹态的温度,在玻璃化转变温度时,高聚物的比热容、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变。完荃相容共混物的玻璃化转变温度的影响因素由于玻璃化转变是与分子运动有关的现象,而分子运动又和分子结构有着密切关系,所以分子链的柔顺性、分子间作用力以及共聚、共混、增塑等都是影响高聚物Tg的重要内因。此外,外界条件如作用力、作用力速率,升(阵)温速度等也是值得注意的影响因索。在玻璃化转变温度以上,高聚物表现出弹性;在玻璃化转变温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。低场核磁研究完荃相容共混物的玻璃化转变温度的基本原理:NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃芳位、定量的研究样品。玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其最为低点,即为相转变点,所对应温度为Tg。

应用实例

2022.11.23

低场核磁共振横相弛豫时间

低场核磁共振横相弛豫时间在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。低场核磁共振横相弛豫过程在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从zui大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。低场核磁共振横相弛豫时间低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

应用实例

2022.11.21

低场核磁技术研究高分子弛豫特性

低场核磁技术研究高分子弛豫特性高分子化合物,简称高分子,又称高分子聚合物,一般指相对分子质量高达几千到几百万的化合物,绝大多数高分子化合物是许多相对分子质量不同的同系物的混合物,因此高分子化合物的相对分子质量是平均相对分子量。高分子化合物是由千百个原子以共价键相互连接而成的,虽然它们的相对分子质量很大,但都是以简单的结构单元和重复的方式连接的。高分子的分子结构可以分为两种基本类型:第一种是线型结构,具有这种结构的高分子化合物称为线型高分子化合物。第二种是体型结构,具有这种结构的高分子化合物称为体型高分子化合物。此外,有些高分子是带有支链的,称为支链高分子,也属于线型结构范畴。有些高分子虽然分子链间有交联,但交联较少,这种结构称为网状结构,属体型结构范畴。高分子缠结与弛豫特性缠结是高分子聚合物的重要特性之一,它决定聚合物的许多物理性质如粘性、流变性等.因此高聚物的缠结现象广为人们所重视.根据近年的研究结果,高分子链的缠结可分为拓扑缠结和凝聚缠结两类,但链与链之间缠结的机理还不甚清楚.定性地说,溶液中缠结的程度与聚合物分子量、溶液的浓度和温度等因素有关.缠结直接地影响聚合物分子运动,因而作为研究聚合物分子运动有效手段的NMR弛像亦可用来研究聚合物的缠结。低场核磁技术研究高分子弛豫特性分析模型分子内和分子间氢质子的偶极相互作用产生核磁共振的横向弛豫。当温度远远高于聚合物的玻璃态温度时,聚合物网络中的这种偶极相互作用被认为是热分子运动的平均。由于聚合物单链中的氢质子被作为核磁共振测量的探针,于是一种修正的单链模型被引入并用来解释聚合物的横向弛豫。这种模型(即以下的XLD模型)在一些文献中已被成功测试并被具体描述和推导。

应用实例

2022.11.21

超顺磁性氧化铁造影剂原理研究-磁共振快速弛豫分析仪

超顺磁性氧化铁造影剂原理研究-磁共振快速弛豫分析仪磁共振造影剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。超顺磁性氧化铁造影剂:早在1980年就已经有制备Fe304纳米颗粒的方法,主要采用的是基于物理研磨晶化的自上而下的手段。随着化学合成手段的发展和先进仪器研发水平的突破创新,人们开始对纳米颗粒的合成有更为深入的理解,从而发展了多种合成纳米颗粒的手段,例如水热法、共沉淀法、热分解法、溶胶法等等。对于生物应用的纳米材料而言,纳米尺度和良好单分散性的要求显得更为重要。通过调控表面活性剂的体积和比例、反应温度和时间以及种子生长的方法,可以得到直径约为4、6、12 m的Fe304纳米颗粒。这些Fe304纳米颗粒具有良好的单分散性而且表现出明显的超顺磁性,是一类理想的生物应用材料。在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的造影剂材料。磁共振快速弛豫分析仪用于超顺磁性氧化铁造影剂原理研究弛豫效率是超顺磁性氧化铁造影剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。PQ001磁共振快速弛豫分析仪

应用实例

2022.11.21

快速弛豫分析仪测试磁性纳米颗粒的弛豫率

快速弛豫分析仪测试磁性纳米颗粒的弛豫率磁共振造影剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。快速弛豫分析仪测试磁性纳米颗粒的弛豫率弛豫效率是超顺磁性氧化铁对比剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。造影剂弛豫率r1测试:用反转恢复序列(IR)测量其纵向弛豫时间,得到原始数据的恢复时间(t)及其相应的幅度值M(t),利用单指数模型M(t)=M(0)(1-2e-t/T1)拟合曲线t—M(t)可以得到纵向弛豫时间。

应用实例

2022.11.18

超顺磁性氧化铁造影剂研究-磁共振快速弛豫分析仪

超顺磁性氧化铁造影剂研究-磁共振快速弛豫分析仪磁共振造影剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。超顺磁性氧化铁造影剂:早在1980年就已经有制备Fe304纳米颗粒的方法,主要采用的是基于物理研磨晶化的自上而下的手段。随着化学合成手段的发展和先进仪器研发水平的突破创新,人们开始对纳米颗粒的合成有更为深入的理解,从而发展了多种合成纳米颗粒的手段,例如水热法、共沉淀法、热分解法、溶胶法等等。对于生物应用的纳米材料而言,纳米尺度和良好单分散性的要求显得更为重要。通过调控表面活性剂的体积和比例、反应温度和时间以及种子生长的方法,可以得到直径约为4、6、12 m的Fe304纳米颗粒。这些Fe304纳米颗粒具有良好的单分散性而且表现出明显的超顺磁性,是一类理想的生物应用材料。在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的造影剂材料。磁共振快速弛豫分析仪用于超顺磁性氧化铁造影剂研究弛豫效率是超顺磁性氧化铁造影剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。PQ001磁共振快速弛豫分析仪

应用实例

2022.11.18

低场核磁共振横相弛豫时间与横向弛豫特性低场核磁共振横相弛豫时间与横向弛豫特性

低场核磁共振横相弛豫时间与横向弛豫特性在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁共振横相弛豫过程和低场核磁共振横相弛豫时间T2。低场核磁共振横相弛豫过程在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散zui终均匀分布,宏观表现为其横向磁化强度矢量Mxy从最大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。低场核磁共振横相弛豫时间与横向弛豫特性低场核磁共振横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

应用实例

2022.11.18

低场核磁横相弛豫时间

低场核磁横相弛豫时间在核磁共振现象中,弛豫是指原子核发生共振且处在高能状态时,当射频脉冲停止后,将迅速恢复到原来低能状态的现象。恢复的过程即称为弛豫过程,它是一个能量转换过程,需要一定的时间反映了质子系统中质子之间和质子周围环境之间的相互作用。完成弛豫过程分两步进行,即纵向磁化强度矢量Mz恢复到最初平衡状态的M0和横向磁化强度Mxy要衰减到零,这两步是同时开始但独立完成的,下面将简单介绍低场核磁横相弛豫过程和低场核磁横相弛豫时间T2。低场核磁横相弛豫过程在射频脉冲的作用下,所有质子的相位都相同,它们都沿相同的方向排列,以相同的角速度(或角频率)绕外磁场进动。当射频脉冲停止后,同相位的质子彼此之间将逐渐出现相位差,即失相位。我们把质子由同相位逐渐分散最终均匀分布,宏观表现为其横向磁化强度矢量Mxy从蕞大(对于π/2脉冲来说,为M0)逐渐衰减为0的过程称为横向弛豫过程。低场核磁横相弛豫时间低场核磁横相弛豫时间又称自旋-自旋弛豫时间,通常用Mxymax衰减63%时所需的时间,所以经过一个T2时间,Mxy还存在37%在实际工作中,一般认为Mxy经过5T2时间已基本衰减为零。下图表示π/2脉冲之后Mxy随时间的衰减曲线:在MRI中,通常用横向弛豫时间T2来描述横向磁化强度Mxy衰减的快慢,如果T2小就说明横向磁化强度Mxy衰减快。否则,若T2长就说明横向磁化强度Mxy衰减慢。在给定外磁场中,T2仅取决于组织,不同的组织由于其自旋-自旋相互作用效果不同,而这种效果取决于质子间的接近程度。由于不同组织自旋-自旋相互作用效果不同,所以不同组织的T2不同,固体中的T2比液体中的T2短的多。特别注意的是:横向弛豫时间T2比纵向弛豫时间T1快5-10倍,也就是说在纵向磁化强度恢复到M0时,横向磁化强度早已经衰减为零。

应用实例

2022.11.16

二氧化硅表面疏水性研究-低场核磁共振技术

二氧化硅表面疏水性研究-低场核磁共振技术什么叫亲水性和疏水性亲水性:指带有极性基团的分子,对水有较大的亲和能力,可以吸引水分子,或易溶解于水。这类分子形成的固体材料的表面,易被水所润湿。具有这种特性都是物质的亲水性。疏水性:分子偏向于非极性,并因此较会溶解在中性和非极性溶液(如有机溶剂)。疏水性分子在水里通常会聚成一团,而水在疏水性溶液的表面时则会形成一个很大的接触角而成水滴状。材料表面润湿过程的实质是物质界面发生性质和能量的变化。当水分子之间的内聚力小于水分子与固体材料分子间的相互吸引力时,材料被水润湿,此种材料为亲水性的,称为亲水性材料;而水分子之间的内聚力大于水分子与材料分子间的吸引力时,则材料表面不能被水所润湿,此种材料是疏水性的(或称憎水性),称为疏水性材料。二氧化硅可以作为润滑剂,是一种优良 的流动促进剂,主要作为润滑剂、抗黏剂、助流剂。特别适宜油类、浸膏类药物的制粒,制成的颗粒具有很好的流动性和可压性。还可以在直接压片中用作助流剂。作为崩解剂可大大改善颗粒流动性,提高松密度,使制得的片剂硬度增加,缩短崩解时限,提高药物溶出速度。颗粒剂制造中可作内干燥剂,以增强药物的稳定性。还可以作助滤剂、澄清剂、消泡剂以及液体制剂的助悬剂、增稠剂。低场核磁共振技术用于二氧化硅表面疏水性研究研究基本原理材料的亲水性与疏水性与颗粒的团聚与分散存在直接的关联,低场核磁共振技术可研究颗粒材料在水中的分散规律及分散行为与颗粒的润湿性的关系,通过颗粒间的相互作用了解分散作用机制。对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

应用实例

2022.11.16

超顺磁性氧化铁对比剂研究-磁共振快速弛豫分析仪

超顺磁性氧化铁对比剂研究-磁共振快速弛豫分析仪磁共振对比剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。 超顺磁性氧化铁对比剂:早在1980年就已经有制备Fe304纳米颗粒的方法,主要采用的是基于物理研磨晶化的自上而下的手段。随着化学合成手段的发展和先进仪器研发水平的突破创新,人们开始对纳米颗粒的合成有更为深入的理解,从而发展了多种合成纳米颗粒的手段,例如水热法、共沉淀法、热分解法、溶胶法等等。对于生物应用的纳米材料而言,纳米尺度和良好单分散性的要求显得更为重要。通过调控表面活性剂的体积和比例、反应温度和时间以及种子生长的方法,可以得到直径约为4、6、12 m的Fe304纳米颗粒。这些Fe304纳米颗粒具有良好的单分散性而且表现出明显的超顺磁性,是一类理想的生物应用材料。在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的造影剂材料。磁共振快速弛豫分析仪用于超顺磁性氧化铁对比剂研究弛豫效率是超顺磁性氧化铁对比剂关键指标之一。弛豫效率高的样品,可以使用蕞少的量达到蕞为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。PQ001磁共振快速弛豫分析仪

应用实例

2022.11.16

低场核磁研究玻璃化转变的影响因素

低场核磁研究玻璃化转变的影响因素什么是玻璃化转变温度?玻璃化转变温度Tg是材料的一个重要特性参数,材料的许多特性都在玻璃化转变温度附近发生急剧的变化。以玻璃为例,在玻璃化转变温度,由于玻璃的结构发生变化,玻璃的许多物理性能如热容、密度、热膨胀系数、电导率等都在该温度范围发生急剧变化。根据玻璃化转变温度可以准确制定玻璃的热处理温度制度。对高聚物而言,它是高聚物从玻璃态转变为高弹态的温度,在玻璃化转变温度时,高聚物的比热容、热膨胀系数、粘度、折光率、自由体积以及弹性模量等都要发生一个突变。玻璃化转变的影响因素由于玻璃化转变是与分子运动有关的现象,而分子运动又和分子结构有着密切关系,所以分子链的柔顺性、分子间作用力以及共聚、共混、增塑等都是影响高聚物Tg的重要内因。此外,外界条件如作用力、作用力速率,升(阵)温速度等也是值得注意的影响因索。在玻璃化转变温度以上,高聚物表现出弹性;在玻璃化转变温度以下,高聚物表现出脆性,在用作塑料、橡胶、合成纤维等时必须加以考虑。如聚氯乙烯的玻璃化温度是80℃。但是,他不是制品工作温度的上限。比如,橡胶的工作温度必须在玻璃化温度以上,否则就失去高弹性。 低场核磁研究玻璃化转变的影响因素基本原理:NMR是一种通过测定活性原子核的弛豫特性来描述分子运动特性的技术。用NMR测定玻璃化转变温度是基于弛豫时间(T1、T2)可以衡量玻璃化转变时分子链段运动的急剧变化。与上述方法相比,NMR对所测食品样品没有限制,对样品亦不具破坏性,灵敏度高,能够快速、实时、荃方位、定量的研究样品。玻璃化转变是指非晶态的高聚物(包括晶态高聚物中的非晶体部分)从玻璃态到高弹态的转变或者从高弹态到玻璃态的转变。许多研究人员已经接受食品也是聚合物这一观点并将其作为聚合物体系进行分析,聚合物玻璃化转变的基础是分子运动,聚合物由玻璃态转变为橡胶态时,含有质子的基团运动频率增加,这些变化可由弛豫时间T1和T2来衡量。当聚合物处于玻璃态时,T2不随温度而变,表现出刚性晶格的性质,玻璃化转变后,突破刚性晶格的限制,T2随温度升高而增大。绘制T2-温度曲线,T2转折点所对应的温度即玻璃化转变温度Tg。T2-温度曲线和T1-温度曲线都是由两条近似直线的不同斜率的直线部分组成,这两条直线的交点就看作为相转变点,所对应的温度就是相转变温度,即我们所要测定的Tg。对于“U”曲线,其蕞低点,即为相转变点,所对应温度为Tg。

应用实例

2022.11.14

如何计算表面活性剂含量?低场核磁技术

如何计算表面活性剂含量?低场核磁技术什么是表面活性剂?表面活性剂是指是能使目标溶液表面张力显著下降的物质。具有固定的亲水亲油基团,在溶液的表面能定向排列。表面活性剂的分子结构具有两性:一端为亲水基团,另一端为疏水基团;亲水基团常为极性基团,如羧酸、磺酸、硫酸、氨基或胺基及其盐,羟基、酰胺基、醚键等也可作为极性亲水基团;而疏水基团常为非极性烃链,如8个碳原子以上烃链。表面活性剂分为离子型表面活性剂(包括阳离子表面活性剂与阴离子表面活性剂)、非离子型表面活性剂、两性表面活性剂、复配表面活性剂、其他表面活性剂等。表面活性剂的特性:表面活性剂通过在气液两相界面吸附降低水的表面张力,也可以通过吸附在液体界面间来降低油水界面张力。许多表面活性剂也能在本体溶液中聚集成为聚集体。表面活性剂吸附性:溶液中的正吸附:增加润湿性、乳化性、起泡性;固体表面的吸附:非极性固体表面单层吸附,极性固体表面可发生多层吸附。表面活性剂的分类:根据所需要的性质和具体应用场合不同,有时要求表面活性剂具有不同的亲水亲油结构和相对密度。通过变换亲水基或亲油基种类、所占份额及在分子结构中的位置,可以达到所需亲水亲油平衡的目的。经过多年研究和生产,已派生出许多表面活性剂种类,每一种类又包含众多品种,给识别和挑选某个具体品种带来困难。因此,必须对成千上万种表面活性剂作一科学分类,才有利于进一步研究和生产新品种,并为筛选、应用表面活性剂提供便利。低场核磁技术告诉你如何计算表面活性剂含量核磁共振弛豫测量可用于研究表面材料上吸附的表面活性剂。液体中的游离表面活性剂对液体的弛豫时间影响很小,而颗粒界面的表面活性剂对分散体系的弛豫时间影响很大。利用该性质可测定界面活性剂的浓度。为了吸附表面活性剂,活性剂必须取代已经润湿在材料表面的流体,因此,测得的核磁共振弛豫时间会发生改变。表面活性剂浓度(c)正比与表面吸附液体比例(PS),通过弛豫特性可计算得到表面活性剂含量。

应用实例

2022.11.14

生物医用材料表面改性研究-低场核磁技术

生物医用材料表面改性研究-低场核磁技术生物医用材料是用来对生物体进行诊断、治疗、修复或替换其病损组织、器官或增进其功能的材料。它是研究人工器官和医疗器械的基础,已成为当代材料学科的重要分支,尤其是随着生物技术的蓬勃发展和重大突破,生物医用材料已成为各国科学家竞相进行研究和开发的热点。生物医用材料的分类生物医用材料按用途可分为骨、牙、关节、肌腱等骨骼-肌肉系统修复材料,皮肤、乳房、食道、呼吸道、膀胱等软组织材料,人工心瓣膜、血管、心血管内插管等心血管系统材料,血液净化膜和分离膜、气体选择性透过膜、角膜接触镜等医用膜材料,组织粘合剂和缝线材料,药物释放载体材料,临床诊断及生物传感器材料,齿科材料等。生物医用材料按按材料在生理环境中的生物化学反应水平分为惰性生物医用材料、活性生物医用材料、可降解和吸收的生物医用材料。材料表面改性的新方法和新技术还应探索表面改性研究以大幅度改善生物医用材料与生物体的相容性为目标。生物相容性包括血液相容性和组织相容性,是生物医用材料应用的基本要求。除了设计、制各性能优异的新材料外,通过对传统医用材料进行表面化学处理(表面接枝大分子或基团)、表面物理改性(等离子体、离子注人或离子束)和生物改性是有效途径。材料表面改性的新方法和新技术是生物材料研究的泳玖性课题。目前流行的一些方法包括等离子体表面改性、离子注入表面改性、表面涂层与薄膜合成、自组装单分子层、材料的表面修饰等。这个领域已成为生物材料学科蕞活跃、蕞引人注目和发展迅速的领域之一。在实际生产过程中,正确评价表面改性效果,对及时调整改性剂、工艺与设备参数等至关重要。低场核磁共振技术可用于生物医用材料表面改性研究,特别是悬浮体系的表面特性研究。 低场核磁技术用于生物医用材料表面改性研究的基本原理:对于润湿的颗粒体系,颗粒表面会附着一层液相分子,这些液相分子因无机相表面的吸附作用而运动受限。但未与颗粒相接触的液相分子运动是自由的,液相分子的驰豫时间(relaxation time)与它所处的运动状态密切相关,自由状态的液相分子的核磁驰豫时间要比束缚状态的液相分子的驰豫时间长得多,颗粒分散性更好的体系吸附溶剂量相对更多,弛豫时间也就更短。因此,可以利用低场核磁共振技术来测量悬浮液体系的驰豫时间,并计算颗粒的湿润比表面积(可利用的吸附表面积),进而用来研究颗粒的团聚状态、分散性稳定性、亲和性以及润湿性等问题。

应用实例

2022.11.14

< 1 ••• 2 3 4 5 6 ••• 18 > 前往 GO

苏州纽迈分析仪器股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 苏州纽迈分析仪器股份有限公司

公司地址: 江苏省苏州市浒关工业区青莲路97号 联系人: 杨经理 邮编: 215151 联系电话: 400-858-9311

仪器信息网APP

展位手机站