您好,欢迎访问仪器信息网
注册
苏州纽迈分析仪器股份有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-858-9311

仪器信息网认证电话,请放心拨打

当前位置: 纽迈分析 > 公司动态
公司动态

小核磁是什么意思

小核磁是什么意思小核磁是什么意思?小核磁又称小核磁分析仪,由于体型较小,被形象的称为小核磁。小核磁一般泛指低场强核磁共振系统,主要从分子运动角度研究样品。小核磁主要用于高校科研、企业研发、工业质检质控。小核磁结构紧凑,性价比高,使用方便,日常维护简单,能够应用于食品、农业、材料、能源、纤维、岩土等多个领域。小核磁仪器小巧,无需特殊安装场所,安装方便。小核磁一般为永磁体,无需制冷剂。维护检修方便,漏磁小,使用安全,维护成本低。纽迈分析NMI20系列小核磁分析仪(带变温系统)小核磁的组成:小核磁主要由磁体单元、射频单元、谱仪单元和温控单元几个部分组成。磁体单元可提供均匀、稳定的主磁场;射频单元用于射频放大与样品激励;谱仪单元是小核磁分析仪的控制系统;温控单元主要功能是对磁体进行精准控温;小核磁的工作原理原子核,如氢和氟等,都带有正电荷,这些原子核本身具有一个重要的属性,那就是其自旋。一个带电的自旋体就产生一环形电流,而一环形电流便可形成一磁场。这样,每一个原子核就是一个小磁体,也就像小指南针。在无外加磁场时,物质中的原子核磁场的指向是无规则杂乱分布的。当将物品放入一外加磁场中时,原子核就要与外加磁场发生相互作用,其作用的结果就是原子核磁场的方向排布有序,一部分原子核磁场的指向沿着外加磁场的方向,另一部分的原子核的指向与外加磁场方向相反,使样品中原子核之间产生了热能差别,即出现了能级。当原子核在两个能级间跃迁时,便有核磁共振信号产生。小核磁是什么意思?小核磁的主要用途:1). 小核磁可用于食品领域的研发与质检质控:◆ 含油种子、种子残渣含油率和含水率测试◆ 巧克力及巧克力相关产品的固体脂肪含量◆ 总脂肪含量2). 小核磁在农业领域的研发与质检质控:◆ 含油种子自动化选育(按含油率分选)◆ 植物根系成像研究◆ 农产品干燥研究3). 小核磁在纺织行业的应用:◆ 纤维中油剂含量◆ 聚合物涂层含量◆ 纤维和纺织品上的氟化涂层测量4). 小核磁在材料行业的应用:◆ 弹性体交联密度◆ 硫磺粉末样品中的油含量◆ 聚苯乙烯中的橡胶含量5). 小核磁在石化行业的应用:◆ 碳氢化合物的氢含量◆ 蜡/石蜡的含油量6). 小核磁共振在制药行业的应用◆ 造影剂弛豫时间、弛豫率、体外成像、活体MRI◆ 非接触式称重◆ 粉剂和片剂的含水量和溶剂含量7). 小核磁在悬浮液体系中的应用:◆ 微乳液的弛豫◆ 混合聚合物体系的吸附行为◆ 聚合物在二氧化硅上的竞争吸附8). 小核磁在岩土能源领域的应用:◆ 孔隙度、孔径分布、渗透性、饱和度测试◆ 力学损伤规律及机理研究◆ 土壤水分状态、水分迁移、冻土未冻水含量分析9). 小核磁在多孔材料领域的应用:◆ 孔径分布研究◆ 孔径大小研究◆ 低温纳米孔径测试

参数原理

2022.12.21

德芙黑巧克力脂肪含量测试-低场核磁

德芙黑巧克力脂肪含量测试-低场核磁巧克力是一种高热量食品,很多人都喜欢吃巧克力,其中蛋白质含量偏低,脂肪含量偏高。虽然巧克力有不少好处,但是因为它的高热量可导致肥胖。巧克力中脂肪含量是衡量其质量的重要理化指标。目前,对于巧克力脂防含量测定的具体方法没有明确的规定。不同的检验方法得到的检验结果存在差异。常用的巧克力脂防含量的测定方法有:索氏抽提法、酸水解法、低场核磁共振法等。长期的实验工作证明索氏抽提法和酸水解法对于巧克力制品中脂肪含量测定的结果与真实值相比都不甚理想。索氏抽提法测定巧克力脂肪含量:索氏抽提法主要是用乙迷或石油醚等有机溶剂抽提后,蒸去溶剂所得的物质,除脂防外还含有色素、挥发油、蜡等物质,称为粗脂肪。此外,索氏抽提法不适用于含糖量过高的食品,因为,食品中的糖分会随着乙迷等溶剂被抽提到接收瓶中,致使测定值偏高。而巧克力制品正是含糖量较高的食品,在用索氏抽提法时会导致最后结果偏离真实值。一个重要的原因是巧克力制品中含有奶粉,其中的乳脂肪在抽提时不能被乙迷所溶解,这又造成结果的误差。索氏抽提法测定巧克力脂肪含量:酸水解法适用于加工食品和结块的不溶性样品,以及不易除去水分的样品。其利用强酸破坏蛋白质,纤维素等,使脂肪游离出来,再用乙迷提取。选用此法时,强酸可以打破巧克力制品中乳脂球膜,使乳脂肪游离出来,称之为总脂肪。但是,由于巧克力制品中含糖量较高,同样也会影响检验结果。另外,酸水解法由于人为主观因素会带来“在吸取醚层时,因界面不清晰,导致吸得不完荃或吸出黑色水分的结果”,在最后挥散乙迷烘干后的最后测定值或多或少的偏离真实值,影响检验的准确度。低场核磁技术告诉你巧克力脂肪含量高不高低场核磁法是基于巧克力产品中脂肪含量与采集到的NMR信号强度成正比,通过将每克样品的NMR信号对应于脂肪含量进行定标,即可定量未知样品中的脂肪含量。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的固相和液相(基质和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时固相的信号已经衰减为0,A2仅为油的信号,A2与样品的脂肪量成正比,从而进行定量测量。使用3~6个已知脂肪含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。推荐仪器:PQ001系列低场核磁共振分析仪

应用实例

2022.12.21

木材吸着水研究(低场核磁共振技术)

木材吸着水研究(低场核磁共振技术)木材中水分存在哪些状态?按水分与木材的结合形式与位置,可分为三类:自由水、吸着水和结合水。木材中主要水分是自由水和吸着水,化合水的含量非常少。日常使用中,吸着水对木材的性能起着至关重要的作用。木材自由水:木材中的毛细管系统有两大类,即大细管系统和微毛细管系统。木材中的水分就存在于这些毛细管系统之中。由细胞腔组成的大毛细管系统,对水分的束缚力很小以至无束缚力,水分能够从大毛细管系统的断面自由地蒸发出去。因此,把存在于大毛细管系统内的水分,叫做自由水。自由水的增减,只能影响木材的重量、保存和燃烧能力,而不影响木材的性质。木材吸着水:由互相通连的细胞壁构成的微毛细管系统,对水分有程度不同的束缚力,若要使微毛细管系统内的水分向空中蒸发,必须把空气的湿度降低到一定的程度;或者在加热条件下加速水分的运动,才能克服微毛细管的束缚力,向空气中蒸发。同时,微毛细管系统不但在一定的条件下向空气中蒸发水分,而且也能够吸收空气中的水分。因此,把存在于微毛细管系统内的水分,叫做吸着水。吸着水的增减变化,不仅使木材发生膨胀和收缩,而且也影响到木材的其它物理力学性质。木材的纤维饱和点:木材细胞壁含水率(吸着水)在饱和状态,而细胞腔无自由水时的含水率,称纤维饱和点。通常以30%为木材纤维饱和点,但不同木材略有差异。纤维饱和点是木材特性变化的转折点。在纤维饱和点以下时,木材细胞壁木纤维就像压缩饼干一样吸水,木材发生膨胀,含水率增加同时木材强度降低;当达到纤维饱和点时,木材的细胞和细胞间隙就像水库一样蓄水,木材体积和性能基本不发生变化;反过来,在纤维饱和点以上时,木材失水木材体积与性能基本不变,在纤维饱和点以下时,木材失去水分木材收缩,木材强度增加。通俗点说来,木材干燥的过程中,将木材的纤维饱和点控制在30%的临界点,木材的硬度会得以保证。当木材含水率没有得到有效的控制,将对木材的使用产生不良的影响。低场核磁共振技术研究木材吸着水原理固态冰与液态水的核磁共振T2弛豫时间相差很大,冰的T2弛豫时间仅约6us,木材内吸着水的T2弛豫时间一般为毫秒级,很容易区分。核磁共振分析仪是以质子为探针,能够准确表达多孔介质内水分含量。通过选择适当的温度使木材细胞腔内自由水产生冻结,此时吸着仍然处于液态,从而可以准确获得细胞壁内吸着水的信号总量。

应用实例

2022.12.19

自由水结合水能不能相互转化-低场核磁研究

自由水结合水能不能相互转化-低场核磁研究什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水结合水能不能相互转化:自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。自由水结合水能不能相互转化-低场核磁研究:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。纽迈PQ001系列低场核磁共振分析仪

应用实例

2022.12.19

巧克力脂肪含量的测定-低场核磁共振法

巧克力脂肪含量的测定-低场核磁共振法巧克力是一种高热量食品,很多人都喜欢吃巧克力,其中蛋白质含量偏低,脂肪含量偏高。虽然巧克力有不少好处,但是因为它的高热量可导致肥胖。巧克力中脂肪含量是衡量其质量的重要理化指标。目前,对于巧克力脂防含量测定的具体方法没有明确的规定。不同的检验方法得到的检验结果存在差异。常用的巧克力脂防含量的测定方法有:索氏抽提法、酸水解法、低场核磁共振法等。长期的实验工作证明索氏抽提法和酸水解法对于巧克力制品中脂肪含量测定的结果与真实值相比都不甚理想。索氏抽提法巧克力脂肪含量的测定:索氏抽提法主要是用乙迷或石油醚等有机溶剂抽提后,蒸去溶剂所得的物质,除脂防外还含有色素、挥发油、蜡等物质,称为粗脂肪。此外,索氏抽提法不适用于含糖量过高的食品,因为,食品中的糖分会随着乙迷等溶剂被抽提到接收瓶中,致使测定值偏高。而巧克力制品正是含糖量较高的食品,在用索氏抽提法时会导致最后结果偏离真实值。一个重要的原因是巧克力制品中含有奶粉,其中的乳脂肪在抽提时不能被乙迷所溶解,这又造成结果的误差。酸水解法巧克力脂肪含量的测定:酸水解法适用于加工食品和结块的不溶性样品,以及不易除去水分的样品。其利用强酸破坏蛋白质,纤维素等,使脂肪游离出来,再用乙迷提取。选用此法时,强酸可以打破巧克力制品中乳脂球膜,使乳脂肪游离出来,称之为总脂肪。但是,由于巧克力制品中含糖量较高,同样也会影响检验结果。另外,酸水解法由于人为主观因素会带来“在吸取醚层时,因界面不清晰,导致吸得不完荃或吸出黑色水分的结果”,在最后挥散乙迷烘干后的最后测定值或多或少的偏离真实值,影响检验的准确度。低场核磁共振法巧克力脂肪含量的测定:低场核磁法是基于巧克力产品中脂肪含量与采集到的NMR信号强度成正比,通过将每克样品的NMR信号对应于脂肪含量进行定标,即可定量未知样品中的脂肪含量。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的固相和液相(基质和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时固相的信号已经衰减为0,A2仅为油的信号,A2与样品的脂肪量成正比,从而进行定量测量。使用3~6个已知脂肪含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。推荐仪器:PQ001系列低场核磁共振分析仪

应用实例

2022.12.19

低场核磁技术研究水凝胶的保水性

低场核磁技术研究水凝胶的保水性什么是水凝胶?水凝胶(Hydrogel)是由亲水性聚合物链通过化学或物理交联而形成的三维网络。它可以充分吸水而不溶于水,自身显著溶胀的同时仍保持其原有的三维结构。水凝胶含有大量的水(可达90%),质地柔软,性状可变,物理性质与生物组织类似,具有优异的生物相容性,可负载不同材料,包容性及强,同时其力学性质可调,是一类优秀的生物材料。水凝胶的分类水凝胶有多种分类方式。根据材料来源可分为天然水凝胶(如透明质酸、胶原蛋白、海藻酸钠等)和人工合成水凝胶(如聚丙烯酰胺、聚乙二醇等)。人体的许多组织(如肌肉、角膜、血管等)都可以归为天然水凝胶,这也就使得水凝胶在生物医学、人体组织方面有巨大的应用潜力。水凝胶的应用水凝胶生物相容性、生物可降解性、高吸水、保水的特性使其广泛适用于环境工程、柔性传感、电化学等许多领域,尤其是生物医学领域,包括组织工程、药物输送系统、伤口敷料、生物传感器、隐形眼镜、人工细胞等,有着广泛的应用。水凝胶作为新型功能材料,具有高吸水保水性、生物相容性好、柔韧等特点,通过不同材料的选择以及改性、复合等手段赋予其特定性能如自愈合性、环境响应特性等。因此,关于水凝胶的研究数不胜数。同时水凝胶及其衍生物在各个领域应用越来越广泛,其研究价值绝不仅限于此,这也是其大火的原因。水凝胶的保水性水凝胶因其优异的柔性、亲水性和生物相容性等特点在组织工程、伤口敷料、药物输送、柔性电子、智能器件、能源等领域应用广泛。然而,由于水凝胶中含有大量水分,水分不可避免地蒸发,而导致水凝胶在空气中逐渐脱水,造成水凝胶柔性、弹性等功能逐渐丧失,这已严重限制了水凝胶的实际应用。因此,提高水凝胶的保水性对改善水凝胶的稳定性、延长水凝胶的使用寿命、扩展水凝胶的实际应用具有重要意义。低场核磁技术研究水凝胶的保水性低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。对于水凝胶,不同环境中的水,如凝胶内水或外水,可能表现出不同的弛豫性质。T2组分对应的幅度可以定量并计算膨胀率。此外,基于T2值与水凝胶网络网孔尺寸之间的比例关系,可以描绘溶胀过程中由于浓度效应引起的水凝胶网络网孔尺寸变化。因此,低场核磁共振(LF-NMR)可以作为研究水凝胶溶胀过程中水的动态传输和微观结构变化的有力工具。此外,低场核磁共振(LF-NMR)不需将水凝胶从溶胀体系中取出,即可直接原位测量水凝胶的T2分布。低场核磁技术是研究水凝胶的保水性非常适用的一种技术。纽迈PQ001系列核磁共振分析仪

应用实例

2022.12.16

小核磁的市场需求

小核磁的市场需求什么是小核磁?小核磁又称小核磁分析仪,由于体型较小,被形象的称为小核磁。小核磁一般泛指低场强核磁共振系统,主要从分子运动角度研究样品。小核磁主要用于高校科研、企业研发、工业质检质控。小核磁结构紧凑,性价比高,使用方便,日常维护简单,能够应用于食品、农业、材料、能源、纤维、岩土等多个领域。小核磁仪器小巧,无需特殊安装场所,安装方便。小核磁一般为永磁体,无需制冷剂。维护检修方便,漏磁小,使用安全,维护成本低。纽迈分析NMI20系列小核磁分析仪(带变温系统)小核磁的组成:小核磁主要由磁体单元、射频单元、谱仪单元和温控单元几个部分组成。磁体单元可提供均匀、稳定的主磁场;射频单元用于射频放大与样品激励;谱仪单元是小核磁分析仪的控制系统;温控单元主要功能是对磁体进行精准控温;小核磁的工作原理原子核,如氢和氟等,都带有正电荷,这些原子核本身具有一个重要的属性,那就是其自旋。一个带电的自旋体就产生一环形电流,而一环形电流便可形成一磁场。这样,每一个原子核就是一个小磁体,也就像小指南针。在无外加磁场时,物质中的原子核磁场的指向是无规则杂乱分布的。当将物品放入一外加磁场中时,原子核就要与外加磁场发生相互作用,其作用的结果就是原子核磁场的方向排布有序,一部分原子核磁场的指向沿着外加磁场的方向,另一部分的原子核的指向与外加磁场方向相反,使样品中原子核之间产生了热能差别,即出现了能级。当原子核在两个能级间跃迁时,便有核磁共振信号产生。小核磁的市场需求?小核磁的主要用途:1). 小核磁可用于食品领域的研发与质检质控:◆ 含油种子、种子残渣含油率和含水率测试◆ 巧克力及巧克力相关产品的固体脂肪含量◆ 总脂肪含量2). 小核磁在农业领域的研发与质检质控:◆ 含油种子自动化选育(按含油率分选)◆ 植物根系成像研究◆ 农产品干燥研究3). 小核磁在纺织行业的应用:◆ 纤维中油剂含量◆ 聚合物涂层含量◆ 纤维和纺织品上的氟化涂层测量4). 小核磁在材料行业的应用:◆ 弹性体交联密度◆ 硫磺粉末样品中的油含量◆ 聚苯乙烯中的橡胶含量5). 小核磁在石化行业的应用:◆ 碳氢化合物的氢含量◆ 蜡/石蜡的含油量6). 小核磁共振在制药行业的应用◆ 造影剂弛豫时间、弛豫率、体外成像、活体MRI◆ 非接触式称重◆ 粉剂和片剂的含水量和溶剂含量7). 小核磁在悬浮液体系中的应用:◆ 微乳液的弛豫◆ 混合聚合物体系的吸附行为◆ 聚合物在二氧化硅上的竞争吸附8). 小核磁在岩土能源领域的应用:◆ 孔隙度、孔径分布、渗透性、饱和度测试◆ 力学损伤规律及机理研究◆ 土壤水分状态、水分迁移、冻土未冻水含量分析9). 小核磁在多孔材料领域的应用:◆ 孔径分布研究◆ 孔径大小研究◆ 低温纳米孔径测试

应用实例

2022.12.16

巧克力脂肪含量指什么-低场核磁

巧克力脂肪含量指什么-低场核磁巧克力是一种高热量食品,很多人都喜欢吃巧克力,其中蛋白质含量偏低,脂肪含量偏高。虽然巧克力有不少好处,但是因为它的高热量可导致肥胖。巧克力中脂肪含量是衡量其质量的重要理化指标。目前,对于巧克力脂防含量测定的具体方法没有明确的规定。不同的检验方法得到的检验结果存在差异。常用的巧克力脂防含量的测定方法有:索氏抽提法、酸水解法、低场核磁共振法等。长期的实验工作证明索氏抽提法和酸水解法对于巧克力制品中脂肪含量测定的结果与真实值相比都不甚理想。索氏抽提法测定巧克力脂肪含量:索氏抽提法主要是用乙迷或石油醚等有机溶剂抽提后,蒸去溶剂所得的物质,除脂防外还含有色素、挥发油、蜡等物质,称为粗脂肪。此外,索氏抽提法不适用于含糖量过高的食品,因为,食品中的糖分会随着乙迷等溶剂被抽提到接收瓶中,致使测定值偏高。而巧克力制品正是含糖量较高的食品,在用索氏抽提法时会导致最后结果偏离真实值。一个重要的原因是巧克力制品中含有奶粉,其中的乳脂肪在抽提时不能被乙迷所溶解,这又造成结果的误差。索氏抽提法测定巧克力脂肪含量:酸水解法适用于加工食品和结块的不溶性样品,以及不易除去水分的样品。其利用强酸破坏蛋白质,纤维素等,使脂肪游离出来,再用乙迷提取。选用此法时,强酸可以打破巧克力制品中乳脂球膜,使乳脂肪游离出来,称之为总脂肪。但是,由于巧克力制品中含糖量较高,同样也会影响检验结果。另外,酸水解法由于人为主观因素会带来“在吸取醚层时,因界面不清晰,导致吸得不完荃或吸出黑色水分的结果”,在最后挥散乙迷烘干后的最后测定值或多或少的偏离真实值,影响检验的准确度。低场核磁法检测巧克力脂肪含量低场核磁法是基于巧克力产品中脂肪含量与采集到的NMR信号强度成正比,通过将每克样品的NMR信号对应于脂肪含量进行定标,即可定量未知样品中的脂肪含量。使用自旋回波序列进行测量,图一是自旋回波序列与检测到的核磁信号。在90度射频脉冲后t1处测量了自由感应衰减(FID)NMR信号。此时信号幅度(A1)与样品的固相和液相(基质和油分)中的H质子数成正比。180度脉冲后,检测自旋回波信号幅度为A2,此时固相的信号已经衰减为0,A2仅为油的信号,A2与样品的脂肪量成正比,从而进行定量测量。使用3~6个已知脂肪含量的样品进行定标后,未知样品可在30秒~3分钟钟内完成测试。测试过程快速无损,可实现工业在线过程测试。推荐仪器:PQ001系列低场核磁共振分析仪

应用实例

2022.12.16

低场核磁技术研究水分子运动状态

低场核磁技术研究水分子运动状态水分子的运动:水分子是粘在一起、一个挨着一个、振动着的分子。水保持着它的体积;它不会散开,因为它的分子互相吸引。当温度升高,水分子的运动也加强。如果继续加热,到了分子间的吸引力不足以把它们拉在一起时,分子就会飞走,互相分离。升温影响水分子的运动:互相吸引的水分子→加热(得到外部能量)→分子运动加强,能量增加→总能量增加→温度升高→继续加热→吸引力不足→分子就会飞走,互相分离→蒸发。当温度降低,水里的原子、分子的振动逐渐减弱。 原子之间是有吸引力的,在很低的温度下将发生的情况:分子被锁定在一种新的型式中,这就是冰。冰是水分子六角形阵列。虽然是一种刚性的结晶形态。冰的原子并不是静止不动的,所有的原子仍在原地振动。 提高温度,它们振动的幅度越来越大,直到把它们自己从所在的位置上摇下来。 叫熔化。固体和液体的差别就在于,固体中的原子是按照某种阵列排列的,叫做晶体阵列。降温影响水分子的运动:降低温度→能量低了→分子运动减弱→很低的温度→分子锁定成六角形结构的冰→原子就地振动→冰的温度。低场核磁技术研究水分子运动状态低场核磁共振技术可用于研究水分子运动状态,弛豫时间特征参数可以反映当前温度下水分子的活性。相同温度下,水分子活性越大,弛豫时间越长。所以自由水的T2弛豫时间要远远大于冰的弛豫时间。生物体系中,水分子与周围物质发生作用,从而影响水分子的运动特性。T2弛豫图谱可区分样品中不同运动状态的水组分。多层结构形成机理:大分子的亲水基团(—NH2,—OH)与邻近水分形成氢键,由于氢键极化,水分子反过来倾向与下一层水分子形成氢键,如此反复,最后形成极性的多层结构。这个又是NMR研究水分相态的基础依据,由于结合水直接与大分子基团以氢键结合,受到束缚程度较大,水分运动性较弱,衰减速度最快,自由水游离在结构以外,水分运动性较强,衰减速度最慢,从而根据弛豫时间的大小来区分水分相态。推荐仪器:纽迈NMI20系列变温低场核磁共振

应用实例

2022.12.14

低场磁共振自由水和结合水信号

低场磁共振自由水和结合水信号什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。低场磁共振自由水和结合水信号检测:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。NMI20系列低场核磁共振成像分析仪(带变温系统)

应用实例

2022.12.14

核磁共振弛豫时间与什么有关

核磁共振弛豫时间与什么有关什么是弛豫时间?弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。什么是核磁共振弛豫时间?要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,最终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。核磁共振弛豫时间有两种即T1和T2T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。核磁共振弛豫时间与什么有关:核磁共振弛豫时间T1:弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。核磁共振弛豫时间T2;T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。影响核磁共振弛豫时间T2的因素:1.内部因素分子运动:分子运动越慢,T2越小;例如冰和固体;分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论。2. 外部因素磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。影响核磁共振弛豫时间T1与T2的关系:

应用实例

2022.12.14

低场核磁技术研究水凝胶的保水性能

低场核磁技术研究水凝胶的保水性能什么是水凝胶?水凝胶(Hydrogel)是由亲水性聚合物链通过化学或物理交联而形成的三维网络。它可以充分吸水而不溶于水,自身显著溶胀的同时仍保持其原有的三维结构。水凝胶含有大量的水(可达90%),质地柔软,性状可变,物理性质与生物组织类似,具有优异的生物相容性,可负载不同材料,包容性非常强,同时其力学性质可调,是一类优秀的生物材料。水凝胶的分类水凝胶有多种分类方式。根据材料来源可分为天然水凝胶(如透明质酸、胶原蛋白、海藻酸钠等)和人工合成水凝胶(如聚丙烯酰胺、聚乙二醇等)。人体的许多组织(如肌肉、角膜、血管等)都可以归为天然水凝胶,这也就使得水凝胶在生物医学、人体组织方面有巨大的应用潜力。水凝胶的应用水凝胶生物相容性、生物可降解性、高吸水、保水的特性使其广泛适用于环境工程、柔性传感、电化学等许多领域,尤其是生物医学领域,包括组织工程、药物输送系统、伤口敷料、生物传感器、隐形眼镜、人工细胞等,有着广泛的应用。水凝胶作为新型功能材料,具有高吸水保水性、生物相容性好、柔韧等特点,通过不同材料的选择以及改性、复合等手段赋予其特定性能如自愈合性、环境响应特性等。因此,关于水凝胶的研究数不胜数。同时水凝胶及其衍生物在各个领域应用越来越广泛,其研究价值绝不仅限于此,这也是其大火的原因。水凝胶的保水性能水凝胶因其优异的柔性、亲水性和生物相容性等特点在组织工程、伤口敷料、药物输送、柔性电子、智能器件、能源等领域应用广泛。然而,由于水凝胶中含有大量水分,水分不可避免地蒸发,而导致水凝胶在空气中逐渐脱水,造成水凝胶柔性、弹性等功能逐渐丧失,这已严重限制了水凝胶的实际应用。因此,提高水凝胶的保水性能对改善水凝胶的稳定性、延长水凝胶的使用寿命、扩展水凝胶的实际应用具有重要意义。低场核磁技术研究水凝胶的保水性能低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、无创、无损的测定水组分分布的方法。对于水凝胶,不同环境中的水,如凝胶内水或外水,可能表现出不同的弛豫性质。T2组分对应的幅度可以定量并计算膨胀率。此外,基于T2值与水凝胶网络网孔尺寸之间的比例关系,可以描绘溶胀过程中由于浓度效应引起的水凝胶网络网孔尺寸变化。因此,低场核磁共振(LF-NMR)可以作为研究水凝胶溶胀过程中水的动态传输和微观结构变化的有力工具。此外,低场核磁共振(LF-NMR)不需将水凝胶从溶胀体系中取出,即可直接原位测量水凝胶的T2分布。低场核磁技术是研究水凝胶的保水性能非常适用的一种技术。纽迈PQ001系列核磁共振分析仪

应用实例

2022.12.12

小核磁在聚合物的应用

小核磁在聚合物的应用什么是小核磁?小核磁又称小核磁分析仪,由于体型较小,被形象的称为小核磁。小核磁一般泛指低场强核磁共振系统,主要从分子运动角度研究样品。小核磁主要用于高校科研、企业研发、工业质检质控。小核磁结构紧凑,性价比高,使用方便,日常维护简单,能够应用于食品、农业、材料、能源、纤维、岩土等多个领域。小核磁仪器小巧,无需特殊安装场所,安装方便。小核磁一般为永磁体,无需制冷剂。维护检修方便,漏磁小,使用安全,维护成本低。纽迈分析VTMR系列变温核磁共振分析仪(带变温系统)小核磁的组成:小核磁主要由磁体单元、射频单元、谱仪单元和温控单元几个部分组成。磁体单元可提供均匀、稳定的主磁场;射频单元用于射频放大与样品激励;谱仪单元是小核磁分析仪的控制系统;温控单元主要功能是对磁体进行精准控温;小核磁的工作原理:原子核,如氢和氟等,都带有正电荷,这些原子核本身具有一个重要的属性,那就是其自旋。一个带电的自旋体就产生一环形电流,而一环形电流便可形成一磁场。这样,每一个原子核就是一个小磁体,也就像小指南针。在无外加磁场时,物质中的原子核磁场的指向是无规则杂乱分布的。当将物品放入一外加磁场中时,原子核就要与外加磁场发生相互作用,其作用的结果就是原子核磁场的方向排布有序,一部分原子核磁场的指向沿着外加磁场的方向,另一部分的原子核的指向与外加磁场方向相反,使样品中原子核之间产生了热能差别,即出现了能级。当原子核在两个能级间跃迁时,便有核磁共振信号产生。小核磁在聚合物的应用:1). 小核磁在纺织行业的应用:◆ 纤维中油剂含量◆ 聚合物涂层含量◆ 纤维和纺织品上的氟化涂层测量2). 小核磁在材料行业的应用:◆ 弹性体交联密度◆ 硫磺粉末样品中的油含量◆ 聚苯乙烯中的橡胶含量3). 小核磁在石化行业的应用:◆ 碳氢化合物的氢含量◆ 蜡/石蜡的含油量4). 小核磁共振在制药行业的应用◆ 造影剂弛豫时间、弛豫率、体外成像、活体MRI◆ 非接触式称重◆ 粉剂和片剂的含水量和溶剂含量5). 小核磁在悬浮液体系中的应用:◆ 微乳液的弛豫◆ 混合聚合物体系的吸附行为◆ 聚合物在二氧化硅上的竞争吸附

应用实例

2022.12.12

低场核磁共振结合水自由水

低场核磁共振结合水自由水什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。低场核磁共振结合水自由水检测:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。NMI20系列低场核磁共振成像分析仪(带变温系统)

参数原理

2022.12.12

喜报:纽迈分析成功入选2022年省级“专精特新”企业!

近日,《关于江苏省2022年专精特新中小企业和2019年度专精特新企业复核通过企业名单的公示(第二批)》发布,苏州纽迈分析仪器股份有限公司成功入选江苏省工信厅批复的2022年度“专精特新”中小企业名单。    什么是专精特新?“专精特新”是国家为引导中小企业走专业化、精细化、特色化、新颖化发展之路,增强自主创新能力和核心竞争力,不断提高中小企业发展质量和水平而实施的重大工程。  纽迈分析的“专精特新”“专”,即专业化。采用专项技术或工艺通过专业化生产制造的专用性强、专业特点明显、市场专业性强的产品。纽迈分析脱胎于华东师范大学核磁共振设备研发团队,专注低场核磁领域二十年。以低场核磁共振及成像技术为依托,为各领域科学研究工作者提供低场核磁共振创新设备及应用解决方案,为广大青少年提供科学探索的机会与技术手段,帮助更多人了解核磁共振,应用核磁共振,发展核磁共振。 “精”,即精细化。采用先进适用技术或工艺,按照精益求精的理念,建立精细高效的管理制度和流程,通过精细化管理,精心设计生产的精良产品。纽迈分析具备卓越的生产服务水平和完备成熟的运营体系,开发的多款核磁共振分析仪、核磁共振成像仪已获得多项国家奖项和资质认证。广泛应用于农业种子含油率,含水率、食品品质、石油测录井、能源勘探、橡胶交联高分子材料、纤维纺织工业、磁共振造影剂、活体动物成像等行业领域,获得业界普遍认可。 “特”,即特色化。采用独特的工艺、技术进行研制生产,产品或服务具有独特性、独有性、独家性特点,掌握自主知识产权。纽迈分析先后承担了国家重大仪器设备专项和江苏省科技成果转化专项等各级科技项目,并率先掌握了各项核心技术,陆续开发出多个系列的并具有自主知识产权的专业低场核磁共振设备,目前已广泛应用于能源勘探、高分子材料、纺织工业、生命科学、农业食品等多个行业领域,填补了国内行业空白。 “新”,即新颖化。依靠自主创新、转化科技成果、联合创新或引进消化吸收再创新方式研制生产的,具有自主知识产权的高新技术产品。纽迈分析重视人才梯队建设,充分联动高校科研人才资源,在产学研项目合作、人才培养等方面探索新形式、建立新机制,先后建立苏州纽迈分析博士后科研工作站、江苏省校企研究生工作站,与高校与企业共建多个低场核磁联合实验室。 纽迈分析将以此次“专精特新”企业的入选为契机和动力,与纽迈分析的价值观“专·精·敏·恒”深入嵌套,紧跟国家创新驱动发展的战略步伐,沿着专业化、精细化、特色化、新颖化的方向砥砺前行。通过加大科研投入、培养高技术人才队伍等举措,将低场核磁共振分析仪器系列产品及服务做到更优更精更极致,更好地服务广大客户!

企业动态

2022.12.09

大咖来访:核磁共振诺奖获得者Paul C.Lauterbur的学生-阮榕生教授莅临苏州纽迈进行交流指

2022年11月19日阮榕生教授莅临苏州纽迈分析仪器股份有限公司,参观了苏州纽迈新建落成的厂房、设备研发和生产基地,并对纽迈的工作进行指导,提出了宝贵的发展建议。阮榕生教授是何许人也?阮榕生,男,博士,美国明尼苏达大学教授、生物精炼中心主任,博士生导师。美国农业与生物工程学会院士(ASABE fellow),美国食品科技学会院士(IFT fellow),教育部长江学者特聘教授。阮榕生教授的研究领域涵盖可再生生物质能源和农林生物质的增值加工食品工程学等领域。主要从事核磁共振及其成像技术、食品聚合物理论与核磁共振食品聚合物状态图技术、超高压技术、等离子杀菌技术和神经网络技术在食品加工与保藏、食品质量管理中的应用等相关研究工作。曾先后承担能源部、农业部、国家科学基金及工业界等有关科研项目200多项,共计研究经费5000多万美元;先后在国际权威杂志上发表文章500多篇,其中SCI、EI收录400多篇;著有18部专著或合著;国内外发明专利50多项;获得60多项国际奖项。苏州纽迈分析仪器股份有限公司董事长杨培强先生和阮教授一起漫步在纽迈的时光长廊里,回顾了纽迈从“0”到“1”的成长之道。看到时光长廊里第一届全国低场核磁共振技术与应用研讨会的照片,杨培强先生不禁百感交集,十分感谢阮教授在纽迈成立初期提供的指导与帮助。杨培强董事长为阮教授介绍了纽迈打破国外仪器技术壁垒和垄断,远销亚洲、欧洲、北美洲等地的多项产品,如清醒小动物体成分分析仪、固体脂肪含量分析仪、种子含油含水率分析仪等。尤其在食品农业领域,土耳其此次批量订购了几十台种子含油含水率分析仪。阮博士听后表示,作为低场磁共振科学仪器设备国内领军品牌,纽迈发挥了很好的领头作用,树立了行业榜样。此次几十套种子含油含水率分析仪销往土耳其,说明纽迈品牌已经立足国际,并得到国际客户认可。希望纽迈能够在保持质量的同时,不断创新,根据市场需求定制多样化产品,让国产仪器在国际舞台上绽放光彩。同时,阮教授也提到了自己在食品加工与保藏、食品质量管理中的应用等方面的研究。如开发延长食品货架期和确保食品质量以及保障食品安全的高新技术;开发先进的非热等离子及高压电场技术在生物制品和食品加工中的应用。核磁共振及其成像技术在医学领域的应用已经非常广泛,但在其他领域的应用相对来说还未得到普及。阮教授根据自己在食品、农业、生物等领域的多年科研经验,编撰了《核磁共振技术在食品和生物体系中的应用》这本书,旨在让更多人了解核磁共振技术在食品科学、农业科学、生物科学等方面的应用。展厅参观结束后,阮教授来到了纽迈的研发基地和生产车间,进一步了解纽迈的产品。在听完纽迈产品在油气田开发模拟实验、页岩油气开发评价、二氧化碳驱油碳封存等研究领域的应用后,阮教授对纽迈在产品研发和创新上取得的成果表示高度认可。尤其是附加的高温高压系统,十分契合当前国内外行业需求,但是国外还没有成熟的此类仪器用于研究,阮教授希望纽迈能够加大宣传力度,打开国际市场,不仅是做到国内有口皆碑,国外也能声名远扬。同时也希望纽迈保持创新精神,在食品、农业、化工等领域也能提供高温高压的核磁平台解决方案。工作指导针对如何打开国际市场?阮教授也提出了一些建议:1、参加美国大型的行业应用会议,作报告。很多美国的企业会参加这种会议以期寻找到他们痛点的解决方案;2、企业在听到报告之后会主动联系报告人;3、报告人提供咨询服务,协助寻找解决方案;4、企业在解决方案成熟之后就会购买设备,自己进行测试。正己育人  严谨治学树榜样潜心研究  累累硕果利民生 感谢阮教授对苏州纽迈分析的支持,对牛马哥们的工作进行指导。我们将继续砥砺前行,不断创新,向阮教授学习,为中国的分析仪器行业做出更大的贡献和成就。

企业动态

2022.12.09

怎样理解核磁共振弛豫时间

怎样理解核磁共振弛豫时间什么是弛豫时间?弛豫时间,即达到热动平衡所需的时间。是动力学系统的一种特征时间。系统的某种变量由暂态趋于某种定态所需要的时间。在统计力学和热力学中,弛豫时间表示系统由不稳定定态趋于某稳定定态所需要的时间。什么是核磁共振弛豫时间?要了解核磁共振弛豫时间,首先了解一些核磁共振基本原理:核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。核磁共振发生的过程,其实是原子核吸收射频能量的过程,当射频脉冲关闭后,吸收能量的原子核会释放吸收的能量,经过一定的弛豫过程,随着时间的推移,最终恢复到平衡状态。原子核释放能量所需要的时间就对应核磁共振弛豫时间。核磁共振弛豫时间有两种即T1和T2T1为纵向驰豫时间,纵向磁化强度恢复的时间常数T1称为纵向弛豫时间(又称自旋-晶格弛豫时间)。t2为横向弛豫时间,横向磁化强度消失的时间常数T2称为横向弛豫时间(又称自旋-自旋弛豫时间)。影响核磁共振弛豫时间的因素:核磁共振弛豫时间T1:弛豫过程是能量释放的过程,T1弛豫中能量释放到哪里了呢?其名字告诉我们答案,spin-lattice,自旋晶格,晶格相当于指与H原子排列在一起组成的晶格,所以,能量释放到周围的晶格中。T1弛豫与周围分子的运动息息相关。T1可以研究慢速分子运动,例如金属离子的螯合状态、蛋白质聚集、多孔材料表面动力学等等。核磁共振弛豫时间T2;T2,自旋-自旋弛豫。归纳起来就是因为各个H质子的拉莫尔频率(或者说相位)不尽相同,当撤去射频脉冲后,质子由聚到散的过程。影响核磁共振弛豫时间T2的因素:1.内部因素分子运动:分子运动越慢,T2越小;例如冰和固体;分子尺寸:分子尺寸越大,T2越小;例如食品中淀粉等大分子的弛豫时间比水和油脂短得多。分子结合状态:结合越紧密,T2越小;食品中水的多层结构理论2. 外部因素磁场不均匀:千万不要小看这个因素,磁场不均匀会加速散相过程(使得H质子之间的差异更大),从而测得的T2比实际的T2衰减的快的多的多。核磁共振弛豫时间T1与T2的关系图:

应用实例

2022.12.09

低场磁共振自由水和结合水区别

低场磁共振自由水和结合水区别什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。低场磁共振自由水和结合水区别检测:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。NMI20系列低场核磁共振成像分析仪(带变温系统)

应用实例

2022.12.09

自发渗吸分层含水量-低场核磁共振技术

自发渗吸分层含水量-低场核磁共振技术什么是自发渗吸?渗吸发生在多孔介质中,渗吸也叫自吸,即自发渗吸,是指在没有加压的情况下,水自动吸入岩心的过程。广义的渗吸包括加压渗吸和自发渗吸。加压渗吸就是所谓的水驱过程,也叫强迫渗吸。通常所说的渗吸,是指自吸,不包括加压渗吸。渗吸分单边接触式渗吸、双边接触式渗吸和周围接触式渗吸。单边渗吸就是岩心与水单边接触,水在毛管压力的牵引下吸入岩心,并排出其中的油。这种渗吸也叫毛管压力渗吸。自发渗吸分层含水量的变化:自发渗吸过程中,不同位置层面含水量随时间发生变化。自发渗吸往往是煤岩、水泥等岩心放在液体中(一般为水),因为岩心中有很多大小不同的孔隙,产生很多毛管压力,把水吸到孔隙中,而我们则关注水是如何进入被渗吸进去的。需要捕捉样品不同层面上水的信号量。自发渗吸分层含水量-低场核磁共振技术原理常规的T2弛豫图谱是整个样品的激励,不能看某一个层面,核磁共振成像可以进行选层,但是目前我们所用的成像序列都会有不同程度的信号损失:即弛豫较快的信号往往损失掉,同时核磁共振成像采集时间相对较长,对于这类过程类试验,我们想要获取当前某一个瞬态的信号,如果吸水速度较快那么对采样时间有严格要求,因此纽迈研发出分层含水序列,针对吸水较快的样品,一次检测仅需几秒,实现水分迁移再空间方向的动态研究。如上图所示,将水泥样品一端插入盛有水溶液的烧杯中,采用纽迈分析分层含水序列,研究水分沿着样品空间轴的动态渗吸情况。右图横轴上从-0.5到0.5的方向对应样品低端(接触水)到顶端,纵坐标代表水分含量,水泥样品的吸水速度很快,3min时候在低端已经有0.05%的水分,40min之前水分主要集中在下半部分,之后水分才慢慢向上端渗吸,90min左右信号变化不明显,表明渗吸基本结束。推荐:纽迈MesoMR系列低场核磁仪器

应用实例

2022.12.09

纽迈携磁共振在材料领域的应用解决方案|亮相第七届工程塑料产业创新大会

由DT新材料、中国塑料加工工业协会工程塑料专业委员会和四川大学高分子材料工程国家重点实验室联合举办的国内工程塑料领域规模最大、专业性最强的《2022第七届中国国际工程塑料产业创新大会》(以下简称工程塑料大会)于2022年11月10日-11日在宁波圆满落幕。  会议汇聚了近400位来自研究所、高校、塑料原料、高性能改性、终端应用端、生产制造及检测设备的行业专家及业内人士。近40位行业专家、学者代表从细分领域切入,详细讲解工程塑料的具体应用、面临的困局与未来发展趋势,为行业发展指明方向。      纽迈分析受邀携低场核磁共振技术在材料领域的应用解决方案亮相大会。  核磁共振变温分析仪集各种弛豫时间测试与磁共振成像技术于一体,结合样品在线变温模块及针对短驰豫弱信号采集开发的FLAT技术,可提供种类丰富的解决方案。能够对溶液、凝胶、固体、颗粒等状态样品进行无损的快速分析,特别适合过程监控、工艺优化、配方研究、老化固化评价等在线实验研究。VTMR20-010V-I系列 现场参会学者被低场核磁共振技术在材料领域的创新应用所吸引,与纽迈工程师展开深入交流。 低场核磁共振技术是材料结构与性能的重要表征技术之一。作为研究高分子聚合物、树脂、新型表面活性剂等材料结构和动力学特性的重要方法,低场核磁共振技术广泛应用于研究聚合物处于不同环境中的变化。近年来,低场核磁共振技术在材料中高分子聚合物交联密度测试、分子结构和晶体结构研究、多孔材料孔隙结构分析中成为发展最快的技术之一。

企业动态

2022.12.08

“破四唯”“立新标” 科技部等八部门开展科技人才评价改革试点工作, 确定21家机构6个地方!

11月9日,科技部、教育部、财政部等八部门印发《关于开展科技人才评价改革试点的工作方案》(以下简称《方案》)。确定12家科研院所、9家高等院校或高校附属机构、6个地方开展为期两年的试点工作。  12家试点科研院所分别是:中国科学院上海微系统与信息技术研究所、中国科学院计算技术研究所、中国科学院数学与系统科学研究院、中国科学院物理研究所、中国科学院过程工程研究所、中国科学院大连化学物理研究所。中国水利水电科学研究院、南京水利科学研究院、中国农业科学院农业资源与农业区划研究所、中国农业科学院农业基因组研究所、工业和信息化部电子第五研究所、中国医学科学院北京协和医学院。9家高校或高校附属机构分别是:清华大学、北京大学、浙江大学、北京邮电大学、西安电子科技大学、西南交通大学、江南大学、四川大学华西临床医学院、哈尔滨工业大学。6个地方分别为上海市、山东省、湖北省、四川省、深圳市、南京市。 “破四唯”、“立新标”,直面科技人才评价改革落实难党中央、国务院高度重视科技人才评价工作。2018年,中央办公厅、国务院办公厅分别印发《关于分类推进人才评价机制改革的指导意见》、《关于深化项目评审、人才评价、机构评估改革的意见》,推进“三评”改革等作出系统部署。各地方和相关部门认真落实中央要求,出台破“四唯”等一系列相关改革举措,科技人才评价改革取得积极进展。但与广大科研人员的诉求和实现高水平科技自立自强相比,科技人才评价改革还存在落实难、落实不到位的问题,科技人才“获得感”不强。针对人才评价“落实难”“落实不到位”的问题,《方案》明确了科技人才评价改革试点的路线图,从单位内部和外部环境两方面进行系统部署。单位内部主要从根据不同科技创新活动类型探索新的评价指标、方式、周期、内部制度等进行系统设计;外部环境主要从有关部门推动“三评”改革联动、构建行业特色的人才评价体系、调整机构绩效评估指标、推动落实科研相关自主权等方面部署任务。通过内外协同联动,探索形成有利于潜心研究的科技人才评价体系。通过2年的试点,探索形成不同创新活动类型的科技人才分类评价指标和评价方式,科技人才发现、培养、使用、激励的评价机制更加完善,形成可操作可复制可推广的经验做法。 坚持德才兼备,按照4类创新活动部署试点任务本次试点坚持德才兼备,在加强对科技人才科学精神、学术道德等评价的基础上,按照承担国家重大攻关任务、基础研究、应用研究和技术开发、社会公益研究4类创新活动部署试点任务。承担国家重大攻关任务的科技人才的评价以支撑服务国家重大战略需求为导向;基础研究类人才的评价以学术贡献和创新价值为导向;应用研究和技术开发类人才的评价以技术突破和产业贡献为导向;社会公益研究类人才的评价主要以服务支撑能力和社会贡献为导向。针对每一类创新活动,从构建符合科研活动特点的评价指标、创新评价方式、完善用人单位内部制度建设等方面提出相应试点任务。 多方试点合力打通“最后一公里”科技人才评价改革是一项系统工程,复杂程度高、改革难度大,关乎科研人员切身利益。试点工作的顺利开展和取得实效需试点有关部门、地方和单位积极推动、狠抓落实、形成合力。试点单位主管部门要探索完善具有行业特色、突出主责主业的人才评价体系,加强对试点单位指导、服务和政策支持;试点单位要结合单位使命宗旨和国家创新需求,明确改革试点的具体内容,完善人才评价相关制度,打通“最后一公里”,保障试点工作顺利推进。 苏州纽迈分析苏州纽迈分析仪器股份有限公司,自2003年成立以来,一直专注于“核磁共振”技术的开发和应用推广。纽迈分析尊重知识,重视人才,先后与清华大学、复旦大学、上海理工大学、华东师范大学、中国石油大学、中科院化学所、北京农业信息工程技术研究中心以及新加坡南洋理工大学等成立校企联合研发中心,积淀了丰厚的科技成果,培养了多位研发人才。纽迈分析先后承担了国家重大仪器设备专项和江苏省科技成果转化专项等各级科技项目,并率先掌握了各项核心技术,陆续开发出多个系列的并具有自主知识产权的专业低场核磁共振设备,目前已广泛应用于能源勘探、高分子材料、纺织工业、生命科学、农业食品等多个行业领域,填补了国内行业空白,并得到了广大客户的一致认可。公司发展强劲,在国内低场核磁细分市场极具竞争力。

企业动态

2022.12.08

中外企四方合作!我国首个开放式千万吨级CCUS项目启动!

据中国石化新闻办消息,今日,中国石化与壳牌、中国宝武、巴斯夫在上海签署合作谅解备忘录,四方将开展合作研究,在华东地区共同启动我国首个开放式千万吨级CCUS项目。 CCUS,即二氧化碳捕集、利用与封存,就是通过从工业排放源中捕集二氧化碳并加以利用或注入地质构造封存,以实现二氧化碳减排的过程。CCUS(Carbon Capture,Utilization and Storage)技术是CCS(Carbon Capture and Storage,碳捕获与封存)技术新的发展趋势,是实现碳中和的重要技术组成部分。四方强强联手,将长江沿线等工业企业,比如钢材厂、化工厂、水泥厂等的碳源通过槽船集中运输至二氧化碳接收站,通过距离较短的管线再把接收站的二氧化碳输送至陆上或海上的封存点,为华东地区长江沿线工业企业提供灵活、有效的、一体化二氧化碳减排方案。各行各业都在研究二氧化碳减排、捕捉与存储技术,其中利用二氧化碳养护混凝土,在封存二氧化碳的同时,进一步提高混凝土材料的性能,是颇具大规模工业化应用前景的二氧化碳利用方式。低场核磁共振技术作为新晋的高新测试手段,凭借无损、绿色、可重复等优势,已在能源岩土测试领域大放异彩。基于低场核磁共振技术的混凝土二氧化碳养护在线监测应用,集成养护与实时在线监测两部分内容,是领域内一种新的应用监测手段。混凝土二氧化碳养护在线监测核磁设备什么是混凝土二氧化碳养护?低场核磁混凝土二氧化碳养护在线监测的意义?低场核磁如何对混凝土二氧化碳养护进行在线监测?大家可以点击 基于低场核磁共振技术的混凝土二氧化碳养护在线监测 这篇文章,了解更多关于混凝土二氧化碳养护的知识。其他资料:

企业动态

2022.12.08

自发渗吸分层含水率-低场核磁共振技术

自发渗吸分层含水率-低场核磁共振技术什么是自发渗吸?渗吸发生在多孔介质中,渗吸也叫自吸,即自发渗吸,是指在没有加压的情况下,水自动吸入岩心的过程。广义的渗吸包括加压渗吸和自发渗吸。加压渗吸就是所谓的水驱过程,也叫强迫渗吸。通常所说的渗吸,是指自吸,不包括加压渗吸。渗吸分单边接触式渗吸、双边接触式渗吸和周围接触式渗吸。单边渗吸就是岩心与水单边接触,水在毛管压力的牵引下吸入岩心,并排出其中的油。这种渗吸也叫毛管压力渗吸。自发渗吸分层含水率的变化:自发渗吸过程中,不同位置层面含水率随时间发生变化。自发渗吸往往是煤岩、水泥等岩心放在液体中(一般为水),因为岩心中有很多大小不同的孔隙,产生很多毛管压力,把水吸到孔隙中,而我们则关注水是如何进入被渗吸进去的。需要捕捉样品不同层面上水的信号量。自发渗吸分层含水率-低场核磁共振技术原理常规的T2弛豫图谱是整个样品的激励,不能看某一个层面,核磁共振成像可以进行选层,但是目前我们所用的成像序列都会有不同程度的信号损失:即弛豫较快的信号往往损失掉,同时核磁共振成像采集时间相对较长,对于这类过程类试验,我们想要获取当前某一个瞬态的信号,如果吸水速度较快那么对采样时间有严格要求,因此纽迈研发出分层含水序列,针对吸水较快的样品,一次检测仅需几秒,实现水分迁移再空间方向的动态研究。如上图所示,将水泥样品一端插入盛有水溶液的烧杯中,采用纽迈分析分层含水序列,研究水分沿着样品空间轴的动态渗吸情况。右图横轴上从-0.5到0.5的方向对应样品低端(接触水)到顶端,纵坐标代表水分含量,水泥样品的吸水速度很快,3min时候在低端已经有0.05%的水分,40min之前水分主要集中在下半部分,之后水分才慢慢向上端渗吸,90min左右信号变化不明显,表明渗吸基本结束。推荐:纽迈MesoMR系列低场核磁仪器

应用实例

2022.12.07

低场磁共振中结合水和自由水

低场磁共振中结合水和自由水什么是自由水与结合水?自由水又称体相水,滞留水,不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。结合水是指在细胞内与其他物质结合在一起的水。水是极性分子,氧侧带部分负电荷,氢侧带部分正电荷,因此水分子很容易与其他极性分子间形成氢键。如氨基、竣基、羟基等均可与水结合,成为结合水。所有结合水不再能溶解其他物质,较难流动。自由水是指在生物体内或细胞内可以自由流动的水,是良好的溶剂和运输工具。如人和动物血液中含水83%,多为自由水,可把营养物质输送到各个细胞,又把细胞产生的代谢废物运到排泄器官。它的数量制约着细胞的代谢强度。如呼吸速度、光合速度、生长速度等。自由水占总含水量百分比越大则代谢越旺盛。心肌含水79%,与血液含水量相差不多,但所含的水均为结合水,故呈坚实的形态。结合水不参与代谢作用,然而植物中结合水的含量与植物抗性大小有密切关系。即使干燥的成熟种子也保持约25%左右的水即结合水,这时原生质呈半凝固的凝胶状态,生理活性降到蕞低程度,但原生质的基本结构还可以保持并可 抵抗干旱和寒冷等不良环境。自由水和结合水的区分不是绝对的,两者在一定条件下可以相互转化。如血液凝固时,自由水就变成了结合水。低场磁共振中结合水和自由水检测:低场核磁也叫时域核磁,用于测试分子与分子之间的动力学信息,例如用低场核磁共振测自由水结合水。自由水与结合水中H所处的状态不同,水分子的运动性差异很大,对应的弛豫时间差别也非常大,通过低场核磁共振技术可以灵敏地检测自由水结合水。一般自由水对应的弛豫时间长,结合水对应的弛豫时间短。低场核磁共振设备主要是检测样品中的H质子。将样品放入磁场中之后,通过发射一定频率的射频脉冲,使H质子发生共振,H质子吸收射频脉冲能量。当射频脉冲结束之后,H质子会将所吸收的射频能量释放出来,通过的线圈就可以检测到H质子释放能量的过程,这也就是核磁共振信号。对于性质不同的样品,其能量释放的快慢是不同的,通过这些信号差别就可以寻找规律,研究样品内部性质。NMI20系列低场核磁共振成像分析仪(带变温系统)

应用实例

2022.12.07

核磁共振技术

核磁共振技术什么是核磁共振?核磁共振从字面意思可以理解为原子核在磁场中发生共振。一般核磁共振中的原子核是指氢原子核。磁是指磁场环境,在均衡稳定的磁场里面,氢原子核会有会以固定的频率发生进动,进动频率与磁场强度成正比。共振是指外加频率与氢原子核在磁场中的固有频率相等时,氢原子核吸收能量发生核磁共振。核磁共振技术分类?从应用上可大致将核磁共振技术分为三类:第一类是核磁共振成像,主要用于医学检测,是一种无损成像方式,可获得组织结构的二维、三维核磁共振图像,辅助医学疾病诊断和治疗。第二类是核磁共振波谱技术,主要用于化学、材料、制药领域的分子结构分析。H原子核由于化学环境不同,存在频率差异,通过核磁共振波谱技术可研究分子结构信息。第三类是时域核磁共振技术,主要用于分子运动分析、含量分析、工业质检质控等。时域核磁共振技术主要用于测试分子与分子之间的动力学信息,通过弛豫时间得到分子运动信息,分子与分子之间的作用信息;研究领域属亚微观领域(分子之间),可测定玻璃态转化温度、高分子材料交联密度、造影剂弛豫率、孔径分布及孔隙度等,广泛应用于食品工业、石油工业、医药工业、纺织工业、聚合物工业。核磁共振技术原理核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。核磁共振技术应用1). 低场核磁在食品领域的应用:◆ 棕榈油、黄油等油脂固体脂肪含量测试(SFC ,Solid Fat Content)◆ 含油种子、种子残渣含油率和含水率测试◆ 巧克力及巧克力相关产品的固体脂肪含量◆ 总脂肪含量2). 低场核磁在农业领域的应用:◆ 种子含油含水率测试◆ 种子发芽过程研究◆ 含油种子自动化选育(按含油率分选)◆ 植物根系成像研究◆ 农产品干燥研究3). 低场核磁在纺织行业的应用:◆ 纤维中油剂含量◆ 聚合物涂层含量◆ 纤维和纺织品上的氟化涂层测量核磁共振技术设备低场核磁共振仪按照仪器部件来分,主要包括工控机、谱仪系统、射频单元、梯度单元、磁体柜及温控单元六大部分;按照工作任务来分,仪器由工控机、射频系统、梯度系统、磁体、恒温系统五大部分组成。其中,工控机负责接收操作者的指令,并通过序列发生软件产生各种控制信号传递给谱仪系统的各个部件协调工作,还要完成数据处理、存储和图像重建以及显示任务;射频系统主要负责射频脉冲序列的发射和采样信号的接收;梯度系统主要负责产生梯度磁场;磁体主要负责提供均匀、稳定的主磁场;恒温系统主要负责磁体柜内的温度控制。纽迈PQ001系列核磁共振分析仪

应用实例

2022.12.07

低场核磁技术研究食品吸水和持水能力

低场核磁技术研究食品吸水和持水能力什么是持水性?动物屠宰后肌肉保持自身水分的能力被称之为持水性,是指当肌肉受到外力作用时保持原有水分的能力。肉的持水性不仅影响肉的滋味、香气、多汁性、营养成分、嫩度、颜色等食用品质,而且还直接影响肉制品的成品率,具有重要的经济价值。较低的持水性对于肉类工业意味着较大的经济损失,即肉中水分流失带来的经济损失和肉品加工品质的降低带来的损失。肌肉中的水分主要存在于肌细胞中,即肌原纤维中、肌原纤维间、肌原纤维与细胞膜之间、细胞间和肌束之间的空隙中。肌肉的持水性主要依靠肌浆中的蛋白质分子,蛋白质分子所带的静电荷与水分子极化基团静电荷之间相互吸引从而能将水分子纳入蛋白质高分子网状立体结构的空间中,这是肌肉持水性的原因。肌肉中的大部分水分被吸附于肌纤维细胞膜内的肌浆中,小部分水分靠毛细管作用滞留于肌纤维细胞膜外,由于有肌束膜包裹而不致外溢。宰后肌肉转变成食肉的过程中,其持水性有一个变化的过程。水是肉品中最主要的成分,占到肉品质量的75%左右。宰后肉品持水力的改变,不仅影响肉品的感官和食用品质,而且严重地影响其经济价值。研究猪肉的持水性降低猪肉汁液损失具有十分重要的意义。传统方法如压力(重量、面积)法、离心法、滴水损失、贮藏损失和蒸煮损失等都不能表征肉中水分存在的状态以及变化过程。低场核磁共振利用氢原子核在磁场中的自旋驰豫特性,通过弛豫时间的变化分析研究物质的含水量、水分分布、水分迁移以及与之相关的其他性质,为如何控制和避免宰后猪肉大量滴水提供了一种行之有效的方法。国外的相关研究也表明低场核磁共振可以成为研究肉品持水性能、水分分布及变化的一种理想工具。低场核磁技术研究食品吸水和持水能力基本原理生物组织含有很多水和有机化合物,而构成水和有机物的氢原子在有电荷绕核旋转的同时又不停的自转,与线圈通过电流时会产生磁场一样,所以把氢原子核看做是小磁铁,把生物组织的试样看成是由无数微小的氢原子核磁铁构成的。这些微小的原子核磁铁在磁场中有的处于高能态有的处于低能态。对样品施加射频脉冲,使氢质子发生共振,低能态氢质子就可能跃迁到高能态。停止射频脉冲后质子以非辐射的方式回到基态而达到玻尔兹曼平衡的时间就是弛豫时间。通过分析纵向弛豫时间Tl和横向弛豫时间T2,可以得到很多样品内部的信息。肉品水分的研究主要利用横向弛豫时间T2。弛豫时间越短说明水与周围物质结合越紧密,弛豫时间越长说明水分越自由。所以弛豫时间可以间接的表明水分的自由度,从而可以用核磁共振研究肉品中水分的分布和流动,进而研究肉品持水性变化的机理。

应用实例

2022.12.05

磁性纳米颗粒用于磁共振成像:弛豫评价磁性纳米颗粒用于磁共振成像:弛豫评价

磁性纳米颗粒用于磁共振成像:弛豫评价磁共振造影剂:根据不同磁性物质主要作用于Tl或T2加权造影成像,造影剂同样分为Tl造影剂或T2造影剂。国外造影剂的研究十分活跃,已有多种造影剂投入生产并进入了临床应用。目前已经被食品药品监督管理局批准上市的基于钆配合物的造影剂有7种。磁针造影剂的需求量还在迅速增加。因此,新型造影剂的研制与开发具有非常重要而深远的意义。磁性纳米颗粒在众多磁性纳米材料中,氧化铁纳米颗粒具备优越的磁性性质和磁稳定性、良好的生物相容性等等优点,是磁性纳米材料研究领域的重要平台。通过合理设计以及理论优化对纳米颗粒的尺寸、形貌、组分、表面结构、生物功能化修饰等多个方面进行调控,并系统地研究了这类纳米颗粒在磁共振弛豫效能以及造影成像上的应用。可以发展出一系列具有高效Tl、T2或T1.T2双模式造影能力的造影剂材料。磁性纳米颗粒用于磁共振成像:弛豫评价之弛豫率弛豫效率是超顺磁性氧化铁对比剂关键指标之一。弛豫效率高的样品,可以使用最少的量达到最为好的效果;在造影剂研究领域,纽迈磁共振快速弛豫分析仪可测试方便的测试造影剂T1、T2弛豫时间,并可对试管样品进行成像,提供定量和定性评价数据,为造影剂产品的研发与改进提供快速可靠的检测手段。造影剂弛豫率r1测试:用反转恢复序列(IR)测量其纵向弛豫时间,得到原始数据的恢复时间(t)及其相应的幅度值M(t),利用单指数模型M(t)=M(0)(1-2e-t/T1)拟合曲线t—M(t)可以得到纵向弛豫时间。

应用实例

2022.12.05

红外光谱与低场核磁共振技术简介

红外光谱与低场核磁共振技术简介红外光谱技术简介红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。低场核磁共振技术简介低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;(4)基于扩散系数的分析检测。低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。低场核磁共振技术原理低场核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。低场核磁共振由于其设备成本较低,研究使用门槛相对较低,应用领域非常广泛,且处于不断拓展之中。由于核磁共振分析技术具有速度快、精确度高、一次测量可获得多个参数、对样品无损耗、样品制备简单、对操作人员的健康和环境无影响等诸多优点,因此许多原来采用其他传统检测方法的应用目前都在探索采用核磁共振技术进行。

应用实例

2022.12.02

红外光谱与低场核磁共振技术简介

红外光谱与低场核磁共振技术简介红外光谱技术简介红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。在有机物分子中,组成化学键或官能团的原子处于不断振动的状态,其振动频率与红外光的振动频率相当。所以,用红外光照射有机物分子时,分子中的化学键或官能团可发生振动吸收,不同的化学键或官能团吸收频率不同,在红外光谱上将处于不同位置,从而可获得分子中含有何种化学键或官能团的信息。当一束具有连续波长的红外光通过物质,物质分子中某个基团的振动频率或转动频率和红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。低场核磁共振技术简介低场核磁共振主要是指磁场强度比较低的核磁共振仪器。低场核磁共振技术应用领域非常广泛,而且还处在不断拓展之中,低场核磁共振技术主要基于四个方面进行样品分析与检测:(1)基于信号幅值的分析检测;(2)基于图像(信号二维分布)的分析检测;(3)基于弛豫时间的分析检测;(4)基于扩散系数的分析检测。低场核磁共振技术在食品农业、地质勘探、石油化工、生物医药、材料科学等诸多方面体现出越来越广泛的应用,成为一种重要的分析测试工具。低场核磁共振技术原理低场核磁共振技术主要检测为H质子,也可以用于F信号测试。含H样品经过特定频率的射频激励后,产生核磁共振信号。H核磁共振信号对应有T1、T2两个主要参数,通过测试T1、T2弛豫时间并进行建模,可用于食品、农业、石油勘探、聚合物、固体脂肪含量…多方面研究。已有多种方法形成国际标准和行业标准方法。低场核磁共振由于其设备成本较低,研究使用门槛相对较低,应用领域非常广泛,且处于不断拓展之中。由于核磁共振分析技术具有速度快、精确度高、一次测量可获得多个参数、对样品无损耗、样品制备简单、对操作人员的健康和环境无影响等诸多优点,因此许多原来采用其他传统检测方法的应用目前都在探索采用核磁共振技术进行。

应用实例

2022.12.02

水凝胶低场核磁分析氢键强弱

水凝胶低场核磁分析氢键强弱水凝胶是一类为亲水的三维网络结构凝胶,它在水中迅速溶胀并在此溶胀状态可以保持大量体积的水而不溶解。由于存在交联网络,水凝胶可以溶胀和保有大量的水,水的吸收量与交联度密切相关。交联度越高,吸水量越低。水凝胶中的水含量可以低到百分之几,也可以高达99%。水凝胶具有良好的生物相容性、低毒性和可生物降解性等特性,用途非常广泛。水凝胶溶胀过程与水的传输和凝胶网络结构有关,因此,溶胀性能是评价水凝胶的重要参数。凝胶的溶胀性评价方法目前关于溶胀行为的研究主要是通过测量溶胀水凝胶的重量或体积变化来计算溶胀率。然而,该方法需要从溶液中取出水凝胶并用滤纸擦拭以去除多余的表面水,擦拭过程容易影响测定的准确度和重复性,从而产生意想不到的误差。水凝胶低场核磁分析氢键强弱低场核磁共振(LF-NMR)在研究基于水迁移率的聚合物网络的水传输和微观结构方面具有巨大潜力。与高分辨率核磁共振不同,低场核磁共振(LF-NMR)主要用于通过测量弛豫时间来阐明反映结构异质性和相互作用的分子迁移率。研究表明,低场核磁共振(LF-NMR)是一种快速、wu创、无损的测定水组分分布的方法。低场核磁可标准氢键与周围水分子之间的相互作用。对于水凝胶,不同环境中的水,如凝胶内水或外水,可能表现出不同的弛豫性质。T2组分对应的幅度可以定量并计算膨胀率。此外,基于T2值与水凝胶网络网孔尺寸之间的比例关系,可以描绘溶胀过程中由于浓度效应引起的水凝胶网络网孔尺寸变化。因此,低场核磁共振(LF-NMR)可以作为研究水凝胶溶胀过程中水的动态传输和微观结构变化的有力工具。此外,低场核磁共振(LF-NMR)不需将水凝胶从溶胀体系中取出,即可直接原位测量水凝胶的T2分布。

应用实例

2022.12.02

< 1 2 3 4 5 ••• 18 > 前往 GO

苏州纽迈分析仪器股份有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 苏州纽迈分析仪器股份有限公司

公司地址: 江苏省苏州市浒关工业区青莲路97号 联系人: 杨经理 邮编: 215151 联系电话: 400-858-9311

仪器信息网APP

展位手机站