您好,欢迎访问仪器信息网
注册
北京诚驿恒仪科技有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1029

仪器信息网认证电话,请放心拨打

当前位置: 诚驿科技 > 公司动态
公司动态

红外光谱鉴定农药违禁添加

  我们总是听到各种农药产品知识产权侵权行为,主要还是由于市场上缺乏快速有效的农药产品定性鉴定技术和标准,导致市场上的农药产品知识产权侵权行为比较普遍的存在。  首先,来说说什么是农药违禁添加吧,农药产品是知识产权密集型的典型高科技产品之一,我国一直以来在不断加强对农药管理的力度,如加强对持久性农药、禁止和限制使用农药、剧毒、高毒农药的管理等。  因此,建立快速鉴定农药成分的方法,对生产企业的连续在线监测、监督部门进行农药质量控制和农产品安全方面具有重要意义。  红外光谱快检技术  近年来,红外光谱检测技术取得长足进展,红外光谱快速检测技术是国外新兴的一种重要的产品鉴定方法,利用红外光谱技术进行农药定性鉴别已成为可能。目前在我国尚属于研究开发阶段。  结合我国现有情况,一旦开发出普遍适用的红外光谱快速鉴别农药技术,将极大改善我国农药市场快速鉴定方法缺失的局面,填补了国内农药市场监管技术的一项空白,有助于净化农药行业环境。开展针对农药产品(特别是专li或获得行政保护的产品)的红外光谱分析技术开发,有利于快速鉴别农药产品,有利于保护农药知识产权,打击非法添加违禁成分或假冒产品,维护农药市场秩序和行业健康发展,从根本上保证农业生产资料的有效供给,保障农产品质量和生态环境安全。  红外光谱鉴别农药违禁添加?具体如何操作?  氟虫腈,由法国罗纳普朗克农化公司于1987年开发研制的苯基吡唑类新型高活性杀虫剂,商品名称为锐劲特,化学名称为(RS)-5氨基-1-(2,6-二氯-4a-三氟甲基ben基)-4-三氟甲基亚磺酰基吡唑-3-腈。20世纪90年代后期,氟虫腈在中国大范围用于防治棉花、水稻、蔬菜、果树等作物防治农业害虫,成为一个重要的杀虫剂品种。  因其对环境极其不友好,即会对农作物周围的蝴蝶、蜻蜓等造成不良影响,我国规定2009年10月1日起禁用氟虫腈。但由于其高效的杀虫效果,仍有一些不法商贩顶风zuo案,非法添加。去年8月份,农业部连发2个通知,要求切实加强农药使用和市场监管,严禁将氟虫腈作为兽药经营和使用。  本例中所使用的氟虫腈原药纯度为96.9%,由中国国家农药质检中心提供。  苦参碱,是天然植物性药物,对人畜低毒,是广谱杀虫剂,对各种作物上的黏虫、菜青虫、蚜虫、红蜘蛛有明显的防治效果。  本例中所使用的苦参碱水剂的浓度为0.38%,由北京某农药公司提供。  本实验是为了开发一种利用红外光谱法快速测定苦参碱水剂中违禁添加氟虫腈的定量分析方法。  搞清楚实验目的,首先我们需要做的,是明确氟虫腈的特征峰,再利用特征峰进行定量。  当这个光谱图扫描得到以后,一切再清晰不过:氟虫腈有2个特征峰,分别为1319峰和1633峰。那么我们接下来的工作任务就再清晰不过:利用仪器的ATR及透射附件,通过这两个特征峰对苦参碱中的氟虫腈含量进行定量。  实验部分  ATR附件  配制0.1%,1%,5%,10%氟虫腈添加的苦参碱制剂,利用仪器的ATR附件分别进行扫描,得到下图。  看到这里,小伙伴们有没有很激动?虽然1633峰被淹没,但1322峰的峰高(峰高即吸光度,因溶剂效应等影响,峰位有偏移,1322峰即1319峰)随着氟虫腈添加浓度的增高!  苦参碱水剂中添加氟虫腈,添加浓度0.1-10.5%,其中0.1%-1.0%浓度样品10个,1.0%-10.5%样品20个,利用仪器的ATR附件分别进行扫描,得到光谱图。对每张光谱图中的1322峰峰高分别进行提取,并将峰高与苦参碱浓度进行线性拟合,得到结果如下图。  吸光度与浓度的线性关系简直太明显了有没有?相关系数R2居然高达0.9982。  透射附件  在扫描透射光谱的时候我们应该明确一个问题,红外光谱是非常怕水的,水的特征峰非常明显,有时候会影响到目标物的测定。那我们能不能考虑将苦参碱水剂中的水去除,再溶解到其它红外特征较小的溶剂中呢?这样,两个特征峰会不会都显现出来呢?来,说干就干!  首先,我们利用红外灯将添加样品烘干,再用红外特征影响较小的乙腈重新溶解,来,看看对比图吧。  上边两个图是未处理过的,1633峰又被淹没了,但是烘干后再用乙腈重新提取,看下边俩图,1633峰立马显出来了!太开心了有没有?那我们就利用这两个峰来进行定量。  线性关系出来后,我们发现,1324峰的线性关系还不错,为0.9787;但1634峰的R2仅为0.883是不是就太低了啊,根本没办法接受啊。怎么办呢?难道我们辛辛苦苦找的这个特征峰真的就没用了吗?  记得在学习光谱预处理的时候老师讲过:“作为常用的一种光谱预处理方法,导数光谱法广泛应用于红外光谱分析中。导数光谱既可以消除基线漂移或平缓背景干扰的影响,也可以提供比原光谱更高的分辨率和更清晰的光谱轮廓变化。”  导数光谱用在这里是不是恰如其分呢?来,那我们就对光谱做个二阶导数试试看!  总结  总结起来就是:寻找特征峰,减小或消除溶剂影响,必要时对光谱进行预处理放大信号,比尔定律线性拟合……说了这么多,其实实验结果总结出来就是这样一张表。

厂商

2018.12.28

【科普】什么是VOCs?

在我国,VOCs(volatile organic compounds)挥发性有机物,是指常温下饱和蒸汽压大于70Pa、常压下沸点在260℃以下的有机化合物,或在20℃条件下蒸汽压大于或者等于10 Pa具有相应挥发性的全部有机化合物。德国J.U.M.专业从事VOCs监测仪研发生产四十余年,产品包括:在线式、便携式、架固式,可实现VOCs监测的各种需求,可满足科研、工业生产、环保监督等各方面的要求,国内已应用于石化、印包、汽车等多行业,为我国目前面临的VOCs挥发性有机物排放污染提供有效帮助。挥发性有机化合物VOCs是挥发性有机化合物(volatileorganic compounds)的英文缩写。其定义有好几种,例如,美国ASTM D3960-98标准将VOC定义为任何能参加大气光化学反应的有机化合物。美国联邦环保署(EPA)的定义:挥发性有机化合物是除CO、CO2、H2CO3、金属碳化物、金属碳酸盐和碳酸铵外,任何参加大气光化学反应的碳化合物。世界卫生组织(WHO,1989)对总挥发性有机化合物(TVOC)的定义为,熔点低于室温而沸点在50~260℃之间的挥发性有机化合物的总称。有关色漆和清漆通用术语的国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对VOC的定义是,原则上,在常温常压下,任何能自发挥发的有机液体和/或固体。同时,德国DIN 55649-2000标准在测定VOC含量时,又做了一个限定,即在通常压力条件下,沸点或初馏点低于或等于250℃的任何有机化合物。 这些定义有相同之处,但也各有侧重。如美国的定义,对沸点初馏点不作限定,强调参加大气光化学反应。不参加大气光化学反应的就叫作豁免溶剂,如丙酮、四氯乙烷等。而世界卫生组织和巴斯夫则对沸点或初馏点作限定,不管其是否参加大气光化学反应。国际标准ISO 4618/1-1998和德国DIN 55649-2000标准对沸点初馏点不作限定,也不管是否参加大气光化学反应,只强调在常温常压下能自发挥发。 可将这些VOC的定义分为二类,一类是普通意义上的VOC定义,只说明什么是挥发性有机物,或者是在什么条件下是挥发性有机物;另一类是环保意义上的定义,也就是说,是活泼的那一类挥发性有机物,即会产生危害的那一类挥发性有机物。非常明显,从环保意义上说,挥发和参加大气光化学反应这两点是十分重要的。不挥发或不参加大气光化学反应就不构成危害。这也就是欧洲将溶剂按光化臭氧产生潜力来分类的原因。 根据WHO定义,挥发性有机化合物(VOC)是指在常温下,沸点50℃-260℃的各种有机化合物。VOC按其化学结构,可以进一步分为:烷类、芳烃类、酯类、醛类和其他等。目前已鉴定出的有300多种。 甲醛也是挥发性有机化合物,但甲醛易溶于水,与其他挥发性有机化合物有所不同,室内来源广泛,释放浓度也高。因此,常把甲醛与其他挥发性有机化合物分别阐述。除甲醛以外,绝大多数挥发性有机化合物一般都不溶于水而易溶于有机溶剂。在室内它们各自的浓度往往不是很高,但是若干个VOC共同存在于室内空气中时,其联合作用是不可忽视的。由于它们种类多,单个组分的浓度低,常用于TVOC表示室内中的挥发性有机化合物总量的。TVOC是衡量建筑物内装饰装修和家具等室内用品。对室内空气质量影响程度的一项重要指标。 室内可挥发性有机化合物的主要来源室内空气中挥发性有机化合物的来源与室内甲醛类似,且更为广泛,主要来源有:1、建筑材料、室内装饰材料和生活及办公用品。例如:有机溶剂、油漆、及含水涂料; 2、家用燃料和烟叶的不完全燃烧,人体排泄物; 3、室外的工业废气、汽车尾气、光化学烟雾等; 影响室内空气中挥发性有机化合物浓度的主要因数 影响室内空气中挥发性有机化合物与室内温度、相对湿度、材料的装载度、换气次数(室内空气流通量)等因数有关。 VOCs解决方案BME提出的VOCs全过程解决方案的流程包括:VOCs污染排放环节排查、VOCs监测体系及总量估算、全过程VOCs治理方案编制(一厂一方案)、生产工艺源头控制措施、定制化末端VOCs治理技术方案、治理效果评估及减排量评估。污染环节排查和全过程梳理控制是工业企业VOCs整治的关键。通过现场排查储罐、装卸料、设备泄漏、工艺废气、无组织排放、废水收集和处理系统、冷却水、燃烧废气、事故排放等污染环节,逐一排查污染环节,开展VOCs从源头到末端的全过程梳理工作,全流程控制VOCs污染。 防治治理技术政策原则一、总则 (一)为贯彻《中华人民共和国环境保护法》、《中华人民共和国大气污染防治法》等法律法规,防治环境污染,保障生态安全和人体健康,促进挥发性有机物(VOCs)污染防治技术进步,制定本技术政策。 (二)本技术政策为指导性文件,供各有关单位在环境保护工作中参照采用。 (三)本技术政策提出了生产VOCs物料和含VOCs产品的生产、储存运输销售、使用、消费各环节的污染防治策略和方法。VOCs来源广泛,主要污染源包括工业源、生活源。工业源主要包括石油炼制与石油化工、煤炭加工与转化等含VOCs原料的生产行业,油类(燃油、溶剂等)储存、运输和销售过程,涂料、油墨、胶粘剂、农药等以VOCs为原料的生产行业,涂装、印刷、粘合、工业清洗等含VOCs产品的使用过程;生活源包括建筑装饰装修、餐饮服务和服装干洗。石油和天然气开采业、制药工业以及机动车排放的VOCs污染防治可分别参照相应的污染防治技术政策。 (四)VOCs污染防治应遵循柏美迪康源头和过程控制与末端治理相结合的综合防治原则。在工业生产中采用清洁生产技术,严格控制含VOCs原料与产品在生产和储运销过程中的VOCs排放,鼓励对资源和能源的回收利用;鼓励在生产和生活中使用不含VOCs的替代产品或低VOCs含量的产品。 (五)通过积极开展VOCs摸底调查、制修订重点行业VOCs排放标准和管理制度等文件、加强VOCs监测和治理、推广使用环境标志产品等措施,到2015年,基本建立起重点区域VOCs污染防治体系;到2020年,基本实现VOCs从原料到产品、从生产到消费的全过程减排。 对人体健康的影响室内空气中挥发性有机化合物浓度过高时很容易引起急性中毒,轻者会出现头痛、头晕、咳嗽、恶心、呕吐、或呈酩醉状;重者会出现肝中毒甚至很快昏迷,有的还可能有生命危险。长期居住在挥发性有机化合物污染的室内,可引起慢性中毒,损害肝脏和神经系统、引起全身无力、瞌睡、皮肤瘙痒等。有的还可能引起内分泌失调、影响性功能;苯和二甲苯还能损害系统,以至引发白血病。 挥发性有机化合物对儿童健康的影响经国外医学研究在证实,生活在挥发性有机化合物污染环境中的妊妇,造成胎儿畸形的几率远远高于常人,并且有可能对孩子今后的智力发育造成影响。同时,室内空气中的挥发性有机化合物是造成儿童神经系统、血液系统、儿童后天疾患的重要原因。

厂商

2018.12.27

亚沸蒸馏酸纯化器在食品行业的应用

食品安全国家标准食品中铅、镉、砷、汞、铬、铜、锌、镍的测定电感耦合等离子体质谱法(ICP-MS)1范围本标准规定了食品中铅、镉、砷、汞、铬、铜、锌、镍的电感耦合等离子体质谱(简称ICP-MS)测定方法。本标准适用于食品中的铅、镉、砷、汞、铬、铜、锌、镍测定。2原理样品经消解后,消解溶液由电感耦合等离子体质谱仪测定。根据各元素与相应内标元素的质荷比进行分离,对于一定的质荷比,其质谱的信号强度与进入质谱仪的粒子数成正比,即样品中元素浓度与质谱信号强度成正比。通过测定质谱的信号强度对试样溶液中的元素进行定量分析。3试剂和材料3.1试剂注:除非另有说明,本方法所用试剂均为优级纯,水为GB/T 6682规定的一级水。3.1.1硝酸(HNO3):经亚沸蒸馏或采用高纯试剂。3.1.2氩气(Ar):高纯氩气(>99.99%)或液氩。3.2试剂配制3.2.1硝酸溶液(5+95):取50mL硝酸,缓慢加入950 mL水中,用水稀释至1000 mL。3.2.2汞标准稳定剂:取 2mL 单元素金(Au,1000 mg/L)标准溶液,用硝酸溶液(5+95)稀释至1000mL,用于Hg标准溶液的配制。注:汞标准稳定剂亦可采用0.2%半胱氨酸溶液配制成相应溶液,或其它等效稳定剂。3.3标准品3.3.1元素贮备液(1000 mg/L) (Pb、Cd、As、Hg、Cr、Cu、Zn、Ni):采用有证标准物质单元素或多元素标准贮备液,贮备液以稀硝酸介质为佳。3.3.2单元素贮备液(1000 mg/L)(Bi、Re、Rh、Ge、In)。采用有证标准物质单元素标准贮备液,贮备液以稀硝酸介质为佳。3.4标准溶液配制3.4.1混合标准工作溶液:吸取适量单元素标准贮备液或多元素混合标准贮备液,用硝酸溶液(5+95)逐级稀释配成混合标准溶液系列,各元素质量浓度参见附录A中表A.1,亦可依据样品溶液中元素质量浓度,适当调整标准系列各元素质量浓度范围。3.4.2汞标准工作溶液:取适量汞贮备液,用汞标准稳定剂逐级稀释配成标准溶液系列,浓度范围参见附录A中表A.1。临用时配制。3.4.3内标使用液:取适量单元素贮备液(1000 mg/L)混合,用硝酸溶液(5+95)配制合适浓度的内标使用液。内标使用液浓度参见附录A。4仪器和设备4.1电感耦合等离子体质谱仪(ICP-MS)。4.2天平:感量为0.1 mg、1mg。4.3密闭微波消解系统,配有聚四氟乙烯消解罐。4.4压力消解罐,配有聚四氟乙烯消解内罐。4.5恒温干燥箱(烘箱)。4.6控温电热板。4.7超声水浴箱。5分析步骤5.1试样制备5.1.1试样预处理5.1.1.1干样:取可食部分,必要时经高速粉碎机粉碎,混匀,备用。5.1.1.2湿样:取可食部分,必要时水洗干净,晾干或纱布揩干,经匀浆器匀浆,备用。5.2试样预消解5.2.1酒类试样取样后需在电热板上于100℃左右挥去醇类物质,然后加入硝酸进行消解。5.2.2高脂肪、高蛋白、高淀粉、高纤维等难消解试样,取样加硝酸后,需进行冷消化(放置至少1h,zui好超过24小时)。5.3试样消解5.3.1 微波消解:称取固体干样0.2 g ~ 0.5 g、湿样0.2 g ~ 0.8 g(精确到0.001 g)或移取液体试样1 mL~ 3 mL于微波消解罐中,加入5 mL~ 8 mL硝酸,加盖放置1 h,旋紧罐盖,按照微波消解仪的标准操作步骤进行消解(消解参考条件见附录B表B.1)。冷却后取出,缓慢打开罐盖排气,用少量水冲洗内盖,将消解罐放在控温电热板上或超声水浴箱中,于100 ℃加热或超声脱气2 min ~ 5min,赶去棕色气体,取出消解内罐,将消化液转移至25 mL或50 mL容量瓶中,并定容至刻度,混匀备用;同时做试剂空白试验。5.3.2压力罐消解:称取固体干样0.2 g ~ 1.0 g、湿样0.5 g~ 2.0 g(精确到0.001 g)或移取液体试样1mL~ 5 mL于消解内罐中,加入5 mL 硝酸,盖好内盖,放置1 h,旋紧不锈钢外套,放入恒温干燥箱消解(消解参考条件参见表B.1),在箱内自然冷却至室温,然后缓慢旋松不锈钢外套,将消解内罐取出,用少量水冲洗内盖,放在控温电热板上或超声水浴箱中,于100 ℃或超声脱气2 min ~ 5min赶去棕色气体。将消化液转移至25 mL或50 mL容量瓶中,并定容至刻度,混匀备用;同时做试剂空白试验。5.4仪器参考条件5.4.1优化仪器操作条件,使灵敏度、氧化物和双电荷化合物达到测定要求。5.4.2测定参考条件:在调谐仪器达到测定要求后,编辑测定方法、选择各待测元素同位素及所选用的内标元素,依次将试剂空白、标准系列、样品溶液引入仪器进行测定。待测元素所选的同位素及内标元素可参见附录C。对没有合适消除干扰模式的仪器,可采用干扰校正方程对测定结果进行校正,仪器软件一般都含有干扰校正方程,铅、镉、砷同量异位素干扰校正方程可参见附录D。5.5标准曲线的制作将标准系列工作溶液分别注入电感耦合等离子质谱仪中,测定相应元素的信号响应值,以相应元素的浓度为横坐标,以相应元素与所选内标元素响应比值——离子每秒计数值比(CPS ratio)为纵坐标,绘制标准曲线。5.6试样溶液的测定将试样溶液注入电感耦合等离子体质谱仪中,得到相应的信号响应比值,根据标准曲线计算待测液中相应元素的浓度。6分析结果的表述试样中待测元素含量按照式(1)计算:X= (p - p0) * V* f       m (1))式中:                                  X ——试样中待测元素含量,单位为毫克每千克或毫克每升(mg/kg或mg/L);P  —— 试样溶液中被测元素质量浓度,单位为毫克每升(mg/L);P  0—— 试样空白液中被测元素质量浓度,单位为毫克每升(mg/L);V —— 试样消化液定容体积,单位为毫升(mL);f —— 试样稀释倍数;m —— 试样称取质量或移取体积,单位为克或毫升(g或mL);       计算结果以重复性条件下获得的两次独立测定结果的算术平均值表示,含量小于1 mg/kg,结果保留两位有效数字;含量大于1mg/kg,结果保留三位有效数字。  7精密度样品中各元素含量大于1 mg/kg时,在重复性条件下获得的两次独立测定结果的绝dui差值不得超过算术平均值的10%;小于等于1 mg/kg且大于0.1 mg/kg时,在重复性条件下获得的两次独立测定结果的绝dui差值不得超过算术平均值的15%;小于等于0.1 mg/kg时,在重复性条件下获得的两次独立测定结果的绝dui差值不得超过算术平均值的20%。 8其他本标准各元素的检出限和定量限见下表。表1 各元素的检出限和定量限序号被测组分检出限 μg/L定量限1mg/kg定量限2mg/kg1Pb0.10.020.0052Cd0.0050.0020.00023As0.060.020.0034Hg0.0050.0020.00025Cr0.20.050.0076Ni0.20.040.017Cu0.20.040.018Zn0.50.080.02注:定量限1 取样量0.5 g,定容体积25 mL,适合于大多数固体样品。定量限2 取样量2 g,定容体积25 mL,适合于大多数液体样品。  附录 A标准系列溶液质量浓度表A.1给出了8种元素的标准系列溶液质量浓度。表A.1  8种元素的标准系列溶液质量浓度 单位为微克每升                                                              元素名称标准系列质量浓度N1N2N3N4N5N6Pb00.10.51510Cd00.10.51510As00.10.51510Cr0151050100Ni0151050100Cu0151050100Zn  0151050100Hg00.020.050.10.51 内标使用液浓度:内标既可在配制标准系列工作溶液和样品溶液时手动加入,亦可由仪器在线加入。由于不同仪器采用不同内径蠕动泵管在线加入内标,致使内标进入样品中的浓度不同,故配制内标使用液浓度时应考虑使内标元素在样液中的浓度约为0.025 mg/L ~ 0.05 mg/L。附录 B样品测定参考条件表B.1给出了微波消解参考条件表B.1  消解参考条件消解方式步骤控制温度℃升温时间恒温时间微波消解11205min5min21505min10min31905min20min压力罐消解180/2 h2120/2 h3160/4 h 表B.2给出了电感耦合等离子体质谱仪操作参考条件表B.2  电感耦合等离子体质谱仪操作参考条件仪器参数数值仪器参数数值射频功率1500 W雾化器/雾化室高盐雾化器/同心雾化器等离子体气流量15.00 L/min采样锥/截取锥镍锥载气流量1.18L/min采样深度8 mm辅助气流量0.10L/min采集模式跳峰(Spectrum)氦气流量4.5 mL/min检测方式自动雾化室温度2℃每峰测定点数3样品提升速率0.3r/s重复次数3样品提升量0.4 mL/min  附录 C推荐同位素和内标元素表C.1给出了待测元素选择的同位素和内标元素表C.1  待测元素推荐选择的同位素和内标元素元素PbCdAsHgCrNiCuZn同位素206, 207, 208111,11475200,20252,536063,6566内标209Bi,185Re103Rh 115In72Gee103Rh209Bi185Re103Rh72Ge103Rh72Ge103Rh72Ge103Rh,72Ge 附录 D推荐采用的干扰校正方程表D.1给出了同量异位素干扰校正方程表D.1  同量异位素干扰校正方程同位素推荐的校正方程75 As[75As]=[75]-3.127×[77]+2.736×[82] -2.76×[83]111 Cd[111Cd]=[111]-1.073×[108]+0.763976×[106]114 Cd[114Cd]=[114]-0.02683×[118]208 Pb[208Pb]=[206]+[207]+[208] 注:1、[X]为质量数X处的质谱信号强度——离子每秒计数值(CPS)。2、对于同量异位素干扰能够通过仪器的碰撞/反应模式得以消除的情况下,砷、镉可不采用干扰校正方程。3、低含量铬测定需采用碰撞/反应模式。

厂商

2018.12.27

吹扫捕集气质联用方法测定水中28种挥发性有机物

1.前言尽管我国大多数供水资源的水质依然保持良好,但是随着经济的发展,全国范围内水域的水质受到了不同程度的污染。其中有害的挥发性有机物,如如芳香烃、脂肪烃、卤代烃等由于其化学性质稳定,不易分解,会渗入地下水层中,对环境破坏很大,如果长期接触,会造成人体慢性中毒,引发癌症,还会直接影响到生殖和神经系统。因此对水中挥发性污染物的监测成为了我们日常环境分析工作中的重中之重(1-3)。相对于其它前处理方法来说,吹扫捕集法克服了提取效率低,灵敏度低,取样量大等缺点;而气质联用既能同时分析多种复杂化合物样品,灵敏度高,因此吹扫捕集-气质联用方法得到了广泛的应用。本文按照EPA524.2(4)的方法采用吹扫捕集-气质联用的方法,同时检测水中28种挥发性有机物,缩短了分析时间,提高了方法的灵敏度,获得了较好的线性和检测限,适合于环境监测方法的推广。 2. 实验部分2.1 仪器与试剂2.1.1 仪器气相色谱质谱联用仪(Trace Ultra DSQⅡ,美国赛默飞世尔公司);吹扫捕集装置(Tekmar Stratum),TR-5MS色谱柱(30 m×0.25 mm×0.25 μm,美国赛默飞世尔公司)。2.1.2 试剂内标(Internal Standard):氟苯(fluorobenezene);替代物(Surrogate Standard):BFB( 4-Bromofluorobenzene)、1,2-Dichlorobenzene-d4 的混合溶液(2000 μg/mL);28种VOC标准物质和氯乙烯(2000μg/mL);甲醇 (农残级),配制标准样品用,每批甲醇都要进行空白检验;空白试剂水:哇哈哈纯净水煮沸30min,通氮气冷却后密封备用,空白水需通过检验方能使用。2.2 吹扫条件条件见表1:2.3 色谱质谱条件条件见表2:2.4 仪器校正2.4.1 BFB调谐取25.0μg/mL 的BFB调整标准溶液1~2 μL直接进入色谱,得到的质谱图必须全部符合表3中的标准。2.4.2 连续校准 (CC)连续校准实际是校准曲线的第五点,目标化合物的浓度是6.0 μg/L,替代物和内标的浓度均为10.0 μg/L,其目的是评价仪器的灵敏度和线性。连续校准(CC)每工作日分析1次。如果CC符合初始校准曲线的允许标准,就可以分析样品。如果分析了初始校准曲线,其6.0 μg/L的点符合CC的允许标准,就不需要再分析CC。2.5 空白和空白加标分析每个工作日分析一次,它一定在CC之后样品之前分析,每20个样品就需要分析一个实验室试剂空白(LRB),和一个实验室空白加标(LFB)。2.6 标准曲线的配制以甲醇为溶剂,取各标准溶液适量,配制成2 mg/ L标准溶液混标母液,再以纯水为溶剂,加入2 mg/L 标准溶液混标母液适量,配制成0.4 μg/ L、2 μg/ L、6 μg/L、10 μg/L和20 μg/L的混标水溶液。放入自动进样器中,设置吹扫条件如2.2 所示,色谱和质谱条件如2.3所示,获取SIM数据,以内标法计算得到工作曲线。2.7 样品采集、运输和保存2.7.1 容器标准40mL玻璃螺旋盖小瓶,具有聚四氟乙烯表面的硅胶垫片。2.7.2 采样在采集样品时,瓶内不要有气泡,并用盐酸固定,使样品pH2.7.3 运输和保存采完后的样品立即放人有冰块的保温箱中。样品运回实验室后立即放入冰箱中在4℃温度下保存。样品一定在采样后14天内分析完。3. 结果与讨论3.1 色谱分离当使用TR-5 MS柱时,间二甲苯和对二甲苯两峰分不开,它们的峰浓度为其它化合物的两倍。顺-1,2-二氯乙烯和反-1,2-二氯乙烯两峰能够分离,结果分开报告。标样中各种目标化合物和内标的色谱分离结果见图。由图1可知各种目标化合物和内标在该色谱条件下能得到较好的分离不存在相互干扰问题。为了提高仪器分析的灵敏度采用选择性离子扫描定量分析方式,各目标化合物的保留时间和定量离子见表4。   3.2 方法学验证本方法的各28种挥发性有机物的浓度在0.40~20.0μg/L的范围内呈线性关系,各化合物的zui低检测限在0.01μg/L~0.2μg/L之间。平行8针样品检测回收率,结果表明各组分回收率在90.8%~107%之间,满足方法学验证中回收率在80%~120%的要求。RSD值在4.42%~8.87之间,满足方法学验证中关于RSD小于15%的要求。3.3 总结本实验应用吹扫捕集-气质联用方法测定水中28种挥发性有机物,避免了繁琐的前处理步骤及有机溶剂对操作人员的影响;并且通过优化气相色谱条件,使28种化合物在17分钟内同时检出。方法学验证表明该方法检出限低,具有简单、快速、准确度及重复性高的特点。 参考文献1. 左海英等.吹扫捕集—气相色谱/质谱联用测定水中30种挥发性有机物[J]. 南水北调与水利科技, 2008,12(6):81-832. 周文敏等.中国水中优先控制污染物黑名单的确定[J].环境科学研究, 1991,4(6): 9-12.3. 生活饮用水标准检验方法有机物指标[S].2006: 附录A.4. Method 524.2 Measurement of Purgeable Organic

厂商

2018.12.27

实验室快速测汞仪原理及应用

    实验室快速测汞仪LabAnalyzer 254的测量原理:   首先含汞的样品随着气流进入熔融石英材质的光学测量池,通过波长为254nm的UV吸收进行汞的定量分析。这种测量方法叫:冷蒸气原子吸收法(CVAAS)。   实验室快速测汞仪LabAnalyzer 254的应用领域:   LabAnalyzer 254用于液体样品或样品消解溶液中汞元素的定量检测。   水样:饮用水、废水、地下水、地表水、海水   土壤和沉积物   地质地矿样品   废弃物:玻璃、建筑废弃物、废液、木料   焚化厂监测:烟气吸收液、烟气分析(如:VDI 3868-2 VE)   食品厂监控   临床样品:尿液、唾液   化工行业:环境保护和质量监控   石油石化行业   科学研究   实验室快速测汞仪LabAnalyzer 254的优点快速测量:   即使样品中汞含量很高,也无需延长冲洗时间。一次测量包括冲洗过程在内,一般用时为60s-100s。   在整个测量过程中,测量信号在显示器上连续显示。一次测量结束后,仪器会自动报警提示。   除了显示测量信号曲线外,仪器还另外标出峰值和各点对应的汞浓度。   为了便于实验室进行质量控制,仪器还能自动存储实验数据。在需要查看时可以随时调用,也可以选择自动打印。

厂商

2018.12.26

原子荧光光度计常见的故障排除

    原子荧光光度计中常见的七大故障及排除方法  01 点火问题  在分析工作中,经常会碰到部分仪器点火线圈不亮,无法正常点火。首先要检查点火炉丝是否正常,如炉丝断则需要更换炉丝,如炉丝亮但点不燃火焰,就需要检查燃气或控制阀,检查炉丝与炉芯的位置是否合适,排除这些故障后仪器可正常点火。  02 无信号强度  在仪器检定过程中,经常遇到仪器测量标准溶液后无响应荧光强度。遇到此类问题,首先,应该检查静态光源,检查元素灯是否点亮。若仪器灯能量正常,说明仪器电路部分正常,则需要进一步检查反应系统或原子化系统。检查仪器泵管松紧是否合适,管道有无堵塞破裂。如出现上述情况,试剂没有进系统,仪器没有发生氧化还原反应,则不会产生信号。更换管道,调整泵管松紧可以解决此问题。  检定标准溶液的酸度或还原剂浓度不够,不能生成被测元素的氢化物,无法正常原子化也会造成仪器无响应荧光强度,这就需要检查配置标准溶液所使用的酸和还原剂浓度。  03 仪器灵敏度低  在检定过程中,由于要检定仪器的测量线性及检出限,需要在仪器上测量0.0 ng/mL、1.0 ng/mL、5.0 ng/mL、10.0 ng/mL砷锑混合标准溶液的线性。重复测量3次,记录荧光强度值,按照线性回归计算斜率b,再对空白溶液连续进行11次荧光强度测量,计算其标准偏差,然后计算仪器的检出限QL。JJG939-2009《原子荧光光度计检定规程》要求仪器检出限为0.4 ng。检定中经常碰到仪器灵敏度低,调整仪器的灯电流和负高压后仍无法达到检定规程的要求,这就需要排查解决灵敏度低的问题。  首先检查炉丝是否老化,必要时更换炉丝,然后检查原子化器位置是否偏移造成焦距的变化而影响仪器的灵敏度。调光不好,焦距不在炉芯中心也会造成仪器灵敏度低,这就需要重新调整炉芯和光路位置。载气流量低,排废太快,载流管或毛细管变形或折弯等原因,都会造成标准溶液无法正常原子化而导致仪器灵敏度降低,这就需要检查仪器的进样系统,有必要时需更换仪器进样系统管路。在检定过程中,经常碰到仪器所使用的氩气纯度不够而造成仪器灵敏度降低,更换高纯度氩气后可解决此问题。所选用元素灯的强度也会对仪器的灵敏度造成影响,在仪器灵敏度较低时需要更换元素灯。  04 仪器信号不稳定  可以降低仪器的灯电流和负高压后信号值,如果还是不稳定,这时需要检查仪器所处的环境是否有强光干扰,仪器的检测窗口若有强光照射,会引起仪器荧光信号不稳定,这就需要遮光进行检定。然后观察仪器的火焰是否跳动,若有明显跳动则检查仪器抽排风口是否抽力太大,有气流影响而造成仪器火焰不稳定。  排除上述问题后,仪器信号仍不稳定,就需要检查仪器的水封、废液管,水封和废液管不畅会导致水分进入原子化器,造成仪器信号不稳定。这需要重新调整仪器的水封和废液管位置。在检定中碰到仪器载流过大而造成仪器信号不稳定,需要降低载气流速。经过以上排查过程,基本可以保证仪器测量的信号稳定。  05 测量空白高  对于荧光仪在使用过程中出现空白偏高的现象,可能有载流的问题,空白溶液的问题,管道和管路污染问题等,在日常检定过程中,通过调整灯电流和负高压将测量仪器载流的荧光强度值保持在200左右,而有部分仪器的载流空白强度值达到了1000左右,这影响了仪器的线性测量。而这类问题大都因为试剂问题,如盐酸等。由于检定用标准溶液需要现场配置,对配置溶液所用的容量瓶、移液管等玻璃量器也要清洗干净,降低对仪器测量结果的影响。而当载流、标样、样品的荧光值为零,甚至为负数时,应首先确认光源、蠕动泵是否能正常工作,还要确认泵管是否卡到合适的位置、载流和还原剂通路是否顺畅等,确认仪器内部的气液分离装置通往原子化器的管路是否堵塞。对于标样荧光值与以往测定值差异大,应首先确认标样配制无误,然后确认元素灯是否安装至正常位置,还要检查还原剂浓度是否过低,夏天建议每半天就要重新配置还原剂。  06 基线漂移或噪音  稳定的基线应该是一条直线,保持基线平稳,是进行分析的最基本的要求。如做载流空白时,有时会出现基线上漂、下漂、脉冲或呈梯度现象,这样会影响对光谱峰的准确判定。其原因可能是:  仪器本底荧光强度有漂移、光源不稳定、电源不稳定、载流或还原剂不干净、管路或石英管脏等。对于本底荧光强度漂移,可以空启动仪器不进样,确认是哪个通道的灯不稳定产生的,也可实际测量,看仪器荧光强度是否有漂移,如有,则有可能是由泵管的疲劳引起的漂移,但泵管疲劳的确认是在排除光源和本底漂移后方可判定。对于载流或还原剂不干净、管路或石英管脏等问题,应彻底冲洗仪器管路及流路系统。还应配备稳压电源。对于出现噪音现象,可能是仪器还没稳定,气路不稳定、灯预热的时间不够、环境温度变化幅度大等,实验中应注意这些问题。  07 荧光值普遍偏低  当荧光值普遍偏低时,应确认氩气压力是否满足测定要求,其次要确认原子化器中的石英炉芯是否干净或是否堵塞,冬天要保持室温在25℃左右,温度过低荧光值会普遍偏低。  处理方式有:打开主机盖,调整元素灯至最合适的位置,如果是测汞,可以更换一级气液分离器出气口到二级气液分离器之间的毛细管(毛细管中潮湿容易照成汞吸附在管壁,从而荧光值偏低),来改善荧光强度。仪器进样管路密封性必须良好,否则会导致检测结果偏低。排除废液的泵要调节到合适的程度,泵管压块压的过紧,容易导致泵管提早老化,过松会导致废液不能及时排出,多余的废液会从气液分离器顶端的出气口反冲到二级气液分离器中,废液会溢出到炉腔中如不及时清理会腐蚀炉腔,过多的废液还有可能喷到原子化气中造成石英炉芯炸裂。另外抽风口的风力过大,会照成仪器不稳定,有可能会导致检测结果偏低。(使用该仪器时发现石英进样针极易损坏,为了避免进样针损坏,在测试结束后先取下进样针放在载流瓶内,然后再取下载流槽倒掉多余的酸液,清洗载流槽,在下次开机测试前重新装回进样针。)另外,每次更换元素灯必须要重新聚焦。应该每隔2个月将仪器的所有配件卸下,进行彻底地清洗,烘干后再重新安装使用。

厂商

2018.12.26

常用缓冲溶液的使用范围和注意事项

  缓冲溶液多种多样,在实验中经常使用,由此小析姐整理了关于各种缓冲溶液的作用、缓冲范围、选择与计算和使用注意事项,希望你能对缓冲溶液有一个全面的了解。  首先,什么是缓冲溶液?缓冲液(Buffer solution)通常是由「弱酸及其共轭碱」或「弱碱及其共轭酸」缓冲对所组成的溶液,能够在加入一定量其他物质时减缓pH的改变。以生物实验中最常用的一种缓冲液PBS为例,是由Na2HPO4、KH2PO4组成的缓冲对,在PH5.8-8.0范围内有较强的缓冲能力。  缓冲原理  缓冲溶液的选择与计算  为了保证缓冲溶液有足够强的缓冲能力,在配制缓冲溶液时,需要做到:  为使共轭酸碱对的浓度比接近于1,应根据所需要维持的pH范围选择合适的缓冲对,使其中的弱酸的PKa等于或接近于所要求的pH。  例如,生物培养液中需用PH=7.0的缓冲溶液,已知H2PO4-的pKa2=7.21,因此,H2PO4—HPO42-是可以选择的合适的缓冲对。如若配制PH=9.0的缓冲溶液,则可选择NH3·H2O-NH4Cl缓冲对(pKa(NH4+)=9.25)。可见弱酸的Ka是选择缓冲溶液的主要依据,表中列出了几种常用的缓冲溶液。  常见组成  常用作缓冲溶液的酸类由弱酸及其共轭酸盐组合成的溶液具有缓冲作用。常见的缓冲体系有:  1、弱酸和它的盐(如HAc---NaAc)  2、弱碱和它的盐(NH3·H2O-NH4Cl)  3、多元弱酸的酸式盐及其对应的次级盐(如NaH2PO4---Na2HPO4)的水溶液组成。  而生化实验室常用的缓冲系主要有磷酸、柠檬酸、碳酸、醋酸、巴比妥酸、Tris(三羟甲基氨基甲烷)等系统,生化实验或研究工作中要慎重地选择缓冲体系,因为有时影响实验结果的因素并不是缓冲液的pH值,而是缓冲液中的某种离子。如硼酸盐、柠檬酸盐、磷酸盐和三羟甲基甲烷等缓冲剂都可能产生不需要的化学反应。  硼酸盐:硼酸盐与许多化合物形成复盐、如蔗糖。  柠檬酸盐:柠檬酸盐离子容易与钙结合,所以存在有钙离子的情况下不能使用。  磷酸盐:在有些实验,它是酶的抑止剂或甚至是一个代谢物,重金属易以磷酸盐的形式从溶液中沉淀出来。而且它在pH7.5以上时缓冲能力很小。  三羟甲基氨基甲烷:它可以和重金属一起作用,但在有些系统中也起抑制作用。其主要缺点时温度效应。这点往往被忽视,在室温pH是7.8的Tris缓冲液,4℃时是8.4,37℃时是7.4,因此,4℃配制的缓冲液在37℃进行测量时,其氢离子浓度就增加了10倍。在pH7.5以下,其缓冲能力极为不理想。  缓冲溶液的作用  缓冲溶液的作用是在有限的范围内调整溶液的pH值使待测溶液的酸度符合分析方法所规定的范围,例如,苯酚在碱性介质及铁氰化钾存在下,可与4-氨基安替比林反应生成橙红色的安替比林染料,为了防止芳香胺类的干扰以pH在10士0.2时最为适宜。为此,就需要在待测溶液中加入氨一氯化钱缓冲溶液调整和控制待测溶液的pH为10.0士0.2。  在实际工作中有些分析人员由于不大了解缓冲溶液的作用机理,当所配制和使用的缓冲溶液与规定的数值不相符时,为使缓冲溶液达到要求,就用盐酸或氢氧化钠等强酸、强碱进行调节, 以为这样做可以使缓冲溶液尽快达到所需要的pH值,然而,结果却适得其反,这样的溶液pH值虽然调对了,可是它的缓冲体系却被破坏了,作用也就失去了,缓冲溶液一般都是由弱酸及其弱酸盐或是弱碱及其弱碱盐组成的一对共轭体。  使用中的注意事项  使用缓冲溶液的注意事项:不少缓冲溶液都含有易挥发组分,如,氨-氯化铵中的氨酷酸-醋酸钠中的醋酸。现在,不少实验室引入了定量加液器,用定量加液器加试剂,具有简便准确误差恒定的特点,特别是在做成批样品时更显出它的优越性,不少同志也喜欢用它来加缓冲液,但是,应注意缓冲液不能长久存放在定量加液器中,因该器皿不密闭,易造成氨的挥发(醋酸-醋酸钠缓冲液中的醋酸也同理),从而,导致溶液失效,正确的做法是缓冲液应适量配制,使用后及时密闭并置于低温中保存。  提到缓冲液就不得不延伸一下,这就是Henderson-Hasselbalch方程。

厂商

2018.12.26

超低烟气排放的除尘技术大全

烟气超低排放实际上是指烟气中颗粒物的超低排放,排放烟气中不仅包括烟尘,而且包括湿法脱硫过程中产生的次生颗粒物,因此要实现烟气的超低排放必须进行必要的除尘处理。除尘技术一般包括:烟气脱硝后烟气中烟尘的去除,称之为一次除尘技术,主流技术包括:电除尘技术?袋式除尘技术和电袋复合除尘技术;脱硫后对烟气中颗粒物的再次脱除或烟气脱硫过程中对颗粒物的协同脱除,称之为二次除尘或深度除尘技术,脱硫后对烟气中颗粒物的脱除主要采用湿式电除尘技术,脱硫过程中对颗粒物的协同脱除主要采用复合塔脱硫技术,并采用高效的除雾器或在湿法脱硫塔内增加湿法除尘装置?下面详细介绍一下这几种除尘技术。一次除尘技术1电除尘技术电除尘技术利用强电场电晕放电,使气体电力产生大量自由电子和离子,并吸附在通过电场的粉尘颗粒上,使烟气中的粉尘颗粒荷电,荷电后的粉尘颗粒在电场库仑力的作用下吸附在极板上,通过振打落入灰斗,经排灰系统排出,从而达到收尘的目的。优点:除尘效率较高,压力损失小,使用方便且无二次污染,对烟气的温度及成分敏感度不高,设备运行检修相对容易,安全可靠性较好。局限:设备占地面积较大,除尘效率受煤种和飞灰成分的影响较大。依据电极表面灰的清除是否用水,电除尘可分为干式电除尘和湿式电除尘?干式电除尘常被称作电除尘,如静电除尘技术、低低温电除尘技术;湿式电除尘常被称作湿电,湿电仅用于湿法脱硫后的二次除尘?(1)静电除尘技术静电除尘技术是在电晕极和收尘极之间通上高压直流电,所产生的强电场使气体电离、粉尘荷电,带有正、负离子的粉尘颗粒分别向电晕极和收尘极运动而沉积在极板上,使积灰通过振打装置落进灰斗。静电除尘器与其他除尘设备相比,耗能少,除尘效率高,适用于除去烟气中0.01~50μm的粉尘,而且可用于烟气温度高、压力大的场合。但由于静电除尘器基于荷电收尘机理,静电除尘器对飞灰性质(如成分、粒径、密度、比电阻、黏附性等)较为敏感,特别对高比电阻粉尘、细微烟尘捕集困难,运行工况变化对除尘效率也有较大影响。另外其不能捕集有害气体,对制造、安装和操作水平要求较高。(2)低低温电除尘技术低低温电除尘技术是通过烟气冷却器降低电除尘器入口烟气温度至酸露点以下的电除尘技术?低低温电除尘技术因烟气温度降至酸露点以下,粉尘比电阻大幅下降,且击穿电压上升,烟气流量减小,可实现较高的除尘效率;同时,烟气温度降至酸露点以下,气态SO3将冷凝成液态的硫酸雾,通过烟气中粉尘吸附及化学反应,可去除烟气中大部分SO3;在达到相同除尘效率前提下,与常规干式电除尘器相比,低低温电除尘器的电场数量可减少,流通面积可减小,运行功耗降低,节能效果明显。但粉尘比电阻降低会削弱捕集到阳极板上粉尘的静电黏附力,从而导致二次扬尘有所增加?2袋式除尘技术袋式除尘技术利用过滤原理,用纤维编织物制作的袋式过滤单元来捕捉含尘烟气中的粉尘。堆积在滤袋表面的粉饼层在此反向加速度及反向穿透气流的作用下,脱离滤袋面,落入灰斗。落入灰斗后的灰再经输灰系统外排。优点:布袋除尘器占地面积小;除尘效率高,一般可保证出口排放浓度在50mg/m3以下;处理气体量范围大;不受煤种、飞灰成分、浓度和比电阻的影响;结构简单,使用灵活;运行稳定可靠,操作维护简单。局限:受滤袋材料的限制,在高温、高湿度、高腐蚀性气体环境中,除尘时适应性较差。运行阻力较大,平均运行阻力在1500Pa左右,有的袋式除尘器运行不久阻力便超过2500Pa。另外,滤袋易破损、脱落,旧袋难以有效回收利用。3电袋复合除尘技术电袋复合除尘技术是电除尘技术与袋式除尘技术有机结合的一种复合除尘技术,利用前级电场收集大部分烟尘,同时使烟尘荷电,利用后级滤袋区过滤拦截剩余的烟尘,实现烟气净化?未被前级电区捕集的荷电粉尘,由于电荷作用使细微颗粒极化或凝并成粗颗粒,同时由于同性电荷的排斥作用,到达滤袋表面堆积的粉尘层排列有序?结构疏松,呈棉絮状,粉尘层阻力低,容易清灰剥离,因而产生了荷电粉尘增强过滤性能的效应,降低运行阻力,延长滤袋寿命?电袋复合除尘器按照结构型式可分为一体式电袋复合除尘器?分体式电袋复合除尘器和嵌入式电袋复合除尘器?其中一体式电袋复合除尘器技术zui为成熟,应用zui为广泛?优点:对煤种和烟尘比电阻变化的适用性比电除尘器强,运行阻力低于纯布袋除尘器,滤袋寿命较布袋除尘器更长,电耗低于电除尘器。局限:由于兼有电除尘和布袋除尘两套单元,运行维护较为复杂。二次除尘技术1湿式电除尘技术湿式电除尘技术是用水冲刷吸附在电极上的粉尘?根据阳极板的形状,湿式电除尘器分为板式、蜂窝式和管式等,应用较多的是板式与蜂窝式。湿式电除尘器安装在脱硫设备后,可有效去除烟尘及湿法脱硫产生的次生颗粒物,并能协同脱除SO3、汞及其化合物等?影响湿式电除尘器性能的主要因素有湿式电除尘器的结构型式、入口浓度、粒径分布、气流分布、除尘器技术状况和冲洗水量?优点:对粉尘的适应性强,除尘效率高,适用于处理高温、高湿的烟气;无二次扬尘;无锤击设备等易损部件,可靠性强;能有效去除亚微米级颗粒、SO3气溶胶和石膏微液滴,对有效控制PM2.5、蓝烟和石膏雨。局限:排烟温度需低于冲刷液的绝热饱和温度;在高粉尘浓度和高SO2浓度时难以采用湿式电除尘器;必须要有良好的防腐蚀措施;湿式电除尘器冲洗水虽采用闭式循环,但要与脱硫水系统保持平衡。2复合塔脱硫技术复合式脱硫塔工作时烟气由引风机鼓入脱硫塔内,在脱硫塔径向进风管内设有*级喷淋装置,对烟气进行预降温和预脱硫,经过降温和预脱硫的烟气由脱硫塔中下部均匀上升,依次穿过三级喷淋装置形成的高密度喷淋洗涤反应区和吸收反应区,脱硫液通过螺旋喷嘴生成极细的雾滴为烟气与脱硫液的充分混合提供了巨大的接触面积,使得气液两相进行充分的传质和传热的物理化学反应,从而达到SO2的高效脱除。脱硫塔内置有两级脱水除雾装置,经过脱硫后的烟气继续上升,依次经过两层折板除雾装置,通过雾气、小液滴在折板处的多次撞击形成较大液滴,大液滴与烟气分离后下落,脱水后的烟气通过烟道至烟囱排放。针对以上几种除尘技术的选择,当电除尘器对煤种的除尘难易性为“较易”时,可选用电除尘技术;当煤种除尘难易性为“较难”时,可优先选用电袋复合除尘技术,300MW等级及以下机组也可选用袋式除尘技术;对于一次除尘就要求烟尘浓度小于10mg/m3或5mg/m3不依赖二次除尘实现超低排放的,可优先选择超净电袋复合除尘技术?其他情况下(包括煤种的除尘难易性为“一般”),可结合二次除尘技术效果?煤质波动情况?场地条件?投资与运行费用等因素综合考虑选择?另外,还可遵循原则:一次除尘器出口烟尘浓度为30mg/m3~50mg/m3时,二次除尘宜选用湿式电除尘器;一次除尘器出口烟尘浓度小于30mg/m3,二次除尘也可选用湿式电除尘器,实现更低的颗粒物排放浓度,更好地适应煤炭市场等因素的变化,投资与运行费用也会适当增加?一次除尘器出口烟尘浓度为10mg/m3~30mg/m3时,二次除尘宜选用复合塔脱硫技术协同除尘,并确保复合塔的除雾除尘效果?

厂商

2018.12.21

乙腈和甲醛在色谱分析中的使用

  HPLC溶剂乙腈和甲醇的关键区别和性能  乙腈(ACN)和甲醇(MeOH)是在反向色谱柱方法开发中广泛使用的两种常见溶剂。所以,除了知道乙腈比甲醇有更高的洗脱能力这一事实外,还有一些其他特性。  首先,对流动相溶液的准备提出几点意见。  只有纯水溶液部分才能正确调整pH值。不要尝试测量或调整有机或有机混合物的pH值。  制备二元混合物的方法有两种,即V/V流动相溶液。  方法#1是用特定体积的“A”溶液填充一个量瓶,然后用“B”溶液将量瓶填满。  方法#2是用指定数量的“A”溶液填充量筒(或容量瓶);用指定数量的“B”溶液填充第二个量筒(或容量瓶),然后将两者的内容混合在一起。  无论您使用哪种方法,请在您的高效液相色谱法中完整地记录它,以便任何阅读它的人都能准确地复制它。上面描述的两种方法在设计上都是正确的,但是会产生不同性质的结果。  紫外线吸光度  对于HPLC级溶剂(*我们在HPLC分析中应始终使用HPLC级溶液),乙腈的吸光度(~ 190nm)在这两种溶剂中zui低,非常适合低紫外光分析。甲醇在205-210nm左右有较高的紫外光截止值,在非常低的紫外光范围内略有限制。  溶剂溶解性  乙腈和甲醇在溶解多种缓冲盐和样品的能力上存在显著差异。这些差异在方法开发中至关重要。  流动相溶解度  梯度运行显示低重现性或失败的一个常见原因可能与运行高浓度缓冲液和高浓度有机溶液有关。而含有浓度小于10mM盐溶液的水溶液/有机溶液在大多数梯度条件下不太可能沉淀(最多98%是有机溶剂,而不是100%),大多数与高效液相色谱应用一起使用的缓冲溶液会有更高的盐浓度,当分析条件中有机溶剂含量较高时可能会从溶液中析出(导致堵塞,泄漏,插头和不准确的结果)。在反向色谱法中选择有机组成时要谨慎。确保使用的溶液在所有浓度下都是稳定的。还要验证缓冲能力是否仍然存在,当使用高有机浓度时(当缓冲液被稀释时)。  不确定盐是否会溶解?只要把同样浓度的溶剂混合起来做测试就行了。观察它,有任何浑浊或可见颗粒吗?你就可以得到你需要的答案。  甲醇总体上具有更好的溶解度特性(优于乙腈),这意味着它在较高浓度下能更好地溶解大多数盐(尤其是NH4, K和Na),从而获得更好的性能和更少的沉淀。  样品的溶解度(对峰形和保留的影响)  液相色谱的一个基本要求是样品完全溶解在流动相(初始流动相)中。在分析前,将样品溶解在流动相或强度稍弱的溶液(不是更强的溶液)。这确保它将作为一个集中的段塞加载到柱的顶部,以改善峰形和RSD。如果样品没有完全溶解在流动相,那么你实际上并没有分析整个样品。甲醇优于乙腈的另一个方面是它能完全溶解更多类型的样品。这一改进的溶解度可能导致更好的整体峰形。甲醇的选择性也不同于乙腈(不仅仅是洗脱强度),这可能导致峰洗脱时间与预期的保留时间不同。这也是为什么在开发反向方法时,我们总是尝试使用含有乙腈或甲醇的不同流动相混合物的另一个原因。  永远不要假设一种溶剂会比另一种溶剂更好。太多的色谱新手只使用乙腈作为他们方法开发的主要有机溶剂。请不要犯他们的错误,这样的策略表明缺乏实践经验和知识。您必须首先分别尝试它们(乙腈&甲醇)用你的样品来评估结果(在适用的情况下zui好从不同pH值的全面梯度开始)。如果您在最初的时间内测试了这两种类型的溶剂,那么您将获得回报,因为还没有开发出能够使用您自己的样品来预测真正准确的结果的模拟器。您可能会惊讶地发现,有多少样品使用甲醇溶液显示出更好的峰形和性能。如果没有看到任何改善,至少你现在知道了,因为你已经尝试过了,并且可以满怀信心地前进。  背压  乙腈的粘性比甲醇小,因此通常会导致整体柱压和系统背压降低。乙腈和水的混合物也会发生吸热反应(冷却溶液),从而在溶液中捕获气体。如果你预先混合你的流动相,让它静置几分钟后在制备。  甲醇比乙腈更粘稠。它还有一个不寻常的特性,就是甲醇和水的50/50混合物会产生一个比甲醇或水更高的系统和柱背压。其效果是非常高斯的,它的峰值压力是由50/50的混合物所观察到的。两种溶液在开始混合释放出一些气体也会产生放热反应。在制备溶液时,zui好是让溶液静置几分钟,然后在高压液相色谱系统中使用。  希望这篇关于这两种常用高效液相色谱溶剂的差异的简短讨论将有助于您开发出更好的高效液相色谱和LC-MS方法。

厂商

2018.12.21

土壤中六六六和滴滴涕 的测量不确定度评定

  日常检测或校准工作都存在测量不确定度的问题。根据ISO/IEC 17025《测试和校准实验室能力的通用要求》和GB/T15481 的规定,检测实验室应建立并实施测量不确定度评估程序,能够对检测项目的不确定度做出正确评估,满足客户和监测任务的要求。测量不确定度在实验室数据比对、方法确认、标准设备校准、量值溯源以及实验室质量控制与管理等方面具有重要的意义。  采用加速溶剂萃取-固相萃取净化-气相色谱法测定土壤样品中六六六和滴滴涕的残留量,并依据JJF1059 和CNAS- GL06 规范,评价了测量过程中的不确定度。  测量方法和过程  测量方法  土壤中残留的六六六和滴滴涕经加速溶剂萃取后,提取液加入无水硫酸钠干燥后,氮气吹扫浓缩。使用弗罗里硅土柱对提取液进行净化以去除干扰,净化液经浓缩后定容,用带电子捕获检测器的气相色谱仪测量,外标法定量。  测量过程  取20.0 g土壤样品与基质分散剂和适量铜粉混合均匀后放入到萃取池中,以丙酮和正己烷混合溶液(体积比为1︰1)为溶剂进行萃取。,先用5 mL 丙酮/正己烷混合液(体积比为5︰95)活化小柱,然后上样,加入5 mL 丙酮/正己烷混合液(体积比为5︰95)洗脱,收集洗脱液。在氮吹仪上用高纯氮气吹至近干,用正己烷定容至2.0 mL,上气相色谱仪测定。  本测试采用(50.01±1.0 )mg/L 有机氯农药混合标准溶液配制标准工作溶液系列,浓度依次为25.0、50.0、100、250 和500μg/L。用最小二乘法拟合浓度-峰面积曲线进行校准。本方法检出限为1.2 μg/kg。  数学模型  土壤中六六六、滴滴涕的质量分数计算公式:  式中:w 为样品中农药的质量分数,μg/kg;C 为定容液中农药的浓度,μg/L;m 为样品质量,g;V 为定容体积,mL;frec 为回收率校正因子。  不确定度分量的主要来源  1.重复测定带来的不确定度  包括样品的均匀性和代表性、天平的重复性、体积刻度充满的重复性、进样的重复性等因素引入的不确定度。  2.校准过程引入的不确定度  包括标准储备液稀释成标准溶液时所引入的不确定度以及用最小二乘法拟合标准曲线校准计算出定容液中农药浓度所引入的不确定度。其中,前者又由标准储备液浓度的不确定度、稀释操作的不确定度组成。  3.定容体积的不确定度  由体积校准不确定度、校准和使用温度不同导致的不确定度组成。  4.样品质量的不确定度  由天平的线性不确定度构成。  5.前处理过程引入的不确定度  被测样品的前处理十分复杂,需经过萃取、干燥、净化、浓缩等步骤,每步操作都会引入不确定度,要依次确定每一操作对测量结果不确定度的贡献是相当困难的,可采用方法确认中的有关数据,如回收率等,对制样和前处理过程引入的不确定度进行评估。  不确定度分量的量化  1.重复测定带来的不确定度  以某土壤样品为例,已知6 次测量的平均值w,标准偏差S,则重复测定带来的不确定度u (rep)=,具体计算结果见表1。  2.校准过程引入的不确定度  (1)由标准贮备液配制标准溶液所产生的不确定度使用微量进样针直接将有机氯农药混合标准溶液稀释成标准溶液系列。使用线性最小二乘法拟合曲线程序的前提是假定横坐标的量的不确定度远小于纵坐标的量的不确定度,因此通常C0 不确定度的计算仅与峰面积不确定度有关,而与校准溶液浓度的不确定度无关。本例该分量将被忽略,仅剩标准贮备液纯度需要考虑。根据证书值(50.0±1.0)mg/L,视为矩形分布,则标准不确定度=0.58mg/L,相对标准不确定度。  (2)用最小二乘法拟合标准曲线计算浓度C 时的不确定度对定容溶液进行测定,结果根据最小二乘法回归方程A=a+bC 求得定溶液中各农药的平均质量浓度C,该过程的相对标准不确定度为:  式中:Cs为标准溶液的平均浓度;Sxx 为标准溶液浓度残差的平方和;n 为标准溶液的测定次数,5;p 为试样的测定次数,6。  (3)合成校准过程引入的不确定度  具体计算结果见表2。  3.定容体积的不确定度  样品经萃取、净化后在5.0 mL 刻度试管里定容至2.0 mL,不确定度包括2 个部分。(1)刻度试管的允差根据《JJG12-1987 刻度离心管、刻度试管、血糖管、消化管检定规程》规定,5.0 mL 刻度试管的允差为±0.1 mL,取矩形分布,则:标准不确定度u(V1)=。  (2)温度变化引起的误差  温差为±4 度,正己烷的热膨胀系数为1.36×10-3/℃,取矩形分布,其标准不确定度为:  (3)合成定容体积带来的不确定度  4.称量引入的不确定度天平计量证书标明其误差为±0.5 mg。天平制造商自身的不确定度评价建议采用矩形分布将线性分量转化为标准不确定度,所以标准不确定度u(m) =。称取的质量为 20.0 g,故相对标准不确定度。  5.前处理过程对样品回收率的影响样品前处理过程带来的不确定度采用6 次样品加标回收率的相关数据进行计算。标准不确定度采用平均值的标准偏差,同时,必须对平均回收率进行显著性检验,以确定回收率校正因子f(rec)是否在计算公式中采用。显著性检验采用t 检验,。  当检验值t 大于或等于临界值t(95,5)=2.571 时,说明(rec)与百分百有显著性差异,则校正因子f(rec)必须在公式中采用以对结果进行修正;当检验值小于临界值时,说明两者之间无显著性差异,不必采用f(rec)修正结果。  由表3可以看出,8 个化合物中有6 个化合物的加标回收率与1.0 存在显著性差异,为了保证分析结果的准确性,应当在公式计算中采用回收率校正因子f(rec)修正结果。  合成不确定度及扩展不确定度  由上述各项不确定度分量计算相对合成不确定度,进而得到扩展不确定度:在没有特殊要求的情况下,一般取扩展因子k=2,则扩展不确定度(以%计):。计算结果见表4。  结果与讨论  本文参考JJF1059 和CNAS-GL06 的规范,对土壤中六六六和滴滴涕残留量测量的不确定度进行了计算和评价。  1.按农药种类和浓度分析  8 个化合物的残留水平差异较大,浓度范围为0.6μg/kg~125μg/kg,各自的扩展不确定度(以%计)见表4。  分析以上数据,可以看出:有机氯农药的扩展不确定度与农药种类基本无关,而与化合物浓度存在密切关系。当农药检测浓度过低,尤其是在方法检出限至定量下限之间时(以校准曲线zui低点对应浓度2.5μg/kg 作为定量下限),扩展不确定度相当大,超过50%;另一方面,在2.5μg/kg~125μg/kg 较宽的浓度范围内,扩展不确定度变化很小。应用格拉布斯(Grubbs)准则分别对上述两组扩展不确定度数值进行检验:当偏差,则xp 将作为异常值被剔除。其中,n-实验数据个数(n=15);a-显著性水平(0.05)。通过计算可知,2 组数据均符合该准则,认为都是符合正态分布的正常值。  当有机氯农药浓度低于定量下限时,扩展不确定度均值为0.84,说明土壤中有机氯农药检测浓度不宜过低,特别是在检出限附近的结果存在较大的风险。另一方面,当有机氯农药浓度高于定量下限时,在较宽浓度范围内扩展不确定度无显著性差异,因此可用均值0.10 来代表不同有机氯农药在不同浓度水平下的一般水平。该结果表明本实验的测试方法、人员操作和仪器等均处在稳定状态,只要测量过程本身或所使用的设备不发生变化,该平均值可适用于以后本实验使用该方法所得结果中。  2.按不确定度来源分析  首先,在5 种不确定度来源中,质量称量因素的影响相对较小,认为可以忽略。其次,校准过程引入的不确定度,随着被分析化合物浓度的降低,其相对比例越来越高。在较低的检测浓度下,校准过程带来的不确定度是整个不确定度的最主要来源。  结论  采用加速溶剂萃取-固相萃取净化-气相色谱法测定土壤样品中六六六和滴滴涕的残留量,并依据JJF1059 和CNAS- GL06 规范,评价了测量过程中的不确定度。结果表明,8 种有机氯农药在高于定量下限的较宽浓度范围内的扩展不确定度无显著性差异,可用平均值0.10 代表该测试方法的一般水平。另外,从不确定度来源分析,可以看出体积因素对总不确定度的贡献较小,可以忽略;而校准过程引入的不确定度所占比重随着被测物浓度的降低明显提高。

厂商

2018.12.20

高效毛细管电泳(HPCE)工作原理

  高效毛细管电泳(high performance capillaryelectrophoresis,HPCE)是近年来发展起来的一种分离、分析技术,它是凝胶电泳技术的发展,是高效液相色谱分析的补充。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,HPLC分析高效、快速、微量。  电泳迁移  不同分子所带电荷性质、多少不同,形状、大小各异。一定电解质及PH的缓冲液或其它溶液内,受电场作用,样本中各组分按一定速度迁移,从而形成电泳。  电泳迁移速度(v)可用下式表示:  v=uE  其中E为电场强度(E=V/L,V为电压,L为毛细管总长度)。u为电泳淌度。  电渗迁移  电渗迁移指在电场作用下溶液相对于带电管壁移动的现象。特殊结构的熔合硅毛细管管壁通常在水溶液中带负电荷,在电压作用下溶液整体向负极移动,形成电渗流。带电微粒在毛细管内实际移动的速度为电泳流和电渗流的矢量和。  分离分析类型  根据其分离样本的原理设计不同主要分为以下几种类型:  ①毛细管区带电泳(capillary zoneelectrophoresis,CZE);  ②毛细管等速电泳(capillarychromatography,CITP);  ③毛细管胶速电动色谱(miceller electrokineticcapillary chromatography,MECC);  ④毛细管凝胶电泳(capillarygelelectrophoresis,CGE);  ⑤毛细管等电聚焦(capillary isoelectricfocusing ,CIEF)。  毛细管区带电泳(CZE)为HPCE的基本操作模式,一般采用磷酸盐或硼酸盐缓冲液,实验条件包括缓冲液浓度、pH值、电压、温度、改性剂(乙腈、甲醇等),用于对带电物质(药物、蛋白质、肽类等)分离分析,对于中性物质无法实现分离。毛细管胶束电动色谱(MECC)为一种基于胶束增溶和电动迁移的新型液体色谱,在缓冲液中加入离子型表面活性剂作为胶束剂,利用溶质分子在水相和胶束相分配的差异进行分离,拓宽了CZE的应用范围,适合于中性物质的分离,亦可区别手性化合物,可用于氨基酸、肽类、小分子物质、手性物质、药物样品及体液样品的分析。毛细管等速电泳(CITP)采用先导电解质和后继电解质,构成不连续缓冲体系,基于溶质的电泳淌度差异进行分离,常用于离子型物质(如有机酸),并因适用较大内径的毛细管而可用于微制备,但本法空间分辨率较差。毛细管等电聚焦电泳(CIEF)用于具兼性离子的样品(蛋白质、肽类),等电点仅差0.001可分离的物质。毛细管凝胶电泳(CGE)依据大分子物质的分子量大小进行分离,主要用于蛋白质、核苷酸片段的分离。此外,还有毛细管电色谱(CEC)及非水毛细管电泳(CNACE),用于水溶性差的物质和水中难进行反应的分析研究。目前CZE和MECC用得较多,本文以这两种方法为例来说明HPLC的原理。  CZE的基本原理  HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

厂商

2018.12.20

诚驿科技亮相2018年度北京市电子显微学年会!

   诚驿科技于2018年18日成功亮相本年度北京市电子显微学年会。此次会议在北京天文馆召开,由北京市测理分析测试中心主办,大会内容重点围绕科学仪器的应用成果和未来的发展方向,邀请了业内多位专家学者出席,相继带来从基础原理到重大应用成果的精彩报告,与会人员共计200余人。 (会议现场)    会场展览区,诚驿科技展示出德国Accurion两款高端产品(重载主动减振平台sandwich、DUO 73)和精密实验室环境解决实例,吸引众多参会专家前来参观交流。借助这一共同探讨、学习交流的机会,诚驿科技技术工程师向参会老师详细介绍了主动减震在显微技术中的应用和重要性,从而多方面也获知用户的更多需求,为用户提供jing准专业的解决方案。  (诚驿科技展区)    德国Accurion重载主动减振平台sandwich和DUO 73,都是用一个调节器代替了粘滞阻尼器,根据sky-hook 阻尼控制理论,将减振装置(mass M)jue对速度的比例量作为反馈作用于减振装置,这样大大提高了减振的效果,也凭其安装方便、操作简单、性能稳定、低频振动效果等优势,现已入驻百余家精密电镜实验室。

厂商

2018.12.19

酸纯化器在痕量分析实验中的应用

    酸蒸馏器广泛应用于金属痕量分析领域    美国SavillexDST-1000酸纯化器通过亚沸蒸馏过程提取高纯酸,并广泛应用于金属痕量分析领域。    DST-1000.外观设计精巧,占地面积小,可置于通风厨中工作并实现无人看管,这使操作更加简单,安全。    DST-1000可以一次纯化1L原酸,并可将1ppb级金属元素原酸转换成10ppt级高纯酸,由此为金属痕属元素分析实验室节约了巨大成本。    DST-1000可蒸馏硝酸,盐酸和HF,并能在约12小时内蒸馏出500mL高纯酸。对于高纯酸需求量多的实验室,可以选用DST-4000。    酸蒸馏器操作要点:    高纯酸的产酸速率与蒸酸温度有关。gao档位温度的产酸速率约为40ml/hr。蒸酸温度只影响产酸速率,不影响产酸纯度。加热元件加热酸的温度远低于酸的沸点,因此不会产生酸蒸气夹带杂质污染高纯酸的现象。较低的zui高温限制值及内置的保险丝,确保蒸馏过程的安全。在无人值守时使用酸蒸馏器长期蒸酸时,可使用低档位温度设置。在需要取用高纯酸时,可随时停止蒸馏。当置酸室内剩余酸的体积约为50-100ml时,可手动关掉加热单元。冷却后,将剩余的酸排到废液桶内。    酸蒸馏器是制备高纯试剂和高纯水的仪器,它具有技术先进,结构合理,安装简单,操作方便,维修简便。酸蒸馏器是利用加热套热辐射原理,保持液体温度低于沸点温度蒸发冷凝从而制备高纯水和高纯试剂,在进行测定(原子吸收光谱、气相色谱、电感耦合等离子发射光谱ICP-MS等)痕量元素及微量有机物时,是不可或缺的配套仪器设备。

厂商

2018.12.17

ICP-AES仪器分析使用注意事项

  ICP-AES法是以等离子体原子发射光谱仪为手段的分析方法,由于其具有检出限低、准确度高、线性范围宽且多种元素同时测定等优点,因此,与其它分析技术如原子吸收光谱、X-射线荧光光谱等方法相比,显示了较强的竞争力。在国外,ICP-AES法已迅速发展为一种极为普遍、适用范围广的常规分析方法,并已广泛应用于各行业,进行多种样品、70多种元素的测定,目前也已在我国高端分析测试领域广泛应用。  实验室使用ICP-AES,日常需要知道哪些注意事项呢?  1、良好的实验室环境  等离子体光谱仪与其它大型精密仪器一样,需要在一定的环境下运行,失去这些条件,不仅仪器的使用效果不好,而且改变仪器的检测性能,甚至造成损坏,缩短寿命。  ①室温  等离子体光谱仪属于精密光学仪器,对环境的温度有一定的要求,如果温度变化太大,光学元件受温度变化的影响就会产生谱线漂移,仪器寻峰不准,尤其是单道扫描型的仪器,甚至有时候会找不到峰。测量标准和样品时的温差大的话会造成测定数据不稳定,一般室温要求维持在20~25摄氏度间的一个固定温度,温度变化应小于±3/小时即可。一般空调就能达到,这也要求放置仪器的房间要适中。  ②湿度  湿度过大,光学元件,特别是光栅容易受潮损坏或性能降低。曾经有厂家去用户哪打开仪器发现光栅都长毛发霉的事情,厂家要求用户付高达1万多美金改换光栅(进口离子刻蚀光栅相当的贵,好象没有国产的代替)。电子系统,尤其是印刷电路板及高压电源上的元件容易受潮烧坏。湿度对高频发生器的影响也十分重要,湿度过大,轻则等离子体不容易点燃,重则高压电源及高压电路放电击毁元件,如功率管隔直陶瓷电容击穿,输出电路阻抗匹配、网络中的可变电容放电等,以至损坏高频发生器。广东一用户两个月没有开机使用,一开机直接造成包括计算机主板在内的几块电路板烧毁,虽在保修期,但厂家拒绝免费更换。可谓损失惨重。一般要求室内湿度应小于百分之70,zui好控制在百分之45~60之间,南方的用户一定要有抽湿机,不然在夏季,仪器很难正常工作,有人说,他们的仪器总是在夏季发生故障,仪器损坏是季节性的,和湿度应该有一定的关系。  ③排风  仪器上放,要有良好的抽风系统,这个厂家一般是要求的,平时要注意排风系统的正常运转,每个分析人员都不愿意在有大量重金属环境下工作吧。  ④防尘  国内一般实验室都不具备防尘、过滤尘埃的设施,当实验室内需要采用排风机,排除仪器的热量及工作时产生的有毒气体时,实验室与外部就形成压力差,实验室产生负压,室外含有大量灰尘的空气从门窗的缝隙中流入室内,大量积聚在仪器的各个部位上,容易造成高压元件或接头打火,电路板及接线、插座等短路、漏电等各种各样的故障,因此,需要经常进行除尘。特别是计算机、电子控制电路、高频发生器、显示器、打印机、磁盘驱动器等,定期拆卸或打开,用小毛刷清扫,并同时使用吸尘器将各个部分的积尘吸除。对光电倍增管负高压电源线、及计算机显示器的高压线及接头,还要用纱布沾上少许无水酒精小心的抹除积炭和灰尘。磁盘驱动器及打印机清出灰尘之后,要在机械活动部件滴加少许仪表油。打印机的打印头还要拆下,用软毛刷刷扫,并用绒布抹净,防止针孔被纸屑堵塞,然后按照说明书调整一定的打印压力。对于仪器除尘,一般由电子,仪修或计算机的专业人员帮助,仪器使用或管理人员如不懂电子知识,不了解仪器结构,不要轻易去动,以免发生意外,除尘应事先停机并关掉供电电源下进行。  2、仪器的供电线路要符合仪器的要求  ①足够大的容量  为了保证ICP仪的安全运行,供电线路必须要有足够大的容量,ICP点火的瞬间,功率能达到6KW以上,正常运行时,输入功率也有3KW,频繁的跳闸会损坏仪器,否则仪器运行时线路的电压降过大,影响仪器寿命。  ②稳定的电网  作为一台精密测量仪器,它还需要有相对稳定的电源,供电电压的变化一般不超过+百分之5,如超过这个范围,需要使用自动调压器或磁饱和稳压器,不能使用电子稳压器,由于电子稳压器在电压高时产生削波,造成电脉冲,影响电子计算机、微处理器及相敏放大器的工作,引起误动作。一般厂家会提供专用的稳压电源或提供型号。  等子体光源是高频电源,工作中还要保证供电电路频率的稳定,连续正弦波电源才能保证这些电子电路的正常工作,仪器供电线路应单独从供电变压器的配电盘上得到,尽量不与大电机,大的通风机,空调机,马弗炉等大的用电设备共用一条供电线路,以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。尤其是金属冶练企业,不要和大型的可控硅共用电源,曾经有一铅厂,从示波器上显示的全是方波和脉冲,这是不能保证仪器正常工作的。以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。允许电流大于30安培的仪器要单独接地。一般光谱仪地线电阻要小于5欧姆,计算机地线电阻要小于0.25欧姆(ASTM)标准,以防相互干扰。应有专门的地线。  在仪器的使用中,应经常注意电源的变化,不能长期在过压或欠压下工作,根据资料介绍,当仪器在过压下工作会造成高颇发生器功率大管灯丝过度的蒸发和老化,电子管的寿命将会大大的缩短(是正常寿命的五分之~一六分之一)。如果在欠压下工作,电子管灯丝温度过低,电子发射不好,也容易造成电子发射材料过早老化,同样也缩短电子管的寿命;仪器运行中供电电压的较大波动同样也会造成高频发生器输出功率的不稳定,对测定结果的好坏影响极大,因此,应当注意供电电源的质量。  3、对气体控制系统的维护保养  ①氩气的纯度  等离子光谱仪所用氩气的纯度要使用使用高纯氩气,一般要4个9以上,氩气不纯会造成点不着火或ICP熄火。  ②气流稳定  ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。  4、对进样系统及炬管的维护  ①雾化器  是进样系统中最精密,最关键的部份,需要很好的维护和使用。要定期的清理,特别是测定高盐溶液之后,如果不及时清洗,会造成雾化器堵塞,每次测定完以后,关机之前要把吸管放进稀酸溶液清洗一会。雾化器堵塞以后,要用手堵住喷嘴反吹,千成不要用铁丝等硬物去捅。  ②炬管  每次安装炬管,位置一定要装好,防止炬管烧掉,作样时尤其是高盐份样品,炬管喷嘴会积有盐份,造成气溶胶通道不畅,常常反映出来的是测定强度下降,仪器反射功率升高等。炬管上积尘或积炭都会影响点燃等离子体焰炬和保持稳定,也影响反射功率,甚至会造成熄火。因此,要定期用酸洗,水洗,zui后,用无水乙醇洗并吹干,经常保持进样系统及炬管的清洁。长时间不清洗炬管,会造成很难清洗干净的现象。  ③HF介质  由于雾化器和炬管以及雾室都是玻璃或石英,所以在进HF介质的样品时一定要赶HF,或者更换耐HF系统,不然,你的进样系统的寿命会大大的缩短,尤其是雾化器和雾室,一个实验室,就用普通进样系统进HF介质的样品,一年买了30个雾化器,10个雾室,还好他用的是国产仪器,配件比较便宜。  5、使用中其它注意事项  ①开机测定前,必须做好安排,事先标好各项准备工作,切忌在同一段时间里开开停停,仪器频繁开启容易造成损坏,这是因为仪器在每次开启的时候,瞬时电流大大高于运行正常时的电流,瞬时的脉冲冲击,容易造成功率管灯丝断丝,碰极短路及过早老化等,因此使用中需要倍加注意,一旦开机就一气呵成,把要做的事做完,不要中途关停机。  ②就是平时没有样品可测时,zui好保证每周开一次机,运行半个小时到一个小时,如果一年甚至更长时间从来不开机,基本上仪器就得大修。长时间没开机时,开机前一定要检查气、电等是否符合相关条件。  ③每次作完实验,一定要把样品、标准等溶液远离仪器,减少挥发对仪器的腐蚀。  ④使用循环水冷的仪器,一定要用蒸馏水,防止结垢。  在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为2或6分钟,全谱直读型较快,一般为2分钟测定一个样品。所以,对于实验室来说,选择ICP-AES有利于提高实验室效率,在对其的维护保养上,希望本文能给你带来一些帮助和参考!

厂商

2018.12.17

浅谈实验室ICP-MS联用仪

   自1984年第yi台商品仪器问世以来,这项技术已从最初在地质科学研究的应用迅速发展到广泛应用于环境保护、半导体、生物、医学、冶金、石油、核材料分析等领域。   ICP-MS全称是电感耦合等离子体-质谱法(Inductively coupled plasma-Mass Spectrometry)它是一种将ICP技术和质谱结合在一起的分析仪器,它能同时测定几十种痕量无机元素,可进行同位素分析、单元素和多元素分析,以及有机物中金属元素的形态分析。    ICP-MS原理   1.在ICP-MS中,ICP起到离子源的作用,ICP利用在电感线圈上施加强大功率的高频射频信号在线圈内部形成高温等离子体,并通过气体的推动,保证了等离子体的平衡和持续电离,被分析样品由蠕动泵送入雾化器形成气溶胶,由载气带入等离子体焰炬中心区,发生蒸发、分解、激发和电离。高温的等离子体使大多数样品中的元素都电离出一个电子而形成了一价正离子。   2.通过ICP-MS的接口将等离子体中的离子有效传输到质谱仪;   3.质谱是一个质量筛选和分析器,通过选择不同质核比(m/z)的离子通过来检测到某个离子的强度,进而分析计算出某种元素的强度。   总结起来就是:   原子化   将原子化的原子大部分转化为离子   离子按照质荷比分离   计算各种离子的数目    ICP-MS的结构   1.电感耦合等离子体:样品引入系统;离子源   2.接口:采样锥;截取锥   3.质谱:离子透镜系统;四级杆离子过滤器;检测器   样品引入系统   引入方式:   溶液气动或超声方式引入   电热蒸发方式引入   激光或火花方式引入   气体发生方式引入   注:大多数ICP-MS以气动雾化器为标准附件(雾化效率低,1%,但使用方便,稳定性好,易于与自动进样器联用)   ICP(电离源)   电离源是电感耦合等离子体(ICP),其主体是一个由三层石英套管组成的炬管,炬管上端绕有负载线圈,三层管从里到外分别通载气,辅助气和冷却气,负载线圈由高频电源耦合供电,产生垂直于线圈平面的磁场。如果通过高频装置使氩气电离,则氩离子和电子在电磁场作用下又会与其它氩原子碰撞产生更多的离子和电子,形成涡流。   载气,辅助气和冷却气   三个都是氩气,只是作用不同。   载气:产生涡流,形成高温;把样品带入等离子体。   辅助气:用来维持等离子体。   冷却气:以切线方向引入外管,产生螺旋形气流,使负载线圈处外管的内壁得到冷却。   为什么要用氩气?   ? Ar是惰性气体   ? Ar 相对便宜   ? 易于获得高纯度的氩气   更重要的是 -   ? Ar 的第yi电离电位是15.75 电子伏特 (eV)   ? 高于大多数元素的第yi一电离电位 (除了 He, F, Ne)   ? 低于大多数元素的第二电离电位 (除了 Ca, Sr, Ba,etc)   ? 由于等离子体的电离环境由 Ar限定, 所以大多数分析元素被有效地电离为单电荷离子   接口   接口是ICP-MS仪器的心脏,采样锥和截取锥是其关键部件, 接口的功能是将等离子体中的离子有效传输到质谱仪   质谱分析器(以单四级杆为例)   利用静电透镜系统将穿过截取锥的离子拉出来,输送到四极杆滤质器。四极杆的工作是基于在四根电极之间的空间产生一随时间变化的特殊电场,只有给定M/Z的离子才能获得稳定的路径而通过极棒,从其另一端出射。其它离子将被过分偏转,与极棒碰撞,并在极棒上被中和而丢失。四极杆扫描速度很快,大约每100毫秒可扫描整个元素覆盖的质量范围。    ICP-MS特点   ICP-MS的谱线简单,检测模式灵活多样:   (1)通过谱线的质荷之比进行定性分析;   (2)通过谱线全扫描测定所有元素的大致浓度范围,即半定量分析,不需要标准溶液,多数元素测定误差小于20%;   (3)用标准溶液校正而进行定量分析,这是在日常分析工作中应用最为广泛的功能;   (4)同位素比测定是ICP-MS的一个重要功能,可用于地质学、生物学及中医药学研究上的追踪来源的研究及同位素示踪。    维护保养   1、定期更换泵管(样品管和废液管,如果有老化的情况就更换)   2、定期清洗样品锥、截取锥、嵌片、雾化器(如果连续做的话,一周以上就需要清洗,样品锥和截取锥清洗的时候放在纯水中超声30分钟)   3、定期清洗矩管和中心管(清洗的时候拆下来用5%的HNO3浸泡过夜)   4、每四个月更换一次循环水,平时注意观察一下水冷机的水位,循环水需要淹没铜管,防止上面的铜管露在外面结冰了。经常观察一下水冷机是否有损坏漏水的现象。   5、计算机专用,定期备份数据。   6、测定的时候冬天空调可以开成制冷,20℃左右,防止机械泵过热自动保护熄火了。   7、除湿机经常开开,保持房间内的湿度在适宜的范围内。温度:15℃-25℃之间。湿度:45%-65%之间。

厂商

2018.12.17

关于色谱柱使用的100个问答

  色谱柱可分为填充柱和开管柱两大类。多为金属或玻璃制作。有直管形、盘管形、U形管等形状。液相色谱通常均采用填充柱。色谱柱的分离效果取决于所选择的固定相,以及色谱柱的制备和操作条件。  1.网上对柱子是否可以反冲一直有争论,那什么样的柱子可以反冲,什么不可以。反冲后是正者用,还是反着用。具体到各型号柱子不仅是ODS柱,其他如,正向柱、氨基柱、离子交换柱等zui好都有解释。  答:一般的正相反相柱应该都能反冲,只有两端筛板孔径不对称的柱子不能反冲,不过目前这样的柱子已经比较少见了。反冲是为了把柱头的污染物冲洗掉,反冲后还是正着用比较好,以免柱子的两头都被污染,我们一直提倡的是:正向使用,反向冲洗。  2.我在做方法开发的时候,用乙腈和水作为流动相,在调整梯度的时候发现,刚开始用60%乙腈,RT为2.5分钟,调到40%乙腈,RT没有变化,30%也没有变化,一直调到20%的时候,RT突然变到了约13分钟,请问这是什么原因?我用的是离子交柱。  答:离子交换柱的保留时间主要由洗脱液的离子强度和pH决定,你现在讲的比较简单,需要把你的方法说的详细一点才能做具体的分析。譬如,分析物是什么情况,其含有极性电离基团和非极性基团是什么性质?离子交换柱是聚合物基质还是硅胶基质?水相是什么缓冲盐?  3.对于一根常用的C18柱,拿到一根新柱的时候应该怎样进行活化及维护?为什么要这样做?  答:新柱活化,实际上是一个平衡的过程,除了用流动相平衡外,有时候还必须用所测样品对新柱进行平衡,特别是测定分子量比较高的多肽,尤其重要。因为,分子量高的物质分子,扩散速度慢,平衡所需时间也相应较长。具体平衡方式也很简单,多进几次样品,直到峰面积和保留时间稳定,再进行正式进样测定。  如果要加快平衡时间,把前面用来平衡的进样样品浓度加大,或者不等洗脱完成,连续进样多针。用待测物对新柱平衡,目的是:将硅胶基质填料表面具有非特异性吸附的位点的吸附能力饱和掉。  4.测定多肽,一般采用什么柱子?流动相是乙腈和水,还有微量的TFA。特别是像类似三肽的短肽,应该怎么选择柱子?  答:分子量不高的多肽一般选用常规C18柱就能测定,也有用离子交换柱、水性C18柱和Hilic亲水作用柱的。  5.氨基柱在进酸性样品时,很伤柱子,如使用一段时间后,柱效降低,峰形改变,如何恢复?  答:氨基柱测酸性样品,应该是用氨基柱的HILIC模式。酸的存在可能会使略带负电荷的氨基官能团质子化,导致使用一段时间后对于某些类的分析物保留性质有所改变或表现在柱效下降。建议:用5~10倍的柱体积的含0.5~1.0%NH3的乙腈-水(50:50)溶液冲洗该柱(冲洗后当然要再用不含碱的流动相洗去多余氨),之后,再进行分析这类酸性分析物时建议在流动相中略微添加少许氨如,0.1%。  6.色谱柱的技术都有哪些?比如,封尾等,这些技术在应用时都体现在哪里?  答:色谱柱技术包括填料技术和装柱技术,填料技术自不待言,填料的好坏对色谱柱分离性能和选择性有决定性影响。装柱技术也没有想象中的这么简单,不同固定相、不同粒径、不同柱管内径和长度,装柱工艺都有所不同,要装出紧密、稳定、均一的柱床,更多是一门艺术,需要经验积累。  国内和国外想比,我认为色谱柱的差距在于:国内公司以前都不会自己开发填料,一般买国外现成填料装柱,买到的填料质量控制权不在自己手里。另外因为装柱历史短,经验积累少,装柱工艺也没有完全达到国外水平。另外,对色谱柱性能很关键的基础材料——裸硅胶,国产的还不过关,在纯度、粒径和孔径的均一性方面和国外产品相比,差距很大。  7.色谱柱技术的差距在哪里?  答:色谱柱技术包括填料技术和装柱技术,填料技术自不待言,填料的好坏对色谱柱分离性能和选择性有决定性影响。装柱技术也没有想象中的这么简单,不同固定相、不同粒径、不同柱管内径和长度,装柱工艺都有所不同,要装出紧密、稳定、均一的柱床,更多是一门艺术,需要经验积累。  国内和国外想比,我认为色谱柱的差距在于:国内公司以前都不会自己开发填料,一般买国外现成填料装柱,买到的填料质量控制权不在自己手里。另外,因为,装柱历史短,经验积累少,装柱工艺也没有完全达到国外水平。另外,对色谱柱性能很关键的基础材料——裸硅胶,国产的还不过关,在纯度、粒径和孔径的均一性方面和国外产品相比,差距很大。  8.柱子在什么情况下可以清洗一下筛板呢?原来也讨论过这个问题,我也拆下来清洗过,但我看到柱前段的污染更甚,于是就用刀片刮了刮,然后把清洗好的筛板安装上去。问题解决了,但使用寿命会不会减少呢?  答:柱头污染了,就取出污染的,再装一些填料。因为,加入你刮了些填料,那么微观的塔板数就少了。假入你刮得不多,仅表面,可能就是一些脏物,所以,问题解决,但是,今后还会有同样问题,再挂,那么不小心刮,影响柱效。建议还是装一个预柱。  9.如果柱子取下来放置一段时间,需要做什么保护吗?  答:对一般的反相柱,也就是洗干净后放到纯甲醇(乙腈)或者是80%左右的甲醇(乙腈)水中,然后用堵头塞紧柱两头,以免保存溶剂挥发,应该不需要做特殊的保护。  10.流动相中加入适量的四氢fu喃可以改善峰形的机理是什么?  答:《高效液相色谱方法及应用》于世林编著的上面说:甲醇为质子给予体、乙腈为质子接受体、四氢fu喃是偶极溶剂,应该除了极性影响,还有另外的影响因素,至于分离机理,还是比较复杂的,不能看成是个万能方法。  11.关于色谱柱的填装问题!我个人认为现在色谱柱的填装一般有3种情况:  ①国外生产填料并填装完成成品卖到国内;  ②国外生产填料,国内填装销售;  ③国内生产填料,国内填装销售。  一般情况下,第1种情况卖的最贵,也质量zui好!可是我就不明白了:如果是填料的生产很复杂的话,那么填装上国内也跟不上去吗?为什么换在国内填装就会出现或多或少的一些小问题呢?  答:国内填装会出现质量小问题,和国内目前普遍做事没有国外严谨有关吧。如果工艺技术上没有问题,又能制订并切实执行一整套严格的生产质量管理措施,国内填装和国外填装并无区别。  12.国产色谱柱在市场上占有比例如何啊?  答:国内色谱柱市场还没有人进行过科学统计,连一年色谱柱销售总量也众说纷云,更别说国内生产色谱柱所占份额了。我估计是占30%左右吧。  13.预柱或保护柱用还是不用的问题!原来分析中药品种时,我一直都是用保护柱。但来到新公司后,发现大家都没有使用,几个实验室连保护柱都没找到一个,也就是说大家从来都没有用过。后来问一个老员工,说是有可能影响药品分析。我就想问:安装保护柱后会影响样品分析吗?我们做的大多是头孢类的抗生素。  答:应该这样说,加上保护柱,肯定有利于保护色谱柱不受一些颗粒物质的堵塞,肯定有害于分离度和柱效,因为保护柱中间有着死体积的存在但是如果保护柱接得好并且尽量控制其匹配性和经常更换,分离度和柱效应该影响并不大。  头孢类的抗生素也要看到底是原料药还是制剂喽,有些原料药,可以根据色谱柱的损耗选择添加预柱(中间是个筛板),制剂的话,如果有辅料严重干扰或者流动相盐分比较大,那还是zui好配个保护柱。  14.用的是四元梯度泵:A:50%甲醇;B:50%水, 经常出现停或进气泡这是什么原因?  答:水/甲醇比例在55:45时,黏度和柱压有个极大值。50:50接近了这个极值,柱压是比较高的,但,影响柱压最大的还是填料粒径和色谱柱内径,你这个实例中不知用的什么规格的色谱柱?系统压力高,可能会因溶剂泵中的过滤头供液速度跟不上而导致气泡进入系统,停机也应该是因为气泡进入压力下降的原因,可考虑更换液体通量更大的过滤头。  15.填料方法的前三种都是湿法吗,能不能对四种填充方法做一个简短的说明?  答:资料显示:在正常条件下,填料粒度>20μm时,干法填充制备柱较为合适;颗粒  ① 高压匀浆法,多用于分析柱和小规模制备柱的填充;  ② 径向加压法,Waterszhuan利;  ③ 轴向加压法,主要用于装填大直径柱;  ④干法。柱填充的技术性很强,大多数实验室使用已填充好的商品柱。为什么以20μm为分界点?  16.想请您具体说明一下反冲色谱柱的方法,是不连检测器吗?  答:反冲就是将柱子反向连到系统中。因为,有污染物反冲出来,当然不连检测器,出液端直接接到废液瓶就可以。  17.如果不使用不锈钢接头,而改用peek头,是否可以完全解决接头匹配问题?  答:色谱柱接头其实大都不是色谱柱厂商自己生产的,供货商有多个,VICI,Upchurch,Parker等,他们的标准相互之间不统一,那色谱柱接头的标准就统一不起来。不过一般这个问题也不难解决的,换个接头就可以了,而且现在有了万用接头,可以配所有不同类型的柱头,不泄露,连接死体积又很小。  18.有的厂商为避免堵塞,使用了较大孔径(2~5μm)的前筛板,这种情况反冲会将填料冲出。那么,你们在使用说明书中会说明前后筛板的孔径吗?  答:如果前后筛板孔径不对称,厂商肯定也会在说明书里特别提到的。  19.我在做多肽药物时遇到下列问题:  1)基线不稳定波动大,流动相 A :  1%TF,A:水溶液,B:1%TFA乙腈溶液检测波长210nm流速1.0mL/mL 什么原因?怎么解决?TFA有什么作用?流动相中不加TFA见不到主峰,基线良好。  2)做完肽类样品时怎么冲洗C18比较好;  3)药典上介绍测定分子量大于2000的样品,选择柱子填料的孔径为30nm,30nm与10nm对结果有什么区别?  答:应该是起“离子对”的作用吧。在做多肽类样品的时候,300A孔径的填料相对100A孔径肯定要选择性好点,也就是分离度相对比较好点。流动相加入TFA,在反相色谱分离多肽和蛋白质的实验中,使用三氟yi酸(TFA)作为离子对试剂是常见的手段。流动相中的三氟yi酸通过与疏水键合相和残留的极性表面以多种模式相互作用,来改善峰形、克服峰展宽和拖尾问题。  ※三氟yi酸优于其他离子修饰剂的原因是它容易挥发,可以方便地从制备样品中除去。另一方面,三氟yi酸的紫外最大吸收峰低于200nm ,对多肽在低波长处的检测干扰很小。  20.waters,Atlantis C18柱可以用较高比例的流动相,那麽用完后应该怎麽清洗?在什麽体系中保存比教合适?  答:反相柱都可以用下面通用的方法清洗维护:  流动相中不含缓冲盐:  分析完成后,用甲醇(或乙腈):水=90:10反向冲洗色谱柱45min  流动相中含有缓冲盐:  分析完成后,先用甲醇(或乙腈):水=10:90反向冲洗45min,然后再用甲醇(或乙腈):水=90:10反向冲洗色谱柱45min;(注意:甲醇(或乙腈):水=10:90容易长菌,使用时间不可超过3天);  水性柱保存体系也不特别:  短期保存在所用的流动相中(不含缓冲盐),中长期保存在纯甲醇(乙腈)或80%的甲醇(乙腈)/水中。  21.正相硅胶柱一般保存在什么溶剂里面比较合适?  答:短期和长期都建议保存在正相测定所用的流动相中,一般是正己烷和极少量的异丙醇。  22.磷酸盐缓冲盐渗透力强,为什么,是因为与醋酸盐,枸椽酸盐相比,基团小吗,使用磷酸盐缓冲液与其它缓冲液相比,会使色谱柱寿命缩短多少?  答:经常用磷酸盐,在其它条件差不多一样的情况下,柱子寿命肯定比不用磷酸缓冲盐相对短一些。但用磷酸盐也有不可取代的优点吧,否则不可能现在大部分人还在用。  23.反相离子对色谱法中,离子对是如何起作用的,是离子对试剂的非极性端溶解在填料的非极性端里,解离端伸向流动相,对含胺化合起离子交换作用,还是样品与离子对生成紧密的结合物,离子对试剂掩藏化合物中的极性基团,还是这种结合物是在解离与结合的动态平衡之中?  答:首先离子对试剂的解离端和目标离子形成离子缔合物,降低其极性,这样就能较好的在柱子上保留。再者,根据疏水效应理论,离子对试剂的疏水端是很容易和C18链相互作用的,这样更容易在柱子上保留,所以我认为离子对试剂作用是混合保留机制,即纯粹的反相保留和离子对保留机制共同作用。  24.四烷基季铵盐(如,四丁基硫酸氢铵、四丁基溴化铵、四丁基氢氧化铵等)在水中电离后,也形成了类似N+H(CH2CH3)3的结构N+(CH2CH2CH2CH3)4,这种结构也能有效的与Si-O-产生较强的静电作用,此类离子对用的比较少,但它的作用仅是掩藏Si-O-吗,它对物质的保留性能有何影响,实验中发现检测胺化物时,流动相中加入磷酸缓冲盐有增加物质保留的趋势,而加入三乙胺则会降低物质的保留能力?  答:前面提到的四丁基氢氧化铵等离子对试剂确实不如辛磺酸钠等极性基是阴离子的离子对试剂用得普遍,原因是酸类极性物质很容易通过降低pH值的方法提高在反相色谱中的保留能力,降低pH可抑制酸的电离,使酸处于中性状态而与疏水碳链的作用力增强。而碱类分析物则受硅胶基质pH上限的严重影响(以前上限是8,后来抬到10,直到最近杂化硅胶才将pH上限提到12左右)。  铵盐类离子对试剂确实有辛磺酸钠等所不具有的屏蔽硅醇基作用,但其主要作用还是疏水端和疏水固定相结合,外露的阳离子亲水端和酸阴离子作用,从而提高其保留能力。当然同样还有第二种解释机理,离子对试剂先和分析物结合,掩藏极性基,从而提高极性分析物在反相色谱中的保留能力。而且丁基比辛基疏水性差,这种情况下,认为后面的结合机理占上风的可能性更大。  检测胺类化合物,加入三乙胺预先和硅醇基结合,胺和硅醇基作用被三乙胺取代,保留下降是肯定的。  25.同一根色谱柱在分析完三聚氰胺后,再分析苯甲酸、山梨酸、糖精钠时为什么保留时间会提前?  答:色谱柱被强保留物质污染后,保留时间提前和滞后的情况都有,具体要看污染物的性质,还要看分析物、固定相和污染物三者共同作用的情况,情况比较复杂,有时候比较难预测是提前还是滞后。不过你平时维护的时候,注意在测定后将污染物用有机溶剂反冲清洗,就可以减轻或避免这种情况的出现。建议每个分析方法用专门的色谱柱,长远看,这样更节省色谱柱的费用。  26.HPLC柱前衍生和柱后衍生的相关问题?1)为什么要衍生?2)衍生化的分类?3)进行衍生,适用的化合物有哪些?4)进行衍生化的要求有哪些?5)柱前衍生和柱后衍生的优缺点?  答:色谱技术中的化学衍生法系指在色谱过程中用特殊的化学试剂(一般称为衍生化试剂或标记试剂)使样品成分转变相应的衍生物之后进行分离检测或进行检测的方法。  目的为:  1.将紫外—可见强吸收功能基团引入被检测对象或将其转变为荧光衍生物,以提高检测灵敏度;2.提高对分析样品的分离和选择性。  从是否与HPLC系统联机的角度,化学衍生法分为在线on line)与离线∣Off line)两种。从发生衍生化的场合,分为柱前衍生法pre-columnderivatization)与柱后衍生法(post-columnderivatization)两种。目前,在HPLC中,以离线的柱前衍生法(简称柱前衍生法)与在线的柱后衍生法(简称柱后衍生法)使用居多。  27.多个样品不好不离的时候,请问该怎么通过选择合适的柱子来提高分离度?  答:提高分离度可从三个主要影响因素来考虑,柱效、选择性和保留因子。可通过减小填料粒径和增加柱长提高柱效;选择性和固定相选择以及pH条件有关,通过选择合适的色谱柱和合适的pH,可以提高选择性;有时候适当延长出峰时间增加保留因子,也可提高分离度。  28.苯基柱,氰基柱该什么时候考虑用?  答:苯基柱用于含苯环的芳香族化合物的测定时,具有较高的选择性。CN柱可作为一个保留能力最弱的反相柱使用,也可作为一个活性降低的正相柱使用(保留时间比硅胶柱和氨基柱低很多)。  29.同样类型柱子还有长度,粒径等差异,这些该怎么去选择?  答:长度和粒径都是用来改变柱效的,选择原则是够用就好。  30.我前几天刚刚装上一个新的C18柱,在进样之前我用100%的甲醇冲了半个多小时。刚才看到上面写的要活化什么的?不知道我只冲洗半小时就开始用对柱子有没有影响?对出峰什么的有没有影响呢?  答:不是所有的测定,都需要对新柱子用所测样品老化。但先按方法程序进样几针,观察到峰面积保留时间不再有明显变化,再开始正式测定,这是一个好习惯。按你现在的做法,如果第一针和第二针的峰面积、保留时间没有变化,就继续做没影响吧。  31.现在色谱柱和仪器的接口还没有标准化吗,除了检测池的出入管较小外,色谱柱的接口与peek头不匹配的有哪个型号的色谱柱,以后使用的时候需要注意一点。同时发现使用过金属接头的色谱柱再换成PEEK头,常易漏液,这是因为金属头易使色谱柱接口变形吗?  答:色谱柱接头其实大都不是色谱柱厂商自己生产的,供货商有多个,VICI,Upchurch,Parker等,他们的标准相互之间不统一,那色谱柱接头的标准就统一不起来。不过一般这个问题也不难解决的,换个接头就可以了,而且现在有了万用接头,可以配所有不同类型的柱头,不泄露,连接死体积又很小。  32.普通的C18柱能作为正相色谱柱使用吗?正相色谱体系中最常用也最普通的是那种色谱柱。正相柱在使用过程中与反向柱相比有什么需要注意的地方?  答:普通C18柱作为正相柱使用,我还没听说过。正相色谱分离模式是指固定相的极性比流动相的极性大,反过来,流动相极性大就是反相。C18固定相属于疏水性相对比较强的,疏水性强就是极性很弱,应该找不出极性比它更弱的流动相了。  正相体系常见的柱子有:硅胶柱、氨基柱、CN基柱和Diol二醇基柱,最普通的应该就是硅胶柱。正相柱和反相柱比,最需要注意的是水分,正相柱对水分非常敏感,流动相中水分含量的些微变化对保留时间影响很大,因此正相柱测定前平衡时间需要几个小时甚至更长。  33.色谱柱的柱头类型与不锈钢毛细管接头有6种连接方式(在讲义里面提到),那么我们用户一般是液相色谱仪是固定某一个厂家,而是根据样品检测需要更换不同类型的色谱柱,那么怎么判断我所购买的色谱柱是否与不锈钢毛细管是否匹配呢,我之前只是知道安捷伦和waters都有规定他们自己家的柱子与自己家的仪器配套是最合适的,而其他厂家的色谱柱都很少提及,在不知道的情况下,我们该怎么选择?月旭的色谱柱柱头类型属于哪一种类型呢?  答:不锈钢毛细管接头有个缺点,用过一次后卡匝位置和距离毛细管末端的长度就固定死了。如果下次用的色谱柱的柱头接口深度和原来的不同,就容易产生死体积和泄漏。产生的死体积一般不大,如果只引起柱效的稍微下降而没引起拖尾,这个问题就容易被忽略。引起大家关注的是泄漏,如果用了新柱子,发现和毛细管的接口处有泄漏,就可以判断是接头的匹配问题。zui好的判断方法还是:询问一下厂商色谱柱柱头的类型和柱头接口的深度,然后和毛细管接头的规格比较。  如果用peek接头,发生问题的情况就大大减少,因为,peek接头卡匝位置是不固定的。  接头与色谱柱的匹配,并没有在实际色谱应用中造成很大的问题,有很多人都没有关注到这个问题。一方面原因是使用peek接头的情况很普遍,另外,如果发现不匹配,换个毛细管接头还是非常方便的。  34.相对于气相色谱,液相的优势在哪里?做防腐剂分析时,流动相加入乙酸铵才可以出峰,原理是什么?  答:液相和气相相比的优势有很多,我认为主要在于应用范围更广。气相只限于容易气化的低分子量物质的分析测定,对象大部分是基础化工原材料;而任何能溶解于某溶剂的物质都能用液相分析,适用对象是分子量从几十到几万的广大范围。在制药、化工、环保、食品和刑侦等诸多重要领域,液相都已成为主导的分析分离工具。也有两者都能应用的交叉情况,但液相的制样更简单。液相色谱的出现克服了气相色谱不能直接用于难挥发、热不稳定及高分子化合物的弱点。  35.您提到“磷酸盐缓冲盐渗透力强,有加快硅胶溶解的副作用,它的存在会降低pH使用范围。”,既然这样,经常使用,柱子寿命是否也下降的快呀?  答:经常用磷酸盐,在其它条件差不多一样的情况下,柱子寿命肯定比不用磷酸缓冲盐相对短一些,但,用磷酸盐也有不可取代的优点吧,否则不可能现在大部分人还在用。  36 CN柱的保存需要在低温条件,但是,又不能太低,使固定相冻结,怎么控制这个温度?怎么判断固定相是否被冻结?固定相冻结后会是什么样的现象?  答:所谓低温储存,就是放到阴凉处或者放到冰箱的冷藏室。储存液只要不是纯水,冰点都比较低,纯甲醇的冰点是零下90度以下了。  37.我们测试样品时,经常会关心柱压是否太高,但是在购买色谱柱时,并没有说每一根色谱柱的最大使用压力是多少?针对这样的情况,用户怎么判断柱压是否超过该柱的极限?  答:装柱时的压力比使用时高很多,所以柱压对色谱柱本身在使用时没有极限问题存在,倒是一般仪器有个40Mpa的上限。如果色谱分离度还能满足分析方法要求,柱压只要仪器能承受就OK吧。  38.使用缓冲液不当,使硅胶溶解并重新形成粉末后,会出现什么样的异常情况?怎么处理?  答:出现异常就是柱压升高。小粉末在流动相不断冲洗带动下,最后会聚集在柱子出口端,沉积在后筛板。处理方法只有拆下后筛板进行清洗或更换,但这样做会影响到柱床,处理后柱效会下降。  39.今天才知道滤膜的材质分了这么几种:再生纤维素、聚四氟乙烯、硝酸纤维和醋酸纤维等,之前只知道有有机系和水系之分?各种不同材质的滤膜适合于什么样的样品?  答:再生纤维素膜:具有蛋白质吸收低,适用于水溶性样品和有机溶剂;  聚四氟乙烯:适用于所有有机溶剂,酸和盐;  尼龙66:适用于绝大多数有机溶剂和水溶液,可用于强酸,70%的乙醇,二氯甲烷,不适用与二甲基甲酰胺;  醋酸纤维:不适用有机溶剂,特别适用水基溶液。  40.我原来遇到个这样的问题,一直不知道原因。刚拿柱子做,色谱条件是成熟的,绝对没问题,但是该条件下保留的物质变的不被保留,比如,本来保留时间15分钟却怎么调比例都是2~3分钟就出峰了,维护后,下次再使用又正常了,什么样原因啊?  答:最大可能是发生相塌陷了。C18柱和高密键合封尾的C8柱,在高含水流动相下会发生相塌陷,后果就是保留能力大幅下降。用有机相比例较高的流动相冲洗后,又可恢复正常性能。  41.UPLC色谱柱可以反冲吗?HPLC的色谱柱可以简单反冲,但是,UPLC的色谱柱.也是一样的吗?如果压力偏高,该怎么办?  答:如果两端筛板孔径对称,UPLC柱应该也是可以反冲的。发现压力偏高,当然也可以用反冲清洗的方法维护,UPLC柱和普通色谱柱比,只是压力高一点,不应该有什么特殊吧。  42.常规LC的柱子粒度小,柱效高,现在有3.5μm的常规柱,不知道用3.5μm*250的压力与4.6μm的压力相差多少?  答:一般柱子4.6mm×250mm指的是其内径和长度。粒径才用μm的单位,但一般标的是5μm,也有3.5μm的。其它条件一样,光粒径是3.5μm和5μm的柱压差别,理论上3.5μm柱子的柱压是5μm柱子的(5/3.5)平方倍数,即,2.04倍,简单说就是2倍。  43.因为,不知道流动相已走完,液相色谱柱空走了大概一晚上,请问这种情况下柱子还能用吗?如果可以应该如何再生?  答:能用的!可能柱子里会有气泡进去,但之后,多用流动相冲冲,看到基线稳定,就没问题了。用色谱柱的保存液低流速长时间冲洗,然后,再检测一下柱效,看柱子是否恢复,液相zui好设置一下最低压限,这样就不怕流动相zou光而会损伤色谱柱。  44.在梯度洗脱的时候,如果整个时间程序越长,保留时间的重现性越差,尤其是后出的峰重现性差更明显,我猜估计是流量本身的误差引起的,但是怎么尽量避免这种情况的出现,使保留时间重现性更好?  答:这个要控制好环境温度和柱温,易挥发的流动相要适当密封,同时,保留时间的漂移与仪器的精度也有关系。  45.我对聚苯乙烯-二乙烯苯柱很有兴趣,主要是它耐高温、耐酸碱、但有关这方面的文献很少,但对于他的分离效能我一直心里没底,我的问题有三:  1.分离效果与ODS比较,是相当呢,还是更胜一筹,或是更差?  2.我原以为它是整体住,但看过资料后发现也是颗粒的比如,5μ,请问该类型的柱是否符合速率理论、是不是粒径越小分离效果会几何级的增加?  3.问什么没有1.7μ的这种柱出现呢?  答:聚合物基质色谱柱的优点你已经提到了,它的缺点有:对小分子分离的柱效相对硅胶基质色谱柱要低,表面衍生化修饰也没有在硅胶表面丰富,机械强度低耐压性不好,还有碰到某些有机溶剂会溶胀等。。。  聚合物基质柱当然也符合速率理论!它柱效低主要是因为,分析物在聚合物固定相中的传质速度比在硅胶表面固定相中慢很多。不过粒径越小柱效几何级增加的规律还是有的。1.7μm的硅胶基质填料也是最近几年才商品化,1.7μm的聚合物基质没出来也正常,或许永远都不出来了,因为,聚合物耐压差,粒径做这么小,它根本承受不了这个高压吧,但愿以后会有能抗高压的聚合物填料研究出来。  46.我之前有了解到贵公司也有手性色谱柱,之前买过大赛璐的手性柱,其手性柱价格相比普通反相色谱柱,要高出很多倍,不知道是本身柱子装填技术的难度大还是其他什么原因?它的主要技术关键在什么方面?  答:手性柱技术关键在于手性填料的开发,大赛璐公司在手性填料的生产技术方面申请了zhuan利保护,别的厂商不能生产,导致手性柱价格居高不下。前几年传说该公司的zhuan利保护期限快到了,国际国内有些公司就想着仿制生产。后来又听说zhuan利还没到期,情况不明。  47.“样品与离子对生成紧密的结合物,离子对试剂掩藏化合物中的极性基团”这句话是什么意思?离子对怎么样掩蔽化合物中极性基团?不就是通过静电引力的作用形成离子缔合物,来降低其极性的吗?  答:离子对色谱是解决强极性物质在反相色谱中保留能力不足的一个有效的途径。有些碱性极性物质,即使用100%水相做流动相,且无论在色谱柱能承受的pH范围内怎么去调节pH,保留能力都不够。如果需要分离的组分中全是可以离子态存在的,那还可以选择离子交换色谱进行分离。不然的话,就只有选择离子对色谱方法了,尽管它有流传的那么多副作用存在。  离子对试剂含亲水基和疏水基,很像表面活性剂,所以一开始离子对色谱也称为“皂色谱”。离子对作用的机理有两种解释,你上面都已经提到了。到底是哪种解释对,尚无定论,实际上也没必要去定论,反正两种解释都通就可以了。主流的解释也是你先提到的机理,下面示意图更直观:  我个人认为,两种机理都可能存在,要看离子对试剂、固定相和分析物这三者本身情况而定。如果离子对试剂的疏水端和固定相之间的结合力相对更强,示意图的作用机理会占上风。反之,离子对试剂亲水端和分析物导致掩藏极性端的作用力更强,你后面提到的机理更可能。总之,要看你用的什么离子对试剂,是何种的分析物等具体情况不同而不同吧。  48.我们在用的氨基柱时,有时候峰型突然变宽,有拖尾,用一段时间就又好了,不明白是什么原因造成的,如果要再生氨基柱的时候应该怎么做呢?是像您先前回答的问题中提到的,用一定比例的氨水冲洗吗?氨基柱可以直接用纯水冲洗吗?记得当时买的氨基柱那个使用说明书上说不能用纯水冲?是这样的吗?如果可以冲的话,一般冲多久?  答:氨基柱的硅胶孔内的氨基浓度非常高(大约有1mol/L),在有水存在的时候,在孔内形成一个pH=10左右甚至超过10的很强的碱性小环境,并会导致硅胶基体慢慢溶解。不过硅胶基体的溶解会生成酸性的硅醇基,又会降低孔内的pH值,延缓硅胶基体的溶解进程。一段时间后,两个相反的过程会达成一个动态平衡,从而稳定下来。对你问题提到的这个现象,我想到的是这个原因。  氨基柱,要看氨基柱的应用模式,是正相还是HILIC?这两种模式的情况是大不相同的。正相使用,一般很怕有水,但HILIC模式应用,一般流动相是乙腈/水,是不怕水的。不过,键合氨丙基基团非常容易水解,所以一般氨基柱不适宜保存有水的溶剂中。作为正相应用时,流动相中要求一点都不能含水,但清洗柱子上的污染物质,是可以含水的,因为,水有强极性,在正相色谱上洗脱能力极强,当然不必用100%纯水。氨基柱具体冲洗方法,正相条件按照正相硅胶柱的清洗方法,HILIC模式按C18柱的清洗方法。  49.采用国标用C18柱测定辣椒精辣度,将辣椒精中添加吐温系列乳化剂做成水溶辣椒精,请问乳化剂对C18柱是否有影响?  答:乳化剂和离子对试剂类似,有极性端和非极性端,肯定会对C18柱有影响。不过,如果辣椒精是极性物质,乳化剂的存在可以提高其在C18柱上的保留能力。  50.公司按照国标测定辣椒红色素中苏dan红含量,标品分离很好,峰也不错,但是,辣椒红色素由于跟苏dan红性质很相似,且颜色较深,分离效果很差,收得率很低,测定结果偏差很大。该如何处理样品?色素是否会降低柱效?  答:色素不会降低柱效,但,辣椒红色素主峰浓度过大,会影响与临近杂质峰的分离。可考虑稀释样品或试试用柱效更高的柱子。  51.通常我们在分析天然药物成分的时候结构复杂,无法考察组分的PKa值,哪我们如何去选择最合适的流动相或者是拖尾该怎么改善呢?  答:如果天然产物中没有易电离的极性基团,就不需要用缓冲盐调节pH。如果,天然产物中既有酸性基团,也有碱性基团,譬如,有pKa=6.2的羧基和pKa=9.0的氨基的两性物质,建议将pH用磷酸盐缓冲盐控制在2.4(如果是,诸如月旭的Ultimate LP-C18这样的耐酸色谱柱,还可以调得更低)。  如果pH控制在6.2~9.0之间,两个基团都处于离子态,保留能力最差,是最不可取的。如果不清楚复杂物质中含有什么基团,也请将pH调到2.4或更低。因为pH调低,起码抑制了酸性基团的电离而处于中性分子状态,而增加酸性基团这个部分在反相色谱中的保留能力;另外,低pH还抑制了硅醇基的活性,有利于获取对称的峰形。  情况不明时候,为什么不建议调高pH呢?一方面一般色谱柱都不能承受pH=9以上的条件;即使是像月旭的X-timate系列一样能耐12.5的柱子,调高pH和调低pH相比,还有一个硅醇基活性大的劣势。  52.记得以前拿到C18柱,会用甲醇从小流量到大流量慢慢活化,这样做的目的是什么呢?是先用溶剂活化吗?然后再用样品?还有测定短肽总是冲出来,该怎么解决呢?就是和溶剂峰出在一起,或者出在溶剂峰之前。  答:C18柱,会用甲醇从小流量到大流量慢慢活化,因为,色谱柱到达用户手中时,时间长短不一,在存储和运输的过程中,可能存储液有些挥发,低流速的甲醇可以很好的浸润固定相,使键合相很好的伸展,用溶剂平衡好系统后,可以采取多次进样或者加大进样量的方式以更快的获得重现的色谱图,这样用样品将色谱柱中的活化点饱和,就不会出现异常色谱现象的情况。  53.C18柱如果之前曾有些天一直保存在酸性环境中,会对柱子有什么损坏吗?pH在2左右。  答:pH=2左右容易使键合在硅胶基质上的固定相水解流失,包括:C18和封尾试剂的水解,封尾试剂相对更容易水解。不知道你保存的酸性环境是不是含有缓冲盐,如果,不含缓冲盐,只是短期几天保存在酸性流动相中,也不bi过份担心,最多相当于这几天一直在使用这根色谱柱,因此减少几天的使用寿命吧;有缓冲盐就麻烦一点,保存期间水分挥发可能会导致缓冲盐结晶在柱内析出,对柱子损伤很大。  54.色谱柱的安装有什么技巧吗?只要保证不漏就行了吗?还有所谓的死体积怎么测定呢?  答:色谱柱安装技巧不多,只要接头和柱头匹配,确实拧紧不漏就可以了,但也要注意不要拧得太紧以至于损伤螺纹。所谓死体积就是完全不保留的物质出峰时从进样到流过色谱柱的总体积,一般用极性非常强的尿嘧啶的出峰来测定。死体积包括柱体积(色谱柱内溶剂能占据的空腔体积)和柱外体积两部分。  你从厂商这里买到色谱柱,柱体积已经是固定了,你能尽量避免减少的是柱外体积。进样器内死体积、毛细管长度、毛细管和色谱柱连接紧凑与否,保护柱或在线滤器产生的死体积大小,都对这个有影响。样品在柱内,除扩散外,还有和填料作用引起的组分分离;但样品在柱外,那就只有扩散这个使柱效下降的因素了。所以,要取得好的分离效率,柱外体积应该是越小越好。  峰有时候前延,有时候拖尾,一般不是色谱柱的问题,应该是样品和色谱柱填料的作用问题,可以说如果色谱柱类型选择没问题,关键就是色谱条件的选择。包括进样量、样品溶剂、流动相组成(包括:添加剂)、流动相pH以及柱温,都对峰形有影响。另外,测定分子量较大的多肽,用样品老化平衡色谱柱很重要,分子量越大的物质,需要平衡时间越长。如果柱子没平衡好,峰形也可能会不正常。所以zui好把你具体的测定条件也列一下,也便于有针对性的分析原因。  55.测定多肽样品时,十几肽或者二十几肽时,有时峰前延的比较厉害,有时峰拖尾比较厉害,这是什么原因呢?是样品的问题还是柱子的问题?  答:峰有时候前延,有时候拖尾,一般不是色谱柱的问题,应该是样品和色谱柱填料的作用问题,可以说如果色谱柱类型选择没问题,关键就是色谱条件的选择,包括:进样量、样品溶剂、流动相组成(包括:添加剂)、流动相pH以及柱温,都对峰形有影响,另外,测定分子量较大的多肽,用样品老化平衡色谱柱很重要,分子量越大的物质,需要平衡时间越长。如果柱子没平衡好,峰形也可能会不正常。所以zui好把你具体的测定条件也列一下,也便于有针对性的分析原因。  56.柱子的平衡时间跟填料关系大吗?哪种最快,哪种最慢?因为我在做离子交换柱的时候平衡是相当的慢!  答:根据色谱速率理论,粒径越小,柱效越高,而且当粒径小到亚2微米左右时,线速度的提高,其分离度就不再降低,从而,改变了许久以来人们不得不在 “速度和分离度之间取舍”的局面。  57.关于配置流动相,有机相我们可以甲醇乙腈同时用,这个是基于什么考虑的?是不是根据甲醇乙腈选择性不同、样品在这个两者的溶解度的差异以及调节洗流动相脱能力来考虑的?  答:甲醇和乙腈同时用,可以获得单纯的甲醇或者乙腈不一样的选择性,而且洗脱能力也会改变,根据多元流动相的强度因素Sab.....=Saψa+Sbψb=...Sa和Sb纯溶剂a和b的溶剂强度因素;ψa、ψb分别为a和b的体积分数,所以,在药典中有很多体系都使用甲醇乙腈体系。  58.三乙胺磷酸盐缓冲液作流动相,柱压一天比一天高,该怎么样解决?  答:把柱子再生下,再生的方法搜一下有很多反冲对绝大部分色谱柱都是可行的,效果不错。  59.新出厂液相色谱柱,保护溶剂一般是什么?怎样进行平衡清洗比较好,一般要平衡多长时间比较好?  答:柱子类型不同,保存溶剂也会不一样吧,具体要看说明书的说明。对于反相柱,一般用甲醇(乙腈)保存,也有用80%左右甲醇浓度的甲醇/水保存的。一般用流动相平衡冲洗10~20个柱体积即可。(注意:柱体积不等于空柱管体积,4.6×250mm的色谱柱空柱管体积是4.15mL,而柱体积只有约2.5mL)  60.据说液相色谱柱柱压达到一定高度就不能使用了,请问一般达到多高,用甲醇和乙腈是不是不一样?  答:柱压不是色谱柱不能使用的唯yi因素,分离度才是最重要的。柱压只要没高到仪器不能承受的地步,例如,超过300bar,就可以一直使用。甲醇的粘度比乙腈高,同样状况的柱子,如果用甲醇做流动相,柱压可能超了,换用乙腈会使柱压下降不少,仪器还能承受。不过尽管柱压还没上升到接近400Bar的限定,如果,发现柱压上升速度较快,也需要及早对柱子进行清洗维护,从根本上排除导致柱压上升的源头。  61.柱塞板可不可拆下用超声波清洗,会有什么不良后果?  答:不建议将柱筛板拆下清洗,因为,拆下承压的柱筛板会导致柱床发生变化,影响色谱性能。应该对污染的色谱柱先进行清洗维护,维护没有效果,再把拆洗柱筛板作为最后的手段。  62.一般正常使用一个C18柱能用多长时间?  答:柱寿命一般不按时间计算,按持续进样针数比较科学。一般正常使用维护,不超过pH和温度等范围,C18柱能达到500~2000针进样的寿命,视样品干净程度的不同而不同。  63.超高压快速高分离度色谱柱是不是未来液相色谱柱普及应用的一个发展趋势?  答:这是个大话题,今后使用,会越来越多是肯定的,但是否会替代普通压力的液相还有争议。超高压也有使用上的不便,譬如容易堵,对设备硬件要求高等。有机会我再谈谈超高压液相色谱方面详细的一些情况。  64.如果液相色谱谱图基线漂移很大是不是柱子的问题?波长越小的越大,270nm的还不怎么能看出来,230nm的就非常厉害了,有可能是什么原因造成的?  答:有可能是你的流动相的问题,230可能已经快到你流动相的截止波长了,当然,紫外吸收强,基线漂移厉害。  65.我们有一台waters1525色谱仪,最近基线总是呈现波浪形很有规律,波长越小越明显,梯度洗脱时向上飘逸而且后一段时间呈现波浪形,很影响分析,我想问一下,是不是柱子的原因,用的是C18上海安普的?  答:应该是流动相组成变引起吸收本底变化造成的,特别是在波长小的时候,乙腈的截止波长低于200nm,但甲醇和水相对比较高,在低波长时,甲醇和水有一定的本底吸收。梯度进行时,随着不同本底的组分含量的变化,基线也会有相应的波动。  66.我是做农药残留分析的,用的是UV2487检测器,想问一下,C18色谱柱用什么缓冲液比较好,我以前做三聚氰胺是用柠檬酸,辛烷磺酸钠,也用农药检测行不行?还有用HLB柱能不能去除蔬菜和水果中的杂质?  答:C18色谱柱用用磷酸盐,醋酸盐就比较好啊,离子对试剂不是个好东东,你要慎用。我们做三聚氰胺用三氯yi酸。  67.液相色谱柱一般使用寿命多长?不同类型的色谱柱是否寿命也不一样?液相色谱柱与气相的柱子有何区别呢?  答:液相色谱柱一般使用寿命多长!我有一根柱子,用了大约1年半左右,发现同样浓度的样品它的峰展宽了。说明柱效下降。但是不影响结果。因为峰面积还是接近。所以做色谱之前先做下柱子性能测试。第一次的图谱要保留。 测试C18 RP柱,一般用到萘作为柱子的柱效判断。一般是18000片,对称性(usp)0.95~1.05间。  68.①“水相”指的是什么?纯水?②我们实验室的CN基柱保存在40%的乙腈里面,这个有不良后果吗?  答:水相就是纯水。CN基不适合保存在中等极性的溶剂中,除了可以低温保存在极性较大的纯水中外,还有可以保存在非极性溶剂如正己烷中。40%乙腈水,属于中等极性溶剂,短期过夜保存可能问题不大,长期保存不太好,后果就是可能会发生柱床坍塌。  69 CN基柱应该怎样维护才好呢?比如,做完实验用什么流动相冲柱子、短期用什么溶剂保存、长期用什么溶剂保存等。  答:CN可作正相柱,也可作反相柱用,除了保存溶剂有特殊要求外,其它维护办法和一般正相和反相柱没有多大区别。  70.月旭公司的液相色谱柱接头是大众的还是有自己的规格,我们是waters的分析仪,有月旭的产品可不可以?  答:月旭公司的色谱柱柱头的规格是大众的,因为我们也不自己生产柱管和柱头,月旭的柱管柱头供货商也是和一些Waters、Agient和Phenomenex一样的,也许是同一家。月旭柱头规格标配是Valco型,但也可以按照客户要求提供Parker型和Waters型。  你用Waters的仪器,而开始也用的是Waters柱子,如果是用不锈钢接头,匝扣的位置就固定了。如果用月旭的柱子,可以把固定匝扣位置的那段剪掉,换一个新的匝扣就可以重新固定匝扣位置。当然,如果你已换成peek接头,问题就不会很大。  71.色谱柱的接头,出口处用的是peek接头,请问都用peek接头不行么,为什么?  答:都用peek接头我认为都可以的,当然,peek接头的质量要过关。有人认为peek接头不耐压,估计是针对品质不好的产品说的。  72.我们的液相,为了节约成本我们自己填保护柱,用废的同型号柱子填。但填完以后做标样定量分析有所改变。请问其原因。  答:不建议自己填保护柱柱芯,填得不好的柱芯会影响分离效果,也会影响定量分析结果。你不知道废柱子里的填料是不是受了污染,另外你填的柱芯肯定没有厂商填得好,如果影响到峰形,峰面积积分结果有所改变是可能的。  73.请问怎么测柱效?(柱子填料是Sino Chrom ODS-BP 5μm,规格4.6mm×200mm)  答:测定柱效不同公司不一样,有用甲苯,也有用萘的。一般柱子里面有检测报告,你按照报告里的方法做一遍就可以。  74.我用苯试了一下,峰性大大好,但是,不知道理论塔板数,不知道怎么评价,感觉不大好,对称性不好,有点前延,柱子才用了四个月,是什么原因呢?是不是塌陷了呢?有什么补救的办法吗?  答:用了四个月峰形拖尾是很正常的,需要维护清洗一下色谱柱以清除引起拖尾的柱头污染。如果柱头塌陷,则不好办,从其它废柱子里取点填料填补塌陷,可以一试,但效果不一定好。色谱柱是耗材,测定进样针数如果达到500以上了,也算是物有所值,物尽其用了,报废了也不可惜。  75.流动相里之前有酸的,做完后单纯用乙腈冲洗,能把酸冲洗干净吗?之前,他们是这样冲的,现在怀疑柱子塌陷了,会不会是长时间在酸性环境中造成的呢?  答:流动相里有酸,应该先用纯水或80:20的水/乙腈溶剂冲洗吧。如果,一直在酸性环境,固定相容易流失,造成保留时间前移和其它色谱性能下降。  76.我前一段时间做三聚氰胺用C18色谱响应值很小,几乎无法检测,可是检测标准就是用的C18,后来我用RP18结果响应值很好,不知道什么原因,请问这两个柱子不都是反相色谱柱么?他俩之间有什么不同?  答:RP18就是C18吧,不过C18柱之间也有区别,测定三聚氰胺一般要用极性比较大的水性C18柱。  77.磺化交联的苯乙烯-二乙烯基共聚物为填充剂的色谱柱在储存过程未注意放在冰箱中,导致发霉后,柱效急剧下降,能何种方法将此色谱柱修复好?  答:聚合物柱子因为不怕酸碱,就直接用强酸强碱清洗。如果是H型,用1M硫酸冲洗;如果是Ca型,可以先用1M硫酸冲洗,再用EDTA钙盐转换回Ca型柱;如果是中性的聚合物反相柱,直接用1M的NaOH冲洗。  78.我有一个标准的稳定性检测分析方法它是建立在某一供应商的碳18柱上我知道有另一个厂家生产同样的碳18柱但价钱是它的一半如果我更换柱子会不会影响到分析方法。。。  答:要看这一分析方法的具体要求。如果方法中有说明“使用某一色谱柱或与其同样的柱子,”那么,就可以使用别的柱子来替换。但要注意,不能光看一个柱子标为碳18柱,或是其宣传等价于某某柱,就认为该柱适用于所有方法。必须要验证色谱柱的等价性。  我们需要考查使用新柱子时,系统适应性是否可以通过验证。如果可以获得系统适用性测试中所要求的保留值,分离度以及其它参数等,就可以使用该柱。推荐使用系统适用性测试样品以及其它的典型样品来进行考查,以保证杂质和降解物在正确的保留时间出峰并给出正确的浓度响应;并且在新柱子上获得的分析结果要等价于在原柱子上的结果。  79.请问我做一种药的分析查美国药典规定使用100mm×40mm,8μm的色谱柱流速3mL/min可现在市场上已不容易找到这种规格的产品于是我按USP中色谱柱比较的数据库的指引选了一款选择性一致的等价色谱柱其规格是100mm×46mm,3μm的色谱柱当选用3mL/min的流速时发现柱压超高请问我如何对方法进行调整以满足USP的要求?  答:流速调整原则是流动相通过柱子的线速度一致,等价柱的截面积大了,流速也应增加才能保持相同的线速度。新流速计算结果是:(4.6/4.0)2×3.0=4.0mL/min。但3mL/min流速都已导致柱压太高,4.0mL/min明显不行。好在USP还有个允许±50%的流速调整指导原则,这样将流速调至2.0mL/min既符合USP规定,又能使柱压降到可接受的范围,但这种改变不能引起其它不好后果。  这个例子中,等度分析中,流速改变会引起塔板数和峰宽的改变,但不会影响峰的选择性。3μm粒径色谱柱柱效比8μm的高很多,可考虑缩短柱长以补偿或部分补偿流速降低造成的测定时间增加。所以,更佳选择是50mm×4.6 mm,3μm的柱子,2.0ml/min的流速运行,可以在符合USP规定的情况下,又得到更快速的测定分离。  80.最近我非常的沮丧,按照药典上的色谱条件和方法做某药物的分析,却始终得不到满意的结果。有人建议我对色谱条件,如进样量、流动相pH和温度等,进行微调以得到良好的峰形和分离效果,可按公司规定我不能这样做,怎么办?  答:如果你心里老有这个思维定势“按规定,我不能......”,然后什么也不敢做,那真是不好办!只有去做了,去试着改变条件看看得到什么结果,你才能发现问题所在。如果改变条件后,仍得不到好结果,就要去找色谱条件以外的原因,如,色谱柱、色谱仪器以及样品和制样过程中的是否存在问题?不管通过微调你是否取得了好结果,你也有了向领导汇报问题和解决方案的依据。  而且,绝对不能调整药典规定色谱条件的说法通常是不对的。美国药典USP说的是如果改变药典方法需要重新做方法验证,但方法调整或者称微调以符合系统适应性的要求是允许的,是不需要重新做方法验证的。USP列了调整的几条指导原则,如,±50%的流速调整,±10 °C的温度调节等等(详见"Chapter 621,Chromatography,”,United States Pharmacopeia No.31-NF 26,(2008).)。当然既然是指导原则,这些规定都不是绝对的,如温度调整±10 °C,对有些方法适用,对另外的方法则±5 °C的调整都会有问题,我们应该依据具体情况作出明智的科学判断。  81.请问下HibarRT250-4这个柱子很特殊么?为什么很多药典中的药物分离都用它做柱子,因为才开始做药,不知道hi,bar的柱子特点是什么?  答:HibarRT250-4是Merk的一个品牌,不是很了解。大概是共用柱头,可更换的柱管。  82.在碱性条件下硅胶溶解,又生成硅羟基的机理是什么?反应方程式如何写?  答:二氧化硅溶解的反应式是:  SiO2+2OH-=Si032-+H2O或者表示成水解的形式:SiO2+H2O=Si032-+2H+  这说明硅胶会在碱性条件下溶解而生成硅酸根,但,我们这里说的是硅胶颗粒表面的部分溶解,含有键合固定相的硅胶原表面溶解脱落后,自然会生成新鲜的硅胶表面,而新鲜的硅胶表面结构一般都是含有硅羟基的。硅胶基本结构单元是Si-O-Si键,在OH-离子的作用下,Si-O键断裂,在表面形成Si-O-H硅羟基的结构单元。  必须指出的是,在氨基柱的孔内,并没有单独加入OH-离子,偏碱小环境的形成是由于氨基易和水电离生成的氢阳离子结合造成的游离OH-离子的过剩。从第一个方程式角度解释,游离的OH-离子用完,硅胶就不再继续溶解;从第二个水解形式方程式角度解释:当硅胶水解生成的H+离子足够用来和氨基结合时,水解过程就会变慢或停止。  83.同样都是C18柱子,液相色谱柱和SPE他们之间有什么区别,能具体讲一下么?  答:HPLC柱子和SPE小柱的对比:  对比项目 HPLC SPE  柱管 不锈钢管 塑料管  粒径(um) 3,5,10 40-300  颗粒形状 球形 一般为无定形  柱效(塔板数) 20-25000   分离机理 连续洗脱 数字式开关洗脱  售价(元) 1000-4000 10-40  使用方式 可重复使用 一次性使用  操作成本 较高 低  设备成本 高 低  ※对于C18固定相,为了提高回收率,SPE里用的C18填料一般载碳量相对更高。  84.我从上面了解到RP18和C18的区别是极性强一些,能问一下他们在分析农药是可不可以通用?C18适用于那些农药的分析?我查材料看到苯醚甲环唑都是用C18分析的,可我用C18分析发现响应值很小,没法分析能帮忙分析一下原因么?  答:RP18和普通C18,肯定有其不同的适应性,农药种类这么多,可能大部分农药两者都能用,有些就不一定。你问的C18适用于哪些农药,应该从相关农药分析方面的书籍手册中可以查到具体什么农药用什么色谱条件合适,其中里面肯定有选择什么类型柱子,我这边没办法一一列举。液相色谱中,60%以上的分析物可以用C18柱,我想也应该有60%以上的农药可以用C18柱。  如果手册或文献中查不到,你把农药作为普通分析物来对待,然后按照一般的色谱柱选择和方法建立原则来做就可以,选择决定因素应该也是农药分子的结构。苯醚甲环唑,应该含有极性基团,可以试试极性强的C18柱。  85.我在用乙腈作流动相时,只要那个乙腈比例稍高一点,比如,20%,即使,测量波长高于乙腈截止波长比较多,也会产生比较大的溶剂峰,这怎么回事?  答:如果出现溶剂峰,对你的分析结果没任何影响,那就让溶剂峰在那儿好了,或者你用规定的溶剂溶解提取样品后,再用流动相稀释一下样品,如果,稀释后检测限能达到的话。  86.我在做一个模拟胃内容物中药物反应试验,需要动态测定某药品含量变化。分析时碰到一个棘手问题,进样量同样用20μL,用对照品进样时色谱峰形不错,进样品时却一直不能得到好的峰形。后来分析是模拟胃内容物样品的酸度过高的因素,可我通过稀释的方法让样品酸度和流动相接近,虽然峰形没问题了,却发现因稀释导致分析物在样品中含量下降,低于最低检测限了,如何是好呢?  答:稀释很方便,但灵敏度更高的检测器不容易找,不过还是有个简单的解决方案。当用流动相稀释样品时,只要稀释后样品中有机相含量比流动相中的有机相比例低10个百分点以上(如,流动相中甲醇含量是40%,则样品中甲醇含量一定要低于30%),样品流动会被色谱柱进口端延缓或阻挡,称为“柱上富集”。由于“柱上富集”作用的存在,这种情况下进行大体积样品进样,可避免样品溶剂组成和流动相一样时进样量过大产生的“峰展宽”。针对你提的这个实例,可用稀的NaOH溶液调节样品pH和流动相匹配,并将样品最终稀释一倍。将进样量提高一倍到40μL,就可达到最低检测限的要求。  87.峰形后拖尾是什么原因造成的?  答:  [柱物理损坏]  色谱柱有物理损坏是造成峰形拖尾的根源。唯yi的解决方法就是更换新柱。  [柱内填料污染]  流动相和样品中的杂质是色谱柱主要污染源。  流动相所用的各种溶剂至少是分析纯,尽量使用色谱纯试剂。流动相所用的水zui好是超纯水或全玻璃器皿双蒸水。用前先用0.45μm溶剂微孔过滤(器)过滤,除去可能存在的微粒。流动相建议现用现配,对于含盐的溶液尤其注意长置会产生细菌或出现沉淀。此外还得保证储存流动相的容器清洁。  复杂样品可选用0.45μm溶剂微孔过滤(器)或样品预处理柱对样品进行预处理,确保样品中不含微粒杂质。若样品不便处理,要使用保护柱。柱内填料污染时,可将柱头螺丝卸下,用专用工具挖出柱内前段被污染填料,再以相同的填料重新填入,修复,或以能溶解污染物的流动相按色谱柱使用的相反方向,冲洗色谱柱(约20至30倍柱体积,或视具体情况而定;另外,此时不能接检测器),将污染物冲出色谱柱,再按色谱柱标明的使用方向使用。  [柱进口处有异物]  当断定是柱进口处有异物时,可将柱头螺丝卸下,取出滤帽并将其置于20%硝酸溶液中,用超声波清洗约20分钟,再置于超纯水中,并用超声波清洗约10分钟,重新装入色谱柱内即可。  [样品浓度过高致使柱超载]  样品在柱上超载能引起峰展宽,拖尾(或伸舌)。  适当减小进样量或样品浓度(需要时,可提高检测器灵敏度)直至峰形和保留时间不再改变,便可消除这种不良影响。减小进样量还能改善其分离度。正常情况下,样品中每种化合物在150×4.6mm柱中进样量保持在3~50μg范围内,不会引起明显超载。  [样品溶剂不对]  选择合适的样品溶剂,以排除不必要的干扰,zui好选用流动相溶解样品。  [柱外效应]  柱外效应(即,进样阀、色谱柱及检测器间的管路过长、直径过粗、管路接头不匹配、有死体积)是影响色谱柱柱效的主要因素之一,所以,在可能的条件下,色谱柱的两端连接管路要尽可能短,连接管内径尽可能细小,切口务必平整光滑,尽可能的减小死体积,以防止因样品扩散造成不能反映色谱柱真实柱效等情况发生。  [缓冲不足或不合适]  在缓冲不好或离子强度过低的分离中,也会出现保留时间重现性差和峰形拖尾。增加缓冲浓度(与样品大小相匹配)能改善此情况。  [硅醇基团作用]  仔细分析色谱柱内填料表面性质可知:反相色谱柱填料的表面大约被键合相覆盖了一半,其余的就是未被键合的硅醇基团。所谓的保留是指样品分子与键合相相互作用的结果。但是,酸性或碱性化合物与硅胶表面残存的硅醇基团或金属杂质之间相互作用而引起双重保留机理,因此,发生了峰形拖尾。  为了减小峰形拖尾,通常可在流动相加入25mM三乙胺(抑制剂)。三乙胺能与硅醇基团发生强烈的相互作用,从而降低或阻断样品分子与硅醇基团的作用,以保证保留机理正常进行,并大大缓解了峰形拖尾。使用长链的硅醇基抑制剂,虽起效较慢,但,持续力较三乙胺长。因为抑制剂分子中除了胺基与硅醇基团发生极性作用外,大分子中非极性部分与固定相也会发生反相作用而产生保留现象。如果,将抑制剂加至样品中,效果会显著。  [柱内金属污染]  柱内金属污染(Fe,Ni等)可引起某引些化合物峰形拖尾。金属可由填料本身带进,也可由腐蚀性流动相缓慢溶解柱进口的金属滤片,随流动相沉积到柱填料中,例如,C18柱填料被金属污染后,造成酸性/碱性样品拖尾,可用碱洗/酸洗后再键合的填料,得到的峰是尖锐且对称的。  88.流动相与柱子如何才能做到匹配,达到zui好的分离效果。目前我们实验室有购买好的色谱柱,可是对样品的分离效果不是很好。  答:不同填料的色谱柱都有自己的选择性,相同填料不同厂家以及相同厂家不同品牌之间的选择性都是不一样的,一般情况下根据物质的性质将分离的大方向如:正相分析或者反相分析,确定后,一般可以根据调节色谱条件能得到好的色谱峰形,这方面的资料论坛当中很多,但是也有些色谱柱不管怎么调整色谱条件都不行,表面这款色谱柱的选择性不适合该样品的选择。  89.我用的是C18柱,后面黑色的是我以前跑的图,前面是我现在跑的图形,完全一样的东西,只是流动相不是一批配的(流动相的成分没变),中间柱子别人用过了,峰型怎么发生了这么大的变化啊?可能的原因是什么啊?是不是柱子出了问题啊?  答:从两个图对比很明显可以看出是柱效严重下降,且伴有肩峰。不同时间配的流动相,如果成分和pH没变的话,肯定不会造成这个结果。估计是别人用柱子过程中,造成了柱头塌陷、柱头污染以及固定相流失等严重问题,如样品太脏,流动相或样品pH太高或太低,都会造成这个结果。  你可以试着用色谱柱清洗和再生的方法反冲维护一下,但不能保证一定能回到原来的效果。再生如果不行,考虑挖补柱头填料,实在不行,柱子也只能报废。建议柱子zui好还是专门用于一种方法比较好,像你这种情况,都搞不清别人怎么用柱子的,分析解决问题就相当难。  90.柱子的柱效影响大吗?一般柱子的柱效规定是多少的呀!理论塔板数一般要达到多少呢?主要有那些因素影响它。  答:柱效是柱子性能好坏的一个重要体现指标。柱效会影响分离度,当然是峰形越尖锐,柱效越高,和其它峰越容易分开。另外柱效高峰形尖锐,对峰面积的积分误差就小,甚至可以用峰高来定量。  一般C18柱,在测定甲苯等不易拖尾的小分子中性不电离物质时,5μm的填料,每米的柱效能达到80000以上的塔板数,就算合格吧。在实际分析物的测定时,一般药典有规定最低柱效是2000~3000,一般新柱子的柱效都高于这个数。但柱子在使用后,由于固定相流失等原因,柱效会逐步下降,当下降到不符合药典最低柱效要求,或者导致分离度不够时,色谱柱就算寿命到了。单从柱效逐步下降这个角度看,柱效高的色谱柱相对使用寿命更长。  影响柱效的因素有粒径、粒径和孔径分布、固定相键合密度、柱外体积和温度等,柱子装填紧密、柱床均匀一致也对提高柱效有好处。这些影响因素中,很多是和生产厂商有关,你这边能做的是尽量减少柱外连接体积。  91.流动相中加入四氢fu喃对柱子有损害吗?我现在分析一样品流动相中用到20%的四氢fu喃才能把峰分到基线.但柱子只能用一个星期分离效果就不好了.请问是四氢fu喃损坏了柱子吗?  答:四氢fu喃(THF)是反相色谱中洗脱能力极强的溶剂,比甲醇和乙腈都强很多。在流动相中加入THF能改善某些难分离的物质对的分离度,但,THF不稳定,容易降解生成具有很强反应活性的过氧化物,能与分析物反应生成新化合物,导致拖尾、峰分裂和鬼峰产生。高反应活性的过氧化物还可以和填料固定相发生化学作用,THF对柱子有损伤这点是无疑的,而且这种损伤是随时间累积的。THF保质期一般规定是6个月,放得越久,里面产生的过氧化物含量越大,你应该避免使用生产日期已很久的THF溶剂,而且zui好将THF冷藏、干燥和避光保存,使用前zui好能检测一下过氧化物的含量。  92.在用液相色谱同时分离多种组分时,怎么通过条件色谱条件使各个峰达到比较理想的分离效果!  答:这是方法开发的大问题。方法开发建立,要做的就是:针对分析物和基体的情况不同,选择色谱柱类型和分析条件,包括流动相溶剂类型、组成比例、pH值、温度和流速等参数的确定。这方面的问题,要讲起来内容非常多。  93.是样品过载问题,按药典检测方法检验一些药品有关物质时,都要注入高浓度的供试液,这样往往使得柱过载而峰变形,按老师的方法减小浓度和注入量均是不允许的,怎么处理这问题?  答:药典方法中注入高浓度供试液测定有关物质,提高注入浓度是为了把杂质峰的信号增强。有时候为了把杂质峰显现出来,主峰因过载有所变形,如在允许范围内,也能接受。但前提是杂质峰和样品主峰分开,如果因过载而使两峰没有得到需要的分离度,杂质峰信号再强也失去了意义。我认为药典规定的条件是允许在一定范围内进行调节的,因为药典没有规定具体使用色谱柱的品牌,而不同品牌的柱子,上样量是有差异的。对色谱条件微调,并取得到了很好的分析结果,如果规定不允许,那你首先要怀疑这个规定是否合理,或者是否对规定的理解有问题。  94.哪些原因会造成色谱峰变宽、峰高变低,有哪些解决办法?  答:确实是这样,如果其它色谱条件没有改变,柱效下降是导致峰变宽的主要原因。对于易电离的极性物质,如果流动相pH选择不合适,分析物既有中性分子态存在,又有离子态存在,峰也会变宽变矮。  色谱柱使用后柱效逐步下降是正常现象,如突然降低则属异常。柱效下降原因有很多,但柱效快速下降则多半是使用不当,造成填料特性或柱床结构改变所致。如超过使用pH范围造成的固定相和硅胶基体的流失、柱床塌陷等;还有强保留物质吸附在填料表面,形成非特异性吸附层,完全改变了原有固定相的表面活性和分离性能,使柱效下降;另外进样时的压力脉冲,也会破坏柱床结构影响柱效。  95.我以前做dan红用的是安捷伦的SB-C18柱,峰形什么都很好,最近发现4个标样峰后都带有一个小峰,一开始以为是标样问题,后来换XDB-C18后标样又正常了。可是用SB-C18柱做其他用正常,不知怎么回事?还有,像这种C18柱如果压力过高能不能反冲,该如何冲洗?一般做兽残、农残什么的,而且感觉三聚氰胺做后压力更易增高,且容易引发进样器漏等问题,请问做完三聚氰胺需对系统做特殊清洗吗?  答:用SB柱,标样后带一小峰,而且是只对苏dan红标样测定时有,估计和苏dan红标样的测定方法和其它样品测定方法不同有关。zui好能把谱图贴上来看看,是什么样的小峰?才能判断是溶剂峰还是杂质峰。XDB柱和SB柱是有区别的,XDB键合度高,封尾良好,反相保留能力强;而SB柱,未进行封尾,对极性物质选择性好。有可能你的苏dan红标样分解了,有极性杂质生成,SB柱能把杂质分开,而XDB柱不能。  这两款柱子压力大了,可以反冲。有正常维护时的反冲冲洗和再生时的强溶剂冲洗两种,冲洗方法在在线讲座里也写了,你再回到本贴的前面看看就可以了。  三聚氰胺和三乙胺类似,本身容易和硅醇基作用而吸附在填料表面,另外三聚氰胺测定的样品基体含蛋白类的强保留物质较多,容易污染色谱柱柱头引起填料间隙堵塞柱压升高,zui好每次做完样后,都用甲醇或乙腈反向清洗维护一下。如有蛋白类的污染,也定时用本讲座中提到的清洗方法做一下维护。  96.我是做农药残留分析的,不同的基质杂质含海量是不同的,我用C18分析时有可能一次就污染了,我用高流速,和反向冲洗都解决不了,是不是这根柱子就废了,有没有其他的办法?  答:高流速反向冲洗是对的,关键你用了什么溶剂冲洗呢?用原来的流动相冲洗肯定不管用,要不然就不会累积在柱子上了。你应该用流动相中的强溶剂B冲洗,如果不行,就需要启用再生的程序,当然再生时用的溶剂更强。  100%甲醇——100%乙晴——75%乙晴/25%异丙醇——100%异丙醇——100%二氯甲烷——100%正己烷。  用每种溶剂冲洗至少10个柱体积,对于250mm×4.6mm的分析柱,合适的冲洗流速是1~2mL/min。最后,用10柱体积的异丙醇过渡,然后回到原来的流动相体系。  再生还不解决问题,最后一招就是挖补柱头填料,把柱头污染的填料挖掉,用干净填料填补进去。挖补填料,破坏原有柱床结构,挖补后柱效也不可能有新柱水平,或许能再维持一段时间,但不会长久。  97.还有溶剂中的金属过滤头生锈了,会有什么影响?会不会影响到柱子的寿命,金属离子和柱子有没有什么反应?  答:我觉得你就把锈当成颗粒物污染的一种,会导致拖尾、柱压上升等。溶解的金属离子一般在反相柱上没有什么保留能力,马上就会被冲出柱子,不会和固定相或者和硅胶基质反应。  98.如果在溶剂过滤时把水膜当成有机膜了溶解了而且这样的溶剂又做有机相用了,造成C18柱压由1000升到3000,流动相是乙腈和水,问一下这样的柱子还能用么?有没有什么补救方法?  答:溶解的膜作为了颗粒物堵塞筛板,引起柱压上升,也只有反冲一下,如果能把堵在筛板上的膜残渣冲走,柱压下降了就OK了;如果,残渣进入了柱子内部的填料间隙,会难冲一点,也只能多冲一会吧,实在不行,你又舍不得把色谱柱报废,就只有挖补柱头填料和换筛板了。  99.保护柱和预柱的作用是不是一样的,如果不一样有什么区别么?保留时间漂移多少为可以接受的范围?  答:保护柱一般带填料,相当于一根缩短了的色谱柱(一般是1~2cm长度),卡套里可更换的柱芯,柱管、筛板和填料都有。保护柱里的柱芯好像是在前面开路的扫雷bu队,流动相和样品里如有什么损害柱子的污染物,保护柱就自己承受了下来。  而预柱,现在一般指的就是接在进样器和色谱柱之前的在线过滤器。在线过滤器和保护柱的最大区别是不带填料,只有可更换的筛板。预柱只能保护色谱柱免受颗粒物质的污染,而不能阻挡溶解在流动相中的强保留物质。  保留时间是液相色谱中一个很有用的诊断分离问题的工具。保留时间受流动相组成、温度、pH、流速、固定相流失和柱老化等很多因素的影响,如果所有这些参数保持不变,保留时间也保持恒定。但在实际操作中,不可能对每个色谱参数进行很完美的控制,如即便加了柱温箱,温度还是会有波动;流动相组成会因组分挥发性不同而改变。  所以,保留时间有上下0.02~0.05min的变动是非常正常的,对某些方法有0.1min上下变动也属正常。保留时间有大的变化,预示着系统和方法存在问题。流路里有气泡存在,泵阀有泄漏,会因流量降低而导致保留时间增加。梯度混合比例阀故障也是保留时间变化原因之一。  100.液相色谱柱与气相的柱子有何区别呢?  HPLC是走液体的。分正相,反相。反相为例。Si 接着C18(键和相),电镜下看起来像绒毛一样的。所以一般用甲醇,乙腈保护RP柱。这样它的绒毛呈舒展状。GC 走气体的。固定相涂布固定液。

厂商

2018.12.12

毛细管对高效液相色谱分析的影响

众所周知,在高效液相色谱分析中,色谱柱良好的分离效率是成功分离的一个重要前提,若系统采用了不适当的连接方式或者应用不正确的毛细管,均可能导致产生不良的峰扩宽,色谱柱的zui佳分离效率就更无从谈起。甚至还可能发生使用的柱子越细,其洗脱峰的扩宽反而越大的情况。本文将详细介绍毛细管对高效液相色谱分离的影响,以及如何选择正确的毛细管与连接方式。高效液相色谱柱良好的分离效率是色谱成功分离的一个重要前提,不适当的管路连接或毛细管的使用不当,均可能导致不良的峰扩宽,因此需要特别注意。当使用4.6×250mm的“老式”标准分离柱时, 毛细管的作用和管路连接的影响还不是很突出;而当使用2.0×100mm的细径色谱柱时,其对色谱分离的影响就很大。对于“Ex-柱”而言,造成峰扩宽的主要原因在于管路连接中使用了错误的毛细管和空腔,它们会显著地扩张淋洗通道。因此,在原则上应该尽可能地采用窄小的柱径,并适当地缩短连接管路。如果用户使用的是由同一制造商供应的配套设备或紧密装配型高效液相色谱仪,那么所有的管路连接已经由供应商预先优化了。这类设备出现问题的情况仅在于:需要联接另外一家公司的检测器时,或者需要用不同的组件来自行组装一套HPLC系统。通过分离柱的峰宽度是与色谱柱的尺寸成正比的,简而言之:细柱产生窄峰。液体输导产生的峰扩宽则会牵涉到整个系统,因而需要对其逐一进行协调。泊肃叶定律法国zhu名物理学家吉恩·伦纳德·泊肃叶对血液循环系统生理学的兴趣促成了他在1840年对液体在细管中的流体行为进行了基础性的实验研究。在样品和洗脱液之间不是形成一个直界面,而是层流的形式。在直径为“dt”的管子内(高效液相色谱毛细管)流体的不同流速构成一个“U”型(如图2所示)。为了尽量减少峰宽,应选择尽可能小的管道直径。样品分子有一种向流体边界扩散的趋势。假如没有这个扩散,洗脱峰将是无限宽的,因为根据泊肃叶理论,流速在毛细管管壁处为零,因而样品分子在这一点上将是极其缓慢地前行。而扩散的作用则导致了样品分子由管壁迁移到管子中部,因而,样品峰得以在有限的时间内洗脱,并呈现有限的峰宽。毛细管的优化高效液相色谱系统可以有多种不同的安装方式,那么,我们是否应该尽可能地缩短进样器与色谱柱之间的连接?还是缩短色谱柱与检测器之间的连接?或者两者均可?这是绝dui不能随意而为的,而且其应用程式还不能随意推广到任何一个高效液相色谱系统。下面的实验将为您清楚地演示毛细管对高效液相色谱系统的影响。实验装置带有10μl样品环的Rheodyne7125注射器,UV检测器设在254nm,色谱柱4.6×100mm使用的是5-μ柱材料,流速为1ml/min以及8μl样品检测池,这些都是“标准”高效液相色谱的条件。如果使用0.13mm内径的毛细管,色谱柱和检测器之间的连接长度则对系统的影响不大。只要将毛细管的直径加倍(这里用到0.25mm),分离效率即随连接长度的增加而显著地降低(如图3所示)。小体积HPLC色谱柱在使用细而短的色谱柱的情况下(例如2.0×100mm,流量200μl/min),毛细管的影响甚至更具破坏性。若采用0.13mm内径的毛细管和80cm的连接长度,即可观察到低于18%的峰展宽。如果使用0.25mm的毛细管,即使是5cm的短连接,分离效果则会明显差了很多,而使用更长的毛细管则会导致分离毫无意义(如图4所示)。分离小体积样品在高效液相色谱系统中,应用的高效液相色谱柱体积越小,毛细管的影响就越大。因此,在高效液相色谱系统中如果不对其他组件(特别是它们之间的连接)进行优化,仅装置一根微孔柱是没有意义的。进样器-色谱柱-样品检测池之间的线路连接对分离质量具有特别的重要性。小体积HPLC色谱柱在使用细而短的色谱柱的情况下(例如2.0×100mm,流量200μl/min),毛细管的影响甚至更具破坏性。若采用0.13mm内径的毛细管和80cm的连接长度,即可观察到低于18%的峰展宽。如果使用0.25mm的毛细管,即使是5cm的短连接,分离效果则会明显差了很多,而使用更长的毛细管则会导致分离毫无意义(如图4所示)。分离小体积样品在高效液相色谱系统中,应用的高效液相色谱柱体积越小,毛细管的影响就越大。因此,在高效液相色谱系统中如果不对其他组件(特别是它们之间的连接)进行优化,仅装置一根微孔柱是没有意义的。进样器-色谱柱-样品检测池之间的线路连接对分离质量具有特别的重要性。

厂商

2018.12.12

食品、生物、药品分析常见样品前处理方法

  为什么要进行样品前处理  1、富集浓缩被测痕量组分(ppm,ppb, ppt 级)的作用,提高方法的灵敏度,降低最小检测限。  2、消除基体对测定的干扰,提高方法的选择性  3、使被测组分从复杂的样品中分离出来,制成便于测定的溶液形式  4、通过衍生化的前处理方法,可以使一些在正常检测器上没有响应或响应值较低的化合物转化为具有很高效应值的化合物。  5、样品经前处理后就变得容易保存和运输  6、可以除去对仪器或分析系统有害的物质,如强酸或强碱性物质,如生物大分子等,延长仪器使用寿命,使分析测定能长期保持在稳定、可靠的状态下进行。  有哪些要求  1.样品是否要预处理,如何进行预处理,采样何种方法,应根据样品的性状、检验的要求和所用分析仪器的性能第方面加以考虑。  2.应尽量不用或少使用预处理,以便减少操作步骤,加快分析速度,也可减少预处理过程中带来的不利影响,如引入污染、待测物损失等。  3.分解法处理样品时,分解必须完全,不能造成被测组分的损失,待测组分的回收率应足够高。  4.样品不能被污染,不能引入待测组分和干扰测定的物质。  5.试剂的消耗应尽可能少,方法简便易行,速度快,对环境和人员污染少。  食品样品前处理  样品前处理为食品检验的关键步骤,直接影响分析结果的精密度和准确度,选择合适的前处理方法,缩短样品的前处理时间,是在保证检验质量的同时提高检验效率的一个重要方法。本文主要针对食品中重金属检测前的前处理方法进行总结。分析了四种方法在食品金属检验中的应用和注意事项,为食品检验工作者选取合适的样品前处理方法提供一定的参考。  1.湿消化法  湿消化法是在适量的食品样品中,加入氧化性强酸,加热破坏有机物,使待测的无机成分释放出来,形成不挥发的无机化合物,以便进行分析测定。湿法消化是目前应用比较广泛的一种食品样品前处理方法,该方法实用性强,几乎所有的食品都可以用该方法消化。  在实验过程中,只要控制好消化温度,大部分元素一般很少或几乎没有损失。例如,在测定酱油中的砷含量时采用湿法消化加入了硝酸高氯酸混合酸和硫酸,加标回收率为95%以上。即便像“汞”等极易挥发的元素,只要正确掌握消化温度,也不会有损失。  但是湿消化法也有一定的缺陷:样品氧化时间较长,且实验过程中一次不能消化超过10个样品。其次,样品消化时常使用的试剂硝酸、高氯酸、过氧化氢,硫酸都是具有腐蚀性且比较危险的。由于氧化反应过程中加入了浓酸,这些酸可能会对仪器产生损害进而影响试验结果,因此消解结束后需要排酸。  2.干灰化法  干法灰化具有操作简单,并且可以一次处理大批量样品的优点。但是干法灰化也有其局限性,首先,由于灰化温度比较高,一般都在500摄氏度左右,可能会有部分元素因为蒸发而损失掉,从而导致元素的部分损失。其次,实验过程比较长,样品碳化时间需要1个小时左右,灰化时间在4-6小时之间,中途如果灰化效果不好还需要加入助灰化剂。  3.微波消解法  微波消解是指利用微波的穿透性和激活反应能力,使样品温度升高,同时采用密封装置,在加入一定量的酸溶液,达到使样品中有机物质分解的目的。  消化时间短,比传统的加热方式既快速又效率高,消化时间只需数十分钟,大大提高了反应速率,缩短样品制备的时间,与此同时微波消解还可以控制反应条件,使制样精度更高; 微波消化是在密闭容器内进行,易挥发元素损失少,回收率高,耗酸量减少(3-5ml),空白值大为降低,从而挺高了结果的准确性。最值得注意的是由于使用的是微波加热,实验过程中要防止微波的泄露。  4.酸提取法  酸提取是指选用某种酸将样品中的待测元素提取出来。与上面三种方法不同的是,这种方法并没有破样品里的有机物质,而是直接用酸提取,因此该方法具有速度快、操作简便的优点 同时由于该方法不需要加热,因此也就避免了待测元素的损失。  总的来说,湿消化法为经典的消化方法,灰化法耗时长,且易引起待测元素的污染和损失,微波消解法具有待测元素不易损失的优点,但是处理成本较高,同时应注意操作安全。酸提取法直接进样技术具有操作简便、速度快、不污染环境、避免被测元素的挥发损失等优点,但只能应用于部分分析技术,食品检验工作者可以根据样品种类和实验室条件综合考虑采用何种前处理方法。  生物样品分析前处理  生物样品的前处理涉及很多方面,但主要应考虑生物样品的种类,被测定药物的性质和测定方法三个方面的问题。  1.样品的分离、纯化技术应该依据生物样品的类型。例如,血浆或血清需除蛋白,使药物从蛋白结合物中释出;唾液样品则主要采用离心沉淀除去粘蛋白;尿液样品常采用酸或酶水解使药物从缀合物中释出,当原型药物排泄在尿中时,可简单地用水稀释一定倍数后进行测定。  2.样品于测定前是否需要纯化以及纯化到什么程度均与其后采用的测定方法的不同而不同。一般说来,放射免疫测定法由于具有较高的灵敏度和选择性,因此当初步除去主要干扰物质之后即可直接测定微量样品;而对灵敏度和专属性较差的紫外分光光度法,分离要求就要相应高一些;至于常用的高效液相色谱法,为防止蛋白质等杂质沉积在色谱柱上,上柱前需对生物样品进行去蛋白,有时对被测组分进行提取、制备衍生物等前处理。  药物分析中样品前处理  根据被测定药物的结构、理化及药理性质、存在形式、浓度范围等,采取相应的前处理方法。药物在样品中的浓度相差很大,浓度大的样品,对前处理要求可稍低;浓度越低则样品前处理要求越高。在测定药物及其代谢物时,样品的前处理是十分重要的。除了少数情况,将体液经简单处理后进行直接测定外,一般要在测定之前进行样品的前处理,即进行分离、纯化、浓集,必要时还需对待测组分进行化学衍生化,从而为测定创造良好的条件。  1.GC中化学衍生化法:药物的化学衍生化前处理对GC十分必要,衍生化可使药物分子中的极性基团,如羟基、氨基、羧基等变成无极性的、易于挥发的药物,从而使GC的温度不必很高即可适合GC的分析要求。主要的衍生化反应有烷基化、酰化、硅烷化等。其中已硅烷化用得最广泛。 异构体的分离也是十分重要的。分离光学异构体的方法之一,就是采用不对称试剂,使其生成非对映异构体衍生物,然后用GC法或HPLC法进行分析测定。  2.HPLC中化学衍生化法:当采用HPLC法时,其衍生化目的是为了提高药物的检测灵敏度。一些在紫外、可见光区没有吸收或者摩尔吸收系数小的药物,可以使其与衍生成对可见-紫外检测器、荧光检测器及电化学检测器等具有高灵敏度的衍生物。  环境样品前处理  在现代环境检测和分析领域中,各种现代化分析仪器和测试手段的不断更新,使得环境样品的分析检测已经可以做到即时、在线、灵敏地分析痕量的多种环境样本,这充分得益于环境样品前处理技术的快速发展。样品采集及预处理一直是制约环境化学发展的瓶颈。传统的前处理方法存在耗时长、精密度及重现性差、难于自动化、智能化,并且大量使用有毒溶剂等不利因素。环境化学工作者经过不懈的探索和努力,改进并创新了一系列的环境样品预处理技术,这些方法有不同的适用范围,有各自不同的应用和发展前景。本文主要介绍具有代表性的吹扫捕集、加速溶剂萃取等现已应用较多的现代环境前处理方法。  1 吹扫捕集(PT)  吹扫捕集技术的主要优点是不使用有机溶剂,不污染环境,操作简便,取样少,富集效率高,适合于大多数挥发性和半挥发性有机物的分离富集。 吹扫捕集技术可以与很多仪器联用,如气相色谱电子捕获检测器、氢焰离子化检测器、质谱检测器及电感耦合等离子体发射光谱检测器等。 吹扫捕集是无溶剂制备与处理技术的一种。  2 加速溶剂萃取(ASE)  加速溶剂萃取是近几年发展起来的一种全新的样品前处理方法,是在较高的温度和较大的压力下,使用溶剂萃取固体或半固体样品的一种液固萃取方法。 在环境分析中已广泛应用于土壤、污泥、沉积物、大气颗粒物、粉尘、动植物组织、蔬菜水果样品中的多氯联苯、多环芳烃、有机膦、苯氧基除草剂、三嗪除草剂、柴油、总烃、二恶英、呋喃、炸药等有机物的萃取。 该技术的不足之处是不适用于高温下易降解的样品。  3 膜萃取  它是利用非孔膜进行分离富集样品前处理的一种方法。膜萃取一般用 于挥发性、半挥发性有机物的检测。 膜萃取的优点是富集倍数高,溶剂用量少,成本低,易于在线操作等。  4 微波辅助萃取(MASE)  与其它萃取方法对比,微波辅助溶剂萃取优势在于溶剂的用量小,萃取效率高,节省时间。微波辅助萃取的缺陷主要在于加热时升温速度过快,容易出现局部过热现象。  小结  1.近年来发展起来的上述样品前处理方法,应用各有其特点,其中应用最为普遍成熟的是固相萃取(SPE);  2.基体分散固相萃取(MSPD)对样品的处理最为有效;  3.超临界流体萃取(SFE)速度快、效率高、几乎不消耗溶剂,但装置价格昂贵,不易推广普及。液相微萃取技术和分子印迹技术 (MIT)具有广阔的应用前景,但国内在这方面起步较晚,相关研究较少;微波辅助萃取(MAE)具有快速、高效节能、环境友好等特点,但目前对其机理的研究还不够;  4.加速溶剂技术(ASE)的提取一次只能提取一个样本,用于批量检测需要较长的时间;膜分离样品前处理技术具有选择性高、溶剂用量少、准确度和精密度均较高等特点,其不足是对萃取物质有较高要求,需要优化很多实验条件,并且其长期稳定性差;  5.免疫亲和色谱(IAC)是目前净化和富集效能最强的样品处理技术,但尚处探索阶段,仍限于常规技术净化困难的重要残留组分样品处理过程;  6.吹扫捕集技术(SCD)对环境不造成污染,具有取样量少、富集效率高、受基体干扰小及容易实现在线检测等优点,但其除水技术尚存在较大缺陷;  7.超声波辅助萃取(UAE)具有快速、价廉、提取率高的优点,但这种技术目前还多是手工操作,主要用在小型实验室,要用于大规模的工业生产尚存在一定的困难。

厂商

2018.12.12

凯氏定氮仪操作使用中常见问题

  1. 凯氏定氮仪在蒸馏时翻滚剧烈,会对操作者构成危险吗?  答:一般不会,凯氏定氮仪在蒸馏时翻滚剧烈,是水蒸气大量进入消化管液体翻滚,并非剧烈反应造成;而且仪器有超压保护装置,可以保持管路内部常压,避免危险。  2. 凯氏定氮仪工作中对水质有什么要求?  答:凯氏定氮仪的蒸馏水桶内要装蒸馏水或纯水,机器长期不用要将蒸馏器里水放掉。  3 . 凯氏定氮仪开机没声音是怎么回事?  答:凯氏定氮仪开机没声音,如果机器电源开关内红灯亮,说明是定氮仪内保险管烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。  4 . 凯氏定氮仪开机后蒸馏器内不加水怎么解决?  答:开机半分钟后检查蒸馏水桶是否漏气,能被气充鼓是正常;检查蒸馏水桶内水位是否超过三分之一,不够补齐;检查蒸馏水桶的位置,低于放置仪器的台面,压力不够,加不上水;检查蒸馏水桶进气、进液管是否接错,接错桶内会产生气泡并发出声响;检查排水阀,应呈关闭状态。  5 . 凯氏定氮仪蒸锅不加热,不能产生蒸气,为什么?  答:如果机器能正常加碱,不能加热出蒸气,判定加热丝可能烧坏了,可拿万用表量一下加热丝正负极,不通可确定加热丝损坏,换新加热丝。  如果机器不能正常加碱,开机后又没有任何声音,判断是保险丝烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。  6 . 凯氏定氮仪工作时声音大,是否正常?  答:属于正常现象,这是机器内部气泵工作的声音。  7 . 凯氏定氮仪工作中不能加碱、加碱没有声音,为什么?  答:检查碱桶是否漏气,被气充鼓机器才能正常工作;仪器使用时间过长,碱管内部会产生结晶,导致加液时流速降低,没有声音。  8 . 定氮仪在工作时,从顶部冒出类似烟的气体,怎么回事?  答:检查冷却水进水的水龙头是否打开,冷却水关闭或者水量小都会导致消化管出来的蒸气不能被冷凝,从机器里冒出来的水蒸气,看起来类似烟。  9 . 定氮仪使用中发现消化管进满水,怎么解决?  答:定氮仪使用中发生消化管进满水,是由于机器控制水位器导电性降低造成的,解决办法:打开水位器取出探针用砂纸打磨,去掉氧化层;在蒸馏水桶里加入3-5克实验室用氯化钠,摇匀溶解。  10 . 定氮仪使用中发生蒸馏器、水位器进满水,硼酸吸收液容器中进水,怎么解决?  答:是机器控制水位器导电性降低造成的,解决办法:打开水位器取出探针用砂纸打磨,去掉氧化层;在蒸馏水桶里加入3~5克实验室用氯化钠,摇匀溶解。  11 . 定氮仪使用中消化管中白色管子发生倒吸,怎样解决?  答: 仪器停止工作(蒸馏器停止加热),气阀未能及时关闭,会产生倒吸现象,可在白色管子上扎一些小孔。气阀损坏,不能关闭,也会倒吸。  12 . 定氮仪工作中隔 3 ~ 5 秒钟会发出声响,是否正常?  答:这种声响属于正常现象,仪器工作状态下,蒸馏器会不断加热产生水蒸汽而消耗水,仪器会自动打开水阀进行补水,声响就是水阀打开、关闭的声音,属于正常现象。  注意  1.每次使用仪器前,应让仪器空煮一次,清洗仪器的内部管路。  2.仪器使用完毕,应将其中一只桶的桶盖打开,将桶内的气体排出,延长附件的使用寿命(3个或2个桶串联,排气时只打开一只桶盖即可)。

厂商

2018.12.11

电感耦合等离子体质谱仪操作使用

  ICP-MS全称是电感耦合等离子体质谱仪,可以用于物质试样中一个或者多个元素的定性、半定量和定量分析;能测定周期表中90%的元素,特别是对金属元素分析最擅长,他和ICP-OES、AAS是化学元素分析的常用的三种仪器,其中ICP-MS的检测限zui低,可以达到PPT(10的负12次方)级。标准偏差为2-4%,每个元素的测定时间仅为10s,非常适合多元素的同时测定分析。  那么,对于ICP-MS,我们特地为大家搜集一些小TIPS,以问答的形式呈现给大家,希望能对您的实验起到参考作用:  一.针对环境样品,使用ICP-MS检测时比较快的前处理方法有哪些?  1.采用高压微波消解系统,MILLSTONE或CEM等等;  2.微波消解或酸浸取,视样品和元素而定,如果作同位素丰度,用浸取就够了;  3.视哪种环境样品而定,水样用酸固定就可以了,土壤比较难做,微波消解也可以,按照所做的元素不同采用不同的速度和方法。  二.使用ICP-IES做土壤中金属的含量时。预处理用微波消解仪,先把土壤风干,然后用磨成粉,再过筛,zui后大约称取0.2g左右,消解后无固体,但是检测结果两个平行样很差,相对偏差达到有200%是什么原因?  1. 如果所有的元素含量测出的平行性都不好的话,说明是制样或消解过程有问题,如果是个别元素,比如铁元素,则可能是由于污染引起的;  2. 有可能是样品不均匀造成;  3.微波消解过程很可能造成平行性不好。  三.ICP-MS测食品样品效果不好,怎样才能很好的应用?测食品样品中砷、铅、隔、铜、硒等,它们之间有互相干扰么 ?  1. 砷\硒要用CCT(或DRC);  2. 你的标准曲线如何(r值)?如果样品中Cu的含量比较高,你可以考虑Cu65测量.As应该考虑ArCl75的干扰,zui好用CCT(或DRC).另外在样品消化过程中Se容易跑;  3. As75要注意ArCl的干扰,如果CL很高的话用数学校正法比较困难;  4. Se82灵敏度较低, As75有干扰, 7500a没有碰撞反应池,这俩元素不好测,使用原子荧光较测这俩元素更好些,其他元素应该也没问题;  5. 样品处理时用微波消解器,硝酸加过氧化氢,高压下消解,Se和As应用氢化物发生器进样ICP-AES或AFS做,ICP-MS不适合。  四.ICP-MS做Hg时系统清洗有什么好办法吗?  1. 在清洗液中加点金(Au)的化合物, Au与Hg易结合形成络合物;  2. 一般的浓度是10ppm,这样就能比较好的清洗Hg的残留了;  3. 用ICP-MS作汞应不要作高浓度的,汞容易挥发,一般作  4. 用0.1%巯基乙醇 ;  5. 用金溶液是经验溶液,效果比较好。  五、ICP-MS测Hg效果如何?检测含量范围有多大?  ICP-MS测定Hg的范围可以低到ppt级,不过样品的处理和介质很重要,不然偏差很大,记忆效应也很大;测Hg很麻烦,主要是记忆,用碱性溶液洗才有效;一般来说作10ppb左右或者以下的比较好,因为记忆效果很大,做完了要清洗很长时间。可以用稀释的做,用金来洗比较好。  六、用ICP-MS可以做血样中微量元素吗?做的结果Fe总是偏低,内标Sc的回收率低,且不能固定选一个内标进行元素的测定,比方说,今天用209做Pb的内标,质控值很好,但隔天做Pb的质控值就低很多。什么原因?  1. 血样重点看消化过程,一般基体影响不太大,Fe用冷焰做的话,Sc本身电离的不好,信号不是很稳定的,至于209内标校正Pb的测定不稳定,或者是仪器的质量数有所漂移,或者是Bi的溶液水解导致不稳定。  2. 血样直接稀释测定,有机质没有被消化,粘度较大,导致进样管道记忆效应严重,测定效果不好。应该用HNO3封闭溶样消化有机质,这样稀释倍数可以降低,测试效果好。  3. 我做血清,现在还在建立方法阶段。文献有用10%氨水和EDTA做的,加0.01%TritonX-100,在稀释剂中加1.5%正丁醇对As和Se会好一些。  4. 用1%的硝酸不会有沉淀,但很多元素的日间精密度很差。  七、用ICPMS测海水中的重金属该如何处理样品?包括样品的稀释,质量数的选择等  1. 酸化,过膜。注意硝酸和器皿一定要干净。硝酸建议用重蒸后的。国产酸仍然比较脏, 一般采用十倍稀释的方法来做。  2. 你测的是重金属 不管是ORS,DRC,CCT作用都不是太大,反应池对85以下质量数效果比较好。cd 111 会受MOZr等氧化物干扰,可以编辑校正方程,Pb应用206+207+208 ,Hg 202。  八、我用6ml硝酸在微波消解器中做PP塑料的前处理时,消解液很清亮,可是当移入容量瓶加超纯水后,溶液就浑浊了(可以排除其他污染)随着加入的水增加溶液浑浊度增加。zui后溶液的酸度为6%左右。是什么原因?如何解决?  1. 可能是消解后一些物质在不同酸度下的溶解度不同,可以先加入一定量的水,然后过滤,滤液应不会再浑浊,注意将滤纸多洗几次后定容.。  2. 原来消解生物样品的时候,如果消解不完全,加水会有浑浊出现,你把酸量加大一些试试,看是不是没有消解完全。  九、最近用ICP做矿石样,用标准加入法测得线性还可以,但是用内标法测得的工作曲线不太好。而且很多定量分析都用内标法。采用标准加入法的多不多呢?  1. 用标准加入法可以很好地克服基体匹配的问题,矿样的基体比较复杂所以用标准加入法好一些,对于背景简单的样品内标法简便一些。  2. 如果用内标法首先要保证你的样品基体中不含有你选择的作为内标的元素。  3. 个人认为应该选内标法,实在不能克服基体才用标准加入法。太麻烦,样品多的话就没辙了。  十、有机质谱绝dui禁止无机的东西进去,因为无机盐类不挥发,会污染质谱。那么无机质谱又是怎么克服这个问题呢?  1. 无机质谱的样品处理一般经过消解,有机物残留很少,经过ICP会完全分解。  2. 无机质谱进入仪器内的离子非常少,而且很快被真空系统抽到外部。当然如果很长时间做高基体的样品仪器内部还是会被污染的,这时就需要清洗四极杆、离子透镜了。  3. 所有的质谱耐受盐分的能力都是有限的,有机质谱和无机质谱的离子源温度不同,有机质谱离子源温度较低,无机盐无法分解,因此沉积现象会非常严重。无机质谱高温源可以使大部分无机化合物解离,但是依然会有部分氧化物沉积于锥口附近,因此接口需要经常清洗。

厂商

2018.12.11

实验室常见食品中防腐剂检测方法

食品防腐剂是用于防止食品因微生物引起的变质,提高食品保存性能,延长食品保质期而使用的食品添加剂。由于防腐剂能延长食品保质期,我国《食品卫生法》规定,允许食品加入适量的防腐剂。  防腐剂种类常用食品防腐剂种类繁多,可以分为化学防腐剂和天然防腐剂两大类。化学防腐剂又分为无机防腐剂和有机防腐剂。有机化学防腐剂主要有苯甲酸(苯甲酸钠)、山梨酸(山梨酸钾)、对羟基苯甲酸脂类、脱氢醋酸、双乙酸钠、柠檬酸和乳酸等;无机化学防腐剂主要包括亚硫酸(亚硫酸钠)、二氧化硫、硝酸盐及亚硝酸盐类、游离氯及次氯酸盐、磷酸盐等。  饮料中常见防腐剂苯甲酸又名安息香酸,稍溶于水,溶于乙醇,酸性条件下对多种微生物(酵母、霉菌、细菌)有明显抑菌作用,对产酸菌作用较弱。在直接饮用的饮料内的zui大使用量为0.2克/ 公斤。因为苯甲酸溶解度低,使用不便,实际生产中大多是使用其钠盐,其钠盐的抗菌作用是转化为苯甲酸后起作用的。山梨酸,又名花楸酸,微溶于水,易溶于乙醇。对光、对热稳定,长期放置易被氧化着色。对霉菌、酵母菌和好气性细菌均有抑菌作用。山梨酸是酸性防腐剂,适用范围在pH 值5.5以下,而毒性为苯甲酸的1/4,所以从国外发展动向看,有逐步取代苯甲酸及其钠盐的趋势。zui大使用量:0.6克/公斤。食品防腐剂的检测方法目前使用的大多数防腐剂对人体都有一定的毒性,一旦过量会对健康产生危害。因此,各个国家对防腐剂的用量和残留量都有严格的规定,防腐剂的准确检测对食品卫生安全具有重要意义。目前食品防腐剂的检测主要有高效液相色谱法、气相色谱法、紫外光分光光度法、薄层色谱法,滴定法等。其中气相色谱法、高效液相色谱法、紫外光分光光度法准确度高,分析快捷,是目前最常用的检测方法。  常用的检测方法高效液相色谱法原理:配制苯甲酸钠、山梨酸钾和安赛蜜的标准溶液,以230nm为检测波长,绘制标准曲线;样品经超声波脱气、膜过滤后直接进样,按上述条件进行色谱测定,得到各种组分的回归方程及相关系数。评价:高效液相色谱法具有分析速度快,分离效率高,测定结果准确等优点,是检测食品中苯甲酸钠的最常用的方法。现在通用的较佳方法是将样品用yi醚萃取, 再将萃取后的样液在水浴烘干,然后用甲醇定容, 滤膜过滤后进行HPLC检测。此试验种用超声萃取法,具有样品预处理简单,使操作简单、快速、准确,值得推广。但是此法限于某种食品 ,应用于多种食品时 ,常常出现防碍峰干扰。紫外分光光度法原理:利用苯甲酸钠和山梨酸钾的紫外吸收光谱差异, 采用多元线性回归紫外吸光光度法同时测定饮料中苯甲酸钠和山梨酸钾。其中样品无需预处理。评价:样品无须预处理,操作简单,并且可同时测定多组分。加和性好, 准确度高。 气相色谱法原理:用分析天平准确称取试样并用盐酸酸化,将山梨酸、苯甲酸和对羟基苯甲酸脂类用yi醚提取浓缩,用具有氢火焰离子化检测器的气象色谱仪分离测定,与标准比较定量。评价:比较简便和灵敏,但是设备投入成本高,存在违规操作,有易燃易爆的隐患。红外光谱法原理:以zui佳定量准确性和速度,从溴化钾-苯甲酸钠红外谱图中减去溴化钾-奶粉(以奶粉为例)红外谱图,得到特征分析峰(1555cm),在该波数下测定浓度等梯度变化的标准固态溶液的吸光度,并以此吸光度数值为纵坐标,以相应的浓度为横坐标,绘制工作曲线,将待测样品的吸光度代入回归方程,从而计算苯甲酸钠的含量。其中样品预处理采用样品与溴化钾于研钵中研细,干燥,压制晶片的方法。评价:此法操作简便、准确,同时可对多种样品进行含量测定,适用于工业生产,食品检测等工作。目前可以投入生产和检测的方法主要就是上述介绍的高效液相色谱法、气相色谱法和紫外分光光度法,而红外光谱法在国内外都少见报道,而荧光光谱法还处在实验阶段,尚未成熟和被广泛使用。由于成本比较低和方便等原因,高效液相色谱法在一定时期还会是使用最广泛的方法。原理:以zui佳定量准确性和速度,从溴化钾-苯甲酸钠红外谱图中减去溴化钾-奶粉(以奶粉为例)红外谱图,得到特征分析峰(1555cm),在该波数下测定浓度等梯度变化的标准固态溶液的吸光度,并以此吸光度数值为纵坐标,以相应的浓度为横坐标,绘制工作曲线,将待测样品的吸光度代入回归方程,从而计算苯甲酸钠的含量。其中样品预处理采用样品与溴化钾于研钵中研细,干燥,压制晶片的方法。评价:此法操作简便、准确,同时可对多种样品进行含量测定,适用于工业生产,食品检测等工作。目前可以投入生产和检测的方法主要就是上述介绍的高效液相色谱法、气相色谱法和紫外分光光度法,而红外光谱法在国内外都少见报道,而荧光光谱法还处在实验阶段,尚未成熟和被广泛使用。由于成本比较低和方便等原因,高效液相色谱法在一定时期还会是使用最广泛的方法。

厂商

2018.12.11

重金属检测常用实验方法

  重金属检测是常规监测项目之一。采用重金属检测方法,能快速有效地对重金属检测和评价。本文介绍了几种常用的重金属检测方法,原子荧光光谱法,原子吸收光谱法,电感耦合等离子体发射光谱,激光诱导击穿光谱法和X射线荧光光谱等。  重金属不但会通过径流和淋洗作用污染地表水,还会通过食物链的方式进入人体内,对于重金属的富集人体难以代谢,zui终直接或间接危害人体器官的健康。本文介绍了重金属的检测方法、并且对比各种方法优缺点。  1、原子荧光光谱法  原子荧光光谱法是以原子在辐射能量分析的发射光谱分析法。利用激发光源发出的特征发射光照射一定浓度的待测元素的原子蒸气,使之产生原子荧光,在一定条件下,荧光强度与被测溶液中待测元素的浓度关系遵循Lambert-Beer定律,通过测定荧光的强度即可求出待测样品中该元素的含量。  原子荧光光谱法具有原子吸收和原子发射两种分析方法的优势,并且克服了这2种方法在某些地方的不足。该法的优点是灵敏度高,目前已有20多种元素的检出限优于原子吸收光谱法和原子发射光谱法;谱线简单;在低浓度时校准曲线的线性范围宽达3~5个数量级,特别是用激光做激发光源时更佳,但其存在荧光淬灭效应,散射光干扰等问题。  该方法主要用于金属元素的测定,在环境科学、高纯物质、矿物、水质监控、生物制品和医学分析等方面有广泛的应用。  2、原子吸收光谱法  原子吸收光谱法又称原子吸收分光光度分析法,是基于气态的基态原子外层电子对紫外光和可见光范围的相对应原子共振辐射线的吸收强度来定量被测元素含量为基础的分析方法,是一种测量特定气态原子对光辐射的吸收的方法。  其基本原理是从空心阴极灯或光源中发射出一束特定波长的入射光,通过原子化器中待测元素的原子蒸汽时,部分被吸收,透过的部分经分光系统和检测系统即可测得该特征谱线被吸收的程度即吸光度,根据吸光度与该元素的原子浓度成线性关系,即可求出待测物的含量。  原子吸收光谱法在农业方面,主要应用与土壤、肥料及植物中的中微量元素分析、水质分析、土壤重金属环境污染分析、土壤背景值调查及农业环境评价分析等方面。该方法的优点是:选择性强、灵敏度高、分析范围广、抗干扰能力强、精密度高。其不足之处有多元素同时测定有困难,对非金属及难熔元素的测定尚有困难,对复杂样品分析干扰也较严重,石墨炉原子吸收分析的重现性较差。  3、电感耦合等离子体发射光谱法  电感耦合等离子体发射光谱是根据被测元素的原子或离子,在光源中被激发而产生特征辐射,通过判断这种特征辐射的存在及其强度的大小,对各元素进行定性和定量分析。  电感耦合等离子体发射光谱法应用于环境水样、土壤样品中的微量元素进行分析,在元素分析测试中的应用技术具有简便、快速、分析速度快;检出限低,多数可达0.005μg/ml以下;测量动态线性范围宽,一般可达5~6个数量级,可同时进行高含量元素和低含量元素的分析,可达到石墨炉原子吸收光谱仪的部分检出水平;可多种元素同时分析,可定性、定量分析金属元素,也可分析部分非金属元素,提高了分析效率,基体效应小,低背景干扰、高信噪比、精密度高、准确性好等优点。  4、激光诱导击穿光谱法  激光诱导击穿光谱技术是一种zui为常用的激光烧蚀光谱分析技术。其工作原理是:激光经过会聚透镜会聚,高峰值功率密度使未知样品表面物质气化、电离,激发形成高温、高能等离子体(温度可达10000K),等离子体辐射出来的原子光谱和离子光谱被光学系统收集,通过输入光纤耦合到光谱仪的入射狭缝中,光谱数据通过数据采集控制器传输到计算机,研究该光谱就可以分析计算出被测物质的成分与浓度。  原子光谱和离子光谱的波长与特定元素是一一对应的,而且光谱信号强度与对应元素的含量具有一定的定量关系。因此该技术可以实时、快速地现化学元素的定性和定量分析。  激光诱导击穿光谱可以真正做到现场快速分析,无须进行样品预处理,分析方便,也不受研究对象的限制。但是,其测量仪器成本较高,激光脉冲能量的起伏性,样品的不均匀性,样品的特性会直接影响测量的稳定性,也就是说研究样品的特性对结果的精确性影响较大。  5、X射线荧光光谱法  X射线荧光光谱技术是一种利用样品对X射线的吸收随样品中的成分及其多少变化而变化来定性或定量测定样品中成分的方法。  X射线荧光光谱仪在结构上基本由激发样品的光源、色散、探测、谱仪控制和数据处理等几部分组成。该X射线荧光光谱法和电感耦合等离子体质谱法、发射光谱法在元素分析结果之间的差异,结果显示它们的差异不显著。从检出限、准确度、精密度和回收率方面均能满足实验要求。  总结  重金属检测是一项长期的工作,要求各种检测手段向更高灵敏度、更高选择性、更方便快捷的方向发展,不断推出新的方法来解决遇到的新的分析问题。随着各种分析方法的建立和科学技术的不断进步,分析仪器逐渐由简单化向复杂化的方向发展,可以预见,各种分析仪器会向多功能、自动化、智能化以及小型化的方向发展,并且检测精度、灵敏度也会得到一定的提高。

厂商

2018.12.10

傅里叶红外光谱常见的问题及注意事项

  傅里叶变换红外光谱(Fourier Transform infrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步,FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。  1. 压片法 KBr 的处理和保存  压片使用的KBr不一定要光谱纯的,国外也常常使用分析纯的,但是,必须注意以下几点:  ①选择正规的产品,有水份是没有关系的,关键是没有无杂质,尤其是有机物峰,还有SO42-,NO3-等。。。可以先做个红外看看纯度。  ②如果符合要求的话,可以处理一大批KBr。首先,用干净的玛瑙研钵仔细研磨细,然后在120℃烘干24h,或马弗炉中400℃烧30分钟,置于专用的干燥器中冷却。  ③再做个KBr红外,看看吸收。如果没有特殊吸收,就放干燥器中,可以统一保存。  ④另外使用个小称量瓶和专用药勺,取出一小部分KBr供平常使用,与统一保存的KBr要分开。保存的KBr要尽量减少开启次数。  ⑤做红外的KBr一定要专用,不要和其它实验合成的混用。药品遵循只许出,不许进的原则。处理过的KBr也是这样,以免污染。  ⑥使用光谱纯的也可,但也要进行上述处理。  ⑦打破的,做液体的溴化钾单晶片纯度很高,不要扔掉破碎的溴化钾片,可以用来压片。  2. 液膜 KBr 晶片的处理  溴化钾单晶片盐片用时间久了,不太透明或不平整,有几个办法可以彻底处理 :  ①可以用附带的抛光附件抛光。  ②可以先用最细的金相(颜色最淡的那种,物理系常常有)砂纸抛光,然后再用平绒布面上蹭。  ③国外有用一份蒸馏水+5份异丙醇混和,先滴加在绒布面抛光,然后迅速转移在干燥的绒布面上蹭。效果也很好。处理时一定要带好手套,避免手上湿气的侵蚀。  3. 操作注意事项  a.理论上,研磨的粒度要小于其红外光的波长,这样才能避免产生色散谱,注意 : 研磨过程尽量不要吸收水分,不要对着样品呼气。  b.做红外放样品时候,注意轻开轻关样品室,同时,不要面对样品室呼气,可以使背景的吸收扣的很好。  c.擦洗盐片要由里向外,有机溶剂,比如,丙酮不要沾的很多。  d.液体样品要控制好厚度。  e.手洗干净和干燥是很重要的。  4. 一些特殊样品的处理方法a.有些在溶液中生成的样品,如,配合物一类等,不易提取出来。可以把溶液滴加在的KBr中干燥,研磨。如果样品不怕加温,可以加温干燥后测试。如果样品不能加温,可以待溶剂挥发后,再放入干燥器中自然干燥后再测红外。  b.有些含水的样品,如果,没有氟化钙的盐片,可以用KBr粉末压片,把样品滴加在上面,测完后抛弃。  c.平时用坏了的KBr片,比如,摔裂的半个片都行,专门用来测含水样品。如果光面不好了,可以用异丙醇5份加水1份,滴加在绒布上抛光后使用。  d.根据样品的特点来处理样品。  举个例子,轮胎橡胶制品无法研磨,一般压片法很难制样:  ①普通制样方法得到的谱图透过率差,看不到特征吸收;  ②使用全反射方法测全反射红外谱,不仅需要附件,而且由于橡胶制品是黑色的,得到的谱图效果也差,即使,放大以后的谱图,吸收峰透过率仍然在98%~100%,而且样品的平坦度不够,不成形,不平整就无法做;  ③采用普通的压片方法,利用溶剂溶解加研磨混合制样的方法,对比了不同几种溶剂,达到了较为满意的效果。  5. 一些异常谱带的介绍  波数         化合物或结构            来源  668 CO2 大气中CO2 吸收,正或负  697 聚苯乙烯 磨损的聚苯乙烯瓶子或其他机械处理样品过程中  719 聚乙烯 实验室中常使用聚乙烯产品,有时候作为污染物出现  730 聚乙烯 同上  787 CCl4 使用CCl4后没有处理干净  794 CCl4 CCl4气体,同上  823 KNO3 无机硝酸盐与溴化钾反应物  837 NaNO3 氧化氮与窗片上的水汽生成,光源点燃有时候出现  980 K2SO4 无机硫酸盐与溴化钾离子交换的反应物  1110-1053 Si-O 使用玻璃研钵,由玻璃粉末引起的谱带,宽峰  1110 Me-O 研钵或其它物品的灰尘造成的污染,宽  1265 Si-CH3 使用硅树脂有此污染  1365 NaNO3 同837  1380,1450  2800~2900 (CH2)n 烃类物质  1378 NO3- 溴化钾的杂质,与CH3位置相近  1428 CO32- 溴化钾的碳酸盐,及其它杂质  1613-1515 ﹥COO- 碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生  1639 H2O 少量夹带水的吸收  1764-1696 >C=O 药品的瓶盖,涂层,增塑剂等等的污染  1810 COCl2 氯仿暴露在空气中或日光氧化生成少量光qi的谱带  1996 BO3- 碱金属卤代盐,NaCl中的偏硼酸离子引起  2326 CO2 CO2吸收  2347 CO2 正或负的大气中CO2吸收  3450 H2O 压片中KBr含的微量水的谱带,宽,常见  3650 H2O 石英管出现附着水引起的锐谱带  3704 H2O 近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐  6. 一些红外透光材料介绍  选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :  (1) 溴化钾 KBr : 易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;  (2) 氯化钠 NaCl : 易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;  (3) 氟化钙 CaF 2 : 不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;  (4) 氟化镁 MgF 2 : 不易潮解,透过波长0.11~8.5μm,透过率大于90%;  (5) 氟化钡 BaF 2 :不易潮解,透过波长7800~800cm(1~12μm)透过率大于90%;  (6) 金刚石 : 碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;  (7) 锗 Ge : 纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;  (8) 硅 Si : 耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;  (9) 热压块 : 用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;  (10) 塑料 : 高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;  (11) 氯化银 AgCl : 软,不易破裂,435cm-1(23μm以下),易变黑,贵;  (12) 溴化银 AgBr : 软,不易破裂,285cm-1(35μm以下),作为全反射材料;  (13) 硫化锌 ZnS : 不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;  (14) 溴(碘)化鉈 KRS -5 : TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透过率大于92%,折射率高,全反射材料,贵,有毒;  (15) 硒化锌 ZnSe : 不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;  (16) 石英 SiO 2 : 不易潮解,透过波长190nm~4.5μm,透过率大于92%;  (17) 氟化锂 LiF : 120~7000cm-1,易潮解变形;  (18) 砷化镓 GaAs : 2~14μm,耐擦拭,可代替硒化锌。

厂商

2018.12.10

高效液相色谱维护与使用注意事项

  HPLC以它定量分析结果准确、分析周期短、分析范围广及分析检测限低等优势,在食品添加剂、药物成分分析等多领域得到了广泛的应用。本文就液相色谱仪在实际操作时应注意的事项及维护做了简单介绍。  主要部件介绍  输液系统  输液系统主要包括在线脱气装置、高压输液泵、梯度洗脱装置。在线脱气装置主要功能是流动相在进入柱子前排除气泡。高效液相色谱柱的填料颗粒小,通过 2~5 mm 的色谱柱受到的流动阻力很大,因此需要通过高压输液泵抽取流动相输送至色谱柱。  高压泵按输液性能可分为恒压、恒流泵。按机械结构可分为:液压隔膜泵、气动放大泵、螺旋注射泵和往复柱塞泵。  进样器  进样器是将分析样品送入色谱柱的装置,分为手动、自动进样器两种。手动进样器一般配有20~100μL的定量环。  色谱柱  色谱柱以液体为流动相,以广义的固相为固定相来进行分析样品的分离工作。  色谱柱按照分离模式大致可以分为正相色谱柱和反相色谱柱。  检测器  检测器是将色谱柱分离出样品的物理或化学特性转换为可以测量的电信号,通过色谱图记录下来,由色谱图中的峰形状判断分离效果,依据标物、分析样色谱图的出峰时间、峰面积分别对样品进行定性定量分析。  维护及使用注意事项  1.开关机操作注意  分析准备工作做好后,依次打开稳压电源、高压输液泵、柱温箱、检测器,待各部件自检结束,打开连接仪器的电脑,启动工作软件。分析工作结束后,关闭工作软件,再依次关闭检测器、柱温箱和高压输液泵。  2.对流动相的要求  为保证液相色谱仪器的正常使用,所有流动相必须是色谱级的,且经过过滤杂质、排除气泡后装入干净的流动相贮存瓶中待用。  (1)流动相的物理化学性能要求  对分析物要有足够的溶解能力,以利于提高检验的灵敏度;流动相的黏度要小,以保证合适的柱降压;流动相的沸点要低,以利于制备分离时样品的回收;流动相的 PH 值一般应在 2~7.5;使用期限不得超过 2 天,否则产生细菌污染管路。  (2)流动相的过滤  流动相在使用前都必须经过滤,以除去杂质微粒。同时要定期清洗吸滤头,以防杂质通过其进入流动相。应依据其是否是水溶性选择水膜或有机膜(0.45 μm 或 0.22 μm),使用溶剂过滤装置,通过真空泵抽气过滤。  (3)流动相的脱气  流动相必须预先脱气,否则易产生气泡,影响泵的工作。此外,溶解在流动相中的氧能与某些有机溶剂形成有紫外吸收的络合物,提高背景吸收,会在梯度洗脱时造成基线漂移或形成鬼峰。常有的脱气方法有在线真空脱气法、超声波脱气法、抽真空脱气法三种。  3.色谱柱的维护及使用注意事项  所有分析样品zui好把pH值调节到适合色谱柱的pH值范围内。进样要避免超负荷,这是保持色谱柱性能持久良好的重要方法之一。手动进样器进样的话,进样时动作要快速准确。分析物成分复杂时,要在色谱柱前加色谱保护柱以保护色谱柱。每次分析工作开始时,要对色谱柱进行平衡,用含10%流动相中的有机溶剂的水溶液进行排气和冲洗色谱柱和管路,冲洗30分钟左右,将色谱柱中的纯有机溶剂替换掉,然后再用至少10倍柱体积的流动相平衡色谱柱,直至基线平衡后方可进样。  每次分析工作结束后,一定要立即用一定量的水溶液彻底冲洗色谱柱中的缓冲盐液,再用对被测物洗脱能力强的溶剂来冲洗色谱柱,冲洗时间不能小于1小时,洗脱溶剂的用量至少为柱体积的20倍。若不及时冲洗色谱柱,杂质长时间积累在其中,易堵塞色谱柱,降低柱效性能。长期这样,会加速减少色谱柱使用寿命。色谱柱4天以上不使用,应从仪器上取下,用封头螺帽把两头紧紧密封。色谱柱保存时注意不要强烈震动、碰撞。  4.高压输液泵的维护及使用注意事项  每次分析工作结束后,都应及时清洗泵。当有缓冲盐做流动相时,缓冲盐与有机溶剂互相交换前一定要用5%的甲醇水溶液清洗泵,防止盐在有机相中结晶损坏泵中各组件。缓冲盐溶液的浓度不要过高,要控制在5%以下,否则高浓度的缓冲盐会磨损密封垫和活塞,降低其使用寿命。长时间使用高浓度的缓冲盐,必须用10%的异丙醇色谱级溶液清洗泵,从而保护柱塞和密封垫。  输液泵工作前要设置工作压力范围,正常工作压力一般不要超过 30 Mpa,否则经常高压会使密封环变形,产生漏液。平时分析工作要养成记录压力的好习惯,这样如果工作压力超过平时正常压力的10%~15%,就应及时查找原因。  5.紫外检测器的维护及使用注意事项  紫外检测器有一定的使用寿命,所以平时应尽量减少氘灯的使用时间,在柱平衡进行一大半之后,在走基线之前,打开检测器光源;分析结束后即可关闭检测器光源。要保持检测器四周环境清洁,实验室尽量少开窗户,定期地面进行吸尘工作,防止检测器工作时由于静电吸附灰尘颗粒覆盖在光学元件上。检测器池内存在气泡就会产生噪音,噪音会干扰定量分析,所以流动相须充分脱气后再使用。  应定期清洗流通池。如观察到流通池内部无气泡或脏物,应清洗流通池。通过注射器用异丙醇等有机溶剂冲洗池内,以清洗透镜。如是含有缓冲盐的溶剂作流动相,应在使用异丙醇冲洗前用水替换池中原先有的溶剂。

厂商

2018.12.07

毛细管电泳(HPCE)的工作原理

  高效毛细管电泳(high performance capillaryelectrophoresis,HPCE)是近年来发展起来的一种分离、分析技术,它是凝胶电泳技术的发展,是高效液相色谱分析的补充。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,HPLC分析高效、快速、微量。  电泳迁移  不同分子所带电荷性质、多少不同,形状、大小各异。一定电解质及PH的缓冲液或其它溶液内,受电场作用,样本中各组分按一定速度迁移,从而形成电泳。  电泳迁移速度(v)可用下式表示:  v=uE  其中E为电场强度(E=V/L,V为电压,L为毛细管总长度)。u为电泳淌度。  电渗迁移  电渗迁移指在电场作用下溶液相对于带电管壁移动的现象。特殊结构的熔合硅毛细管管壁通常在水溶液中带负电荷,在电压作用下溶液整体向负极移动,形成电渗流。带电微粒在毛细管内实际移动的速度为电泳流和电渗流的矢量和。  分离分析类型  根据其分离样本的原理设计不同主要分为以下几种类型:  ①毛细管区带电泳(capillary zoneelectrophoresis,CZE);  ②毛细管等速电泳(capillarychromatography,CITP);  ③毛细管胶速电动色谱(miceller electrokineticcapillary chromatography,MECC);  ④毛细管凝胶电泳(capillarygelelectrophoresis,CGE);  ⑤毛细管等电聚焦(capillary isoelectricfocusing ,CIEF)。  毛细管区带电泳(CZE)为HPCE的基本操作模式,一般采用磷酸盐或硼酸盐缓冲液,实验条件包括缓冲液浓度、pH值、电压、温度、改性剂(乙腈、甲醇等),用于对带电物质(药物、蛋白质、肽类等)分离分析,对于中性物质无法实现分离。毛细管胶束电动色谱(MECC)为一种基于胶束增溶和电动迁移的新型液体色谱,在缓冲液中加入离子型表面活性剂作为胶束剂,利用溶质分子在水相和胶束相分配的差异进行分离,拓宽了CZE的应用范围,适合于中性物质的分离,亦可区别手性化合物,可用于氨基酸、肽类、小分子物质、手性物质、药物样品及体液样品的分析。毛细管等速电泳(CITP)采用先导电解质和后继电解质,构成不连续缓冲体系,基于溶质的电泳淌度差异进行分离,常用于离子型物质(如有机酸),并因适用较大内径的毛细管而可用于微制备,但本法空间分辨率较差。毛细管等电聚焦电泳(CIEF)用于具兼性离子的样品(蛋白质、肽类),等电点仅差0.001可分离的物质。毛细管凝胶电泳(CGE)依据大分子物质的分子量大小进行分离,主要用于蛋白质、核苷酸片段的分离。此外,还有毛细管电色谱(CEC)及非水毛细管电泳(CNACE),用于水溶性差的物质和水中难进行反应的分析研究。目前CZE和MECC用得较多,本文以这两种方法为例来说明HPLC的原理。  CZE的基本原理  HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

厂商

2018.12.07

无菌实验室标准化操作规程及验收

  一.目的  本规程旨在为无菌操作及无菌室的保护提供一个标准化规程。  二.适用范围  微生物检测实验室  三.责任者 QC主管生测员  四.定义 无  五.安全注意事项  严格无菌操作,防止微生物污染;操作人员进入无菌室应先关掉紫外灯。  六.建造规程  1. 无菌室应设有无菌操作间和缓冲间,无菌操作间洁净度应达到10000级,室内温度保持在20-24℃,湿度保持在45-60%。超净台洁净度应达到100级。  2. 无菌室应保持清洁,严禁堆放杂物,以防污染。  3. 严防一切灭菌器材和培养基污染,已污染者应停止使用。  4. 无菌室应备有工作浓度的消毒液,如5%的甲酚溶液,70%的酒精,0.1%的新洁尔灭溶液,等等。  5. 无菌室应定期用适宜的消毒液灭菌清洁,以保证无菌室的洁净度符合要求。  6. 需要带入无菌室使用的仪器,器械,平皿等一切物品,均应包扎严密,并应经过适宜的方法灭菌。  7. 工作人员进入无菌室前,必须用肥皂或消毒液洗手消毒,然后在缓冲间更换专用工作服,鞋,帽子,口罩和手套(或用70%的乙醇再次擦拭双手),方可进入无菌室进行操作。  8. 无菌室使用前必须打开无菌室的紫外灯辐照灭菌30分钟以上,并且同时打开超净台进行吹风。操作完毕,应及时清理无菌室,再用紫外灯辐照灭菌20分钟。  9. 供试品在检查前,应保持外包装完整,不得开启,以防污染。检查前,用70%的酒精棉球消毒外表面。  10. 每次操作过程中,均应做阴性对照,以检查无菌操作的可靠性。  11. 吸取菌液时,必须用吸耳球吸取,切勿直接用口接触吸管。  12. 接种针每次使用前后,必须通过火焰灼烧灭菌,待冷却后,方可接种培养物。  13. 带有菌液的吸管,试管,培养皿等器皿应浸泡在盛有5%来苏尔溶液的消毒桶内消毒,24小时后取出冲洗。  14. 如有菌液洒在桌上或地上,应立即用5%石碳酸溶液或3%的来苏尔倾覆在被污染处至少30分钟,再做处理。工作衣帽等受到菌液污染时,应立即脱去,高压蒸汽灭菌后洗涤。  15. 凡带有活菌的物品,必须经消毒后,才能在水龙头下冲洗,严禁污染下水道。  16. 无菌室应每月检查菌落数。在超净工作台开启的状态下,取内径90mm的无菌培养皿若干,无菌操作分别注入融化并冷却至约45℃的营养琼脂培养基约15ml,放至凝固后,倒置于30~35℃培养箱培养48小时,证明无菌后,取平板3~5个,分别放置工作位置的左中右等处,开盖暴露30分钟后,倒置于30~35℃培养箱培养48小时,取出检查。100级洁净区平板杂菌数平均不得超过1个菌落,10000级洁净室平均不得超过3个菌落。如超过限度,应对无菌室进行彻底消毒,直至重复检查合乎要求为止。  七.参照 《药品卫生检验方法》 《中国药品检验标准操作规范》中 (无菌检查法)章节 中华人民共和国医药行业标准 YY/T0188.6-1995《药品检验操作规程》  八.适用部门  质量管理部  无菌室技术指导说明  在获得了无菌环境和无菌材料后,我们还要保持无菌状态,才能对某种特定的已知微生物进行研究或利用它们的功能,否则外界的各种微生物很容易混入。外界不相干的微生物混入的现象,在微生物学中我们叫做污染杂菌。防止污染是微生物学工作中十分关键的技术。一方面是彻底灭菌,另一方面防止污染,是无菌技术的两个方面。另外,我们还要防止所研究的微生物,特别是致病微生物或经过基因工程改造了的本来自然界不存在的微生物从我们的实验容器中逃逸到外界环境中去。为了这些目的,在微生物学中,有许多措施。  无菌室一般是在微生物实验室内专辟一个小房间。选用彩钢板及钢化玻璃建造。面积不宜过大,约 5 — 20 平方米即可,高 2.5 米左右。无菌室外要设一个缓冲间,缓冲间的门和无菌室的门不要朝向同一方向,以免气流带进杂菌。无菌室和缓冲间都必须密闭。室内装备的换气设备必须有空气过滤装置。无菌室内的地面、墙壁必须平整,不易藏污纳垢,便于清洗。工作台的台面应该处于水平状态。无菌室和缓冲间都装有紫外线灯,无菌室的紫外线灯距离工作台面 1 米。工作人员进入无菌室应穿灭过菌的服装,戴帽子。  当前无菌室多存在于微生物工厂,一般实验室则使用超净台。超净台其主要功能是利用空气层流装置排除工作台面上部包括微生物在内的各种微小尘埃。通过电动装置使空气通过高效过滤器具后进入工作台面,使台面始终保持在流动无菌空气控制之下。而且在接近外部的一方有一道高速流动的气帘防止外部带菌空气进入。  无菌操作技术当前不仅在微生物学研究和应用上起着举足轻重的作用,而且在许多生物技术中也被广泛应用。例如转基因技术、单克隆抗体技术等。

厂商

2018.12.07

气相色谱仪进样口及选择进样方式

  色谱进样原理是将待测样品置入一密闭的容器中,通过加热升温使挥发性组分从样品基体中挥发出来,在气液或气固两相中达到平衡,直接抽取顶部气体进行色谱分析,从而检验样品中挥发性组分的成分和含量。目前,样品设备有十多种,主要有:自动进样器、顶空进样器、六通阀进样器、手动进样器、液体进样器、色谱进样器、气体进样器、固体进样器等。  概述  气相色谱是液相色谱之外,应用较为广泛的另一种色谱,理论上讲可以分析任何可挥发性样品,如在食品,水体,土壤等样品中农药残留检测,大气有机污染物检测,以及医药研发过程中所使用到的溶剂残留检测等。但在实际的应用过程中由于色谱柱耐受温度的限制,其可分析的样品的气化温度范围受到了一定的限制。此外,与配备通用型DAD或PDA检测器的HPLC相比,气相色谱的检测器一般配置通用型的氢火焰离子检测器(FID),该检测器对于绝大多数有机化合物均具有响应,而不受化合物本身结构特性的限制(DAD或PDA检测器受限与化合物本身具有紫外吸收特性),且其响应的大小与分子结构中碳元素的相对丰度有关。  一般来讲,气相色谱仪一般由载气以及载气控制系统,进样系统,色谱柱以及柱温箱,检测器以及数据采集与记录系统组成。以下内容针对气相色谱仪的进样系统组成,进样方式以及一些常见的问题,做简单介绍。  气相色谱仪进样系统  气相色谱进样系统一般由自动进样器(当然也可手动进样,但是,对进样技术要求比较高),进样口以及相关气路三部分组成。不同厂家的自动进样器具有各自的操作模式以及特点,但是,进样口的设计除外观存在较大差异之外,其内部构成以及流路设计却存在相通之处,如下图1所示。  从外观上看,进样口存在较大的差异,这种差异也仅在外观上,如下图2所示为进样口的简明示意图,其基本的内部构造是一致的。  1.GC进样口组成  气相色谱仪的进样口一般由固定部分以及可拆解清洗维护部分组成,前者主要包括各气体的入口以及出口,加热块等组成;后者主要有导针器,进样隔垫,衬管,O形环密封,分流平板以及石墨或聚合物套管等。如下图3所示。  其中比较容易出现问题的地方,分别是进样隔垫,O形环密封,衬管,分流平板以及与色谱柱连接口处。进样隔垫主要起到对进样口进行密封的作用,当需要进样的时候,自动进样器的针通过进样隔垫而扎入衬管中间,待将样品释放再从进样隔垫退出,保障进样针在进出进样口的过程中,进样口保持一个相对密闭的状态,实现压力相对稳定。在使用的过程中,进样隔垫发生磨损(如下图4所示)或者连续进样比较脏,沸程较宽的样品,使得部分样品残留在进样隔垫中,对之后的样品分析产生干扰甚至出现鬼峰。  进样隔垫形状以及材质均有不同,如下图5A与5B所示。  不同的进样隔垫具有不同的耐受性以及不同的流失性,此外,其耐受能力也与进样针的形状有关。因此,在选择不同的进样隔垫的时候需要考虑以下因素如:进样口温度设置,样品本身特点,进样针的形状。无论选择那种类型的进样隔垫,均需要定期检查并择需更换。  O形环密封的作用主要是将整个进样腔体隔开,在安装O形环的时候,使其距离衬管上端3~5mm左右,距离下端底座1~2 mm左右。进样口温度不超300℃的时候,可以使用橡胶材质,超过300℃的时候,需要使用石墨材质。此外,O形环亦是易耗品,需要定期检查并根据需要进行更换。  进样口的高温是通过偶联在其上的金属加热块实现的,从而使得整个进样腔体实现设定的高温度,且其温度分布为中间温度zui高,往两侧方向温度递减,如下图6所示。  而高温下,裸露的金属部分在接触到样品的时候,样品极大可能被金属催化发生降解、聚合以及重排等反应而影响到方法的线性以及方法的回收率。而内置衬管一般则是化学惰性的硅酸盐类或石英材质,其化学反应性很低,可以提供一个供样品气化的惰性环境。  一般地,分流进样可使用直通衬管,鹅颈衬管(如下图7A),鹅颈且底部楔形结构的衬管;不分流进样可使用底部楔形衬管(如下图7B),两端均楔形衬管,此外还有一些专用衬管如聚焦衬管等。  此外,衬管在使用的时候,一般在其内部填充一段5~10mm长的去活石英棉(分流进样时8~10mm左右,不分流进样时5mm左右为宜),起到加速样品气化并消除针尖歧视的作用。衬管的鹅颈结构起到一定的样品聚焦作用,而其两端的楔形结构则可在不分流进样的时候起到防止样品反冲出衬管以及将样品全部引入色谱柱的作用;当样品中含有宽沸程组分的时候,底部的楔形结构对于分流进样来说,具有减小甚至消除衬管内壁歧视的作用(如下图8所示)。  选择衬管的时候,除了需要考虑其本身是否去活以及其构造特点之外,还需要考虑另外两个特性,外径以及内部体积。分流衬管的外径相对不分流衬管要稍微小一些,使得其与进样口的腔体之间留出一定的空隙,便于分流;而不分流衬管则不需要预留空隙。衬管内部体积的大小与进样量的多少,分流比的设置以及色谱柱的内径有关,一般地,色谱柱的内径越大,进样量越大,衬管的体积也越大,如在使用窄内径色谱柱进行快速分析的时候,需要使用小体积的衬管且将分流比尽可能的设置大一些。  分流平板的作用主要是支撑衬管并引导载气分流。其表面平滑且经过镀金处理,将化学反应性降到zui低,其类型有三种:表面平滑型,其上一字凹槽型,其上十字凹槽型。分别如下图9所示:  一般地分流平板是不需要更换的,但是,在分析的样品比较脏的情况下,色谱图中有鬼峰出现的时候,可检查分流平板是否老化或者被污染,选择清洗或更换操作。  2.分流进样与不分流进样  从下表1中的比较,可以看出填充柱相比毛细管柱而言,具有更大的内径,更大的载样量以及更大的载气流速。  因此,在使用填充柱的时候,由于较大的载气流速,较大的色谱柱内径,可以不用分流样品,样品进入色谱柱的时间也足够短,起始色谱带也不会很宽且不会过载,而毛细管色谱柱,其内径较小,体积流速只有填充柱的几十分之一,载样量比填充柱小几个数量级,因此,其在进样的时候,一般就需要分流进样(痕量检测除外,并不关注主峰是否过载),以期获得较窄的起始色谱带宽以及样品量不超过色谱柱的载样量范围。  如下图10A所示,分流的情况下,样品各组分的分离比较良好,而当样品过载之后,其峰形变异,如下图10B所示。从其过载状况可以看出,超载量越大,起始色谱带宽越大,保留时间漂移越厉害。  因此,在使用毛细管色谱柱的时候,分流进样对于常规气相分析而言是十分理想的一种进样方式,既可以克服毛细管色谱柱载样量小的缺点,又能充分发挥毛细管色谱柱的高柱效的特点。  3.分流进样与不分流进样的过程  与进样相关的气路系统,如下图11所示。载气进入进样口之后被分成三个气路,分别为隔垫吹扫气路,分流气路以及色谱柱气路。其中O形环以及支撑固件将整个进样口分割为上下两个部分。其中,在分流气路上装有分流气路捕集阱,用来吸收分流废气中的样品。  分流进样如下图12所示,总流速104mL/min的载气进入进样口之后,通过控制隔垫吹扫气路上的阀,使得隔垫吹扫流速为3mL/min,余下101mL/min的载气则通过衬管被分流为100mL/min的分流流路以及1mL/min的柱流速。经样品针注射到衬管的样品被气化,在101mL/min的载气带动下实现进样,整个过程不到1s。分流流路上的压力传感器,则可通过调节该气路上的阀,实现进样时的柱前压保持相对稳定。  不分流进样如下图13A以及13B所示。不分流进样并不是在整个方法运行过程中都不分流,而是在进样的瞬间不分流,在进样结束之后依然分流。如下图13A所示,在进样的瞬间分流流路处于关闭状态,54mL/min的载气被分流为53mL/min的隔垫气路以及1mL/min的柱流速,53mL/min的隔垫气路通过隔垫吹扫气路以及分流气路上的两个阀,实现最终的3mL/min的隔垫吹扫流速以及50mL/min的分流流速。  样品则在1mL/min的柱流速的带动下进入色谱柱,该种进样方式,样品在衬管内的停留时间比分流进样要长,造成溶剂峰的起始带宽比较宽。  在进样结束之后,分流气路阀被打开,以分流的形式运行到方法结束(如下图13B所示),在此过程中可开启载气节省模式,节省载气,特别是在使用氦气作为载气的时候。  此外,由于样品中的组分的气化速度的快慢程度不同,分子量不同以及其在载气中的扩散速率不同,在分流进样的时候,难免会发生分流歧视作用,而这种作用,一般随分流比的变大而变大。  4.进样口活性  进样口的活性主要是指由于进样口的作用而导致的方法回收率问题以及方法线性问题。其活性主要与进样口内的金属裸露部分,衬管是否去活以及石英棉是否去活有关。此外,进样口的活性还与待分析的化合物的特性以及所使用的载气有关(如,含氯有机物在使用氢气作为载气的时候)。  如下图14所示,需要根据谱图分辨样品发生变化的时候是发生在进样时还是进样后。如下图14A所示,母体化合物以及两个主要产物的色谱峰形对称,彼此之间不基线粘连,可以判断其是在进样或者进样之前就已经发生变化,而14B所示,母体化合物峰形严重变异,则是在程序升温的过程中发生了变化。  进样口所用的衬管以及内衬石英棉的惰性,不仅与其自身制造工艺有关也与进样样品的特点以及进样的次数有关。如下图15所示,多次进样后的衬管内壁以及石英棉均被样品不挥发成分严重污染,势必会影响方法回收率,如图16A所示。  此外,需要区分方法回收率减小的方式,如比例减少还是常量减少,如下图16B所示。方法回收率常量减少的时候,多是由于进样口内部的某处或多处对于样品具有吸附作用,这种情况对于低浓度的方法回收率的影响大于对高浓度的方法回收率的影响;方法回收率减少与样品进样量呈现比例较小,这种情况对于低浓度以及高浓度的方法回收率的影响相差不大。  结论  分流进样作为气相色谱应用毛细管色谱柱进行常规分析测试的最主要的进样方式,在发挥毛细管色谱柱的高柱效的同时克服了毛细管色谱柱载气流速小,载样量低的缺点。利用气相色谱进行分析的时候,需要经常对整个进样口进行日常的维护,如,更换进样隔垫,O形环,更换衬管等,避免由于组成复杂以及较脏样品残留在进样口各处,给之后的分析测试带来不必要的麻烦,如,方法回收率差以及色谱图中出现鬼峰等情况。

厂商

2018.12.06

原子发射光谱常用光源

  光源作为原子发射光谱仪主要部件之一,是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。各光源的原理和特点又是什么呢?  原子发射光谱仪由光源、分光系统、检测系统和数据处理系统四个部分组成。而光源是光谱仪检测最主要的部分之一,光源的作用是提供样品蒸发和激发所需的能量。它先把样品中的组分蒸发、离解成气态原子,然后再使原子的外层电子激发产生光辐射。光源是决定光谱分析灵敏度和准确度的重要因素,它分为电弧光源、火花光源以及近年发展的电感耦合等离子体光源和辉光放电光源。  一、激发光源  1.原子发射光谱对激发光源的要求  (1)光源应具有足够的激发容量,利于样品的蒸发、原子化和激发,对样品基体成分的变化影响要小。  (2)光源的灵敏度要高,具有足够的亮度,对元素浓度的微小变化在线状光谱的强度上应有明显的变化,利于痕量分析。  (3)光源对样品的蒸发原子化和激发能力有足够的稳定性和重现性,以保证分析的精密度和准确度。  (4)光源本身的本底谱线要简单,背景发射强度弱,背景信号要小,对样品谱线的自吸效应要小,分析的线性范围要宽。  (5)光源设备的结构简单,易于操作、调试、维修方便等。  二、电弧光源  电弧是较大电流通过两个电极之间的一种气体放电现象,所产生的弧光具有很大的能量。若把样品引入弧光中,就可使样品蒸发、离解,并进而使原子激发而发射出线状光谱。它可分为直流电弧和交流电弧。  1.直流电弧直流电弧发生器及直流电弧如图1所示。电源可用直流发电机或将交流电整流后供电,电压为220~380V、电流为5~30A,可变电阻R用于调节电流的大小,电感L用来减小电流的波动。  图1 直流电弧发生器和直流电弧  E-直流电源;V-直流电压表;L-电感;R-可变电阻;A-直流电流表;I-阳极;2-样品槽;3-电弧柱;4-电弧火焰;5-阴极  带有凹槽的石墨棒阳极,可放置样品粉末,其与带有截面的圆锥形石墨阴极之间的分析间隙约为4~6mm。点燃直流电弧后,两电极间弧柱温度达4000~7000K,电极温度达3000~4000K。在弧焰中样品蒸发、离解成原子、离子、电子,粒子间碰撞使它们激发,从而辐射出光谱线。  直流电弧光源的弧焰温度高,可使70种以上的元素激发,适用于难熔、难挥发物质的分析,测定的灵敏度高、背景小,适用于定性分析和低含量杂质的测定。因弧焰不稳定易发生谱线自吸现象,使分析精密度、再现性差。阳极温度高不适用于定量分析及低熔点元素分析。  2.交流电弧交流电弧发生器由交流电源供电。常用110~120V低压交流电弧,其设备简单、操作安全。用高频引燃装置点火,交流电弧放电具有脉冲性,弧柱温度比直流电弧高,稳定性好,可用于定性分析和定量分析,有利于提高准确度。其不足之处是蒸发能力低于直流电弧,检出灵敏度低于直流电弧。  单纯的电弧光源至今仍保留在地质试样、粉末和氧化物样品中的杂质元素分析中。  三、火花光源  高压火花发生器可产生10~25kV的高压,然后对电容器充电,当充电电压可以击穿由试样电极和碳电极构成的分析间隙时,就产生火花放电。放电以后,又会重新充电、放电,反复进行。  火花光源的放电电路见图2。它由放电电容C、电阻R、电感圈L和放电分析间隙G组成。  图2 火花光源的放电电路  1-碳电极;2-试样电极  当电极被击穿时产生的火花在电极间产生数条细小弯曲的放电通道,短时间释放大量能量,放电的电流密度达105~106A/cm2,使样品呈现一股发光蒸气喷射出来,喷射速度约105cm/s,称为焰炬。每次放电都在电极表面的不同位置产生新的导电通道,单个火花直径约0.2mm,当曝光数十秒时,可发生几千次击穿,由于每次击穿的面积小,时间短,使电极灼热并不显著。  高压火花放电的平均电流比电弧电流小,约为十分之几安培,但在起始的放电脉冲期间,瞬时电流可超过1000A,此电流由一条窄的仅包含极小一部分电极表面积的光柱来输送,此光柱温度可达10000~40000K。虽然火花光源的平均电极温度比电弧光源温度低许多,但在瞬时光柱中的能量却是电弧光源的几倍,因此高压火花光源中的离子光谱线要比电弧光源中明显。此种光源的特点是放电稳定性好,分析结果重现性好,适于做定量分析。缺点是放电间隔时间长,电极温度较低,对试样蒸发能力差,适于低熔点、组成均匀的金属或合金样品的分析。由于灵敏度低,背景大,不宜做痕量元素分析。  四、等离子体光源  电感耦合等离子体(inductively coupled plasma, ICP)光源它由高频发生器、等离子体炬管和雾化器组成,为现代原子发射光谱仪中广泛使用的新型光源。  1.高频发生器高频发生器在工业上称射频(radio frequency,RF)发生器,在ICP光源中称高频电源或等离子体电源,它通过工作线圈向等离子体输送能量,是ICP火焰的能源。高频发生器有两种类型,即自激式和它激式,它们都能满足ICP分析的需求。  自激式高频发生器由整流稳压电源、振荡回路和大功率电子管放大器三部分组成,提供40.68MHz高频振荡电场。它的电路简单,造价低廉,具有自动补偿、白身调节作用是目前仪器厂商广泛使用的技术。  它激式高频发生器是由石英晶体振荡器、倍频、激励、功放和匹配五部分组成,它采用标准工业频率振荡器6.87MHz工作,经4~6倍的倍频电路处理,产生27.12MHz或40.68MHz的工作频率,经激励、放大,由匹配箱和同轴电缆输送到ICP负载上,此种发生器频率稳定性高、耦合效率高,功率输出易于自动控制,但其电路比较复杂,易发生故障,因而应用厂商较少。  现在被广大厂商广泛采用的是固态高频发生器,它是由一组固态场效应管束代替自激式高频发生器中的大功率电子管,以获得大功率高频能量的输出。它具有体积小,输出功率稳定、耐用、抗震、抗干扰能力强,已成为新一代ICP光谱仪使用的主流产品,使用寿命已大干5000h。  高频发生器产生的频率和它的正向功率(系指在ICP燃炬负载线圈上获得的功率)是两个最重要的性能指标,二者有紧密的相关性。  高频发生器产生的振荡频率和它的正向功率呈反比关系,如使用5MHz频率,维持ICP放电的功率为5~6 kW;使用9MHz,功率为3kW;使用21 MHz,功率为1.5kW,因而提高振荡频率;可使ICP放电所需的功率降低,并进而降低激发时的温度和电流密度,还会降低冷却氩气的消耗量,振荡频率的稳定性应≤0.1%。  高频发生器的功率应>1.6kW,当输出功率为300~500W时,能维持ICP火焰燃烧,但不稳定,不能进行样品分析工作,当输出功率>800W时,ICP火焰才能保持稳定,才可进行样品分析,输出功率的稳定性应≤0.1%,它直接影响分析的检出限和分析数据的精密度。  2011年美国PE公司在Optima 8000系列仪器上,采用平行铝板作为高频感耦元件,称为平板等离子体。其在射频发生器上用两块平行放置的铝板,取代传统的螺旋铜管感应线圈,构成电感耦合等离子体炬,可降低氩气消耗在10L/min以下,并且平行铝板不需用水冷却,当等离子体冷却气只有8L/min,等离子体炬焰仍然稳定,使操作成本大大降低,并有良好的稳定性和分析性能。  2.等离子体炬管高频发生器通过用水冷却的空心管状铜线圈围绕在石英等离子体炬管的上部,可辐射频率为几十兆赫的高频交变电磁场。等离子体炬管由三层同心圆的石英玻璃管组成,工作氩气携带经适当方法雾化后的样品气溶胶,从等离子体矩管的中心管进入等离子体火焰的中央处,中心管的第yi个外层同心管以切线的方向通入冷却用的氩气,它可抬高等离子体火焰、减少炭粒沉积,起到既可稳定等离子体炬焰,又能冷却中心进样石英管管壁的双重保护作用。中心管的第二个外层同心管通入能点燃等离子体火焰的辅助氩气。开始时由于炬管内没有导电粒子,不能产生等离子体炬焰,可用电子枪点火产生电火花,会触发少量工作氩气电离产生导电粒子,其可在高频交变电磁场作用下高速运动,再碰撞其它氩原子,使之迅速大量电离,形成“雪崩”式放电,电离的Ar+在垂直于磁场方向的截面上形成闭合环形路径的涡流,即在高频感应线圈内形成电感耦合电流,这股高频感应电流产生的高温又再次将氩气加热、电离,而在石英炬管上口形成一个火炬状的稳定等离子体炬焰,此炬焰的最外层电流密度zui大,温度高,试样在此炬焰中蒸发、原子化并进行电离,再激发而呈现辐射光谱。  电感耦合等离子体光源结构示意图,见图3。图3 电感耦合等离子体光源  1-等离子体炬焰;2-高频线圈;3-三个同心石英管;4-辅助氩气;5-冷却氩气(冷却中心炬管);6-工作氩气及样品入口(由雾化室进入)  (1)等离子体炬焰的稳定曲线理想的ICP炬管应易点燃,节省工作氩气并且炬焰稳定。通用ICP炬管的不足之处是氩气消耗量大,降低冷却氩气流量又会烧毁ICP炬管。为了降低氩气的消耗量,必须保持高频输入的正向功率与等离子体消耗能量之间的平衡,才能使ICP炬焰稳定。等离子体输入的正向功率,一般为1 kW,消耗能量包括工作气流和冷却气流带走的能量、热辐射和光辐射散失的能量,试样和溶剂蒸发、气化和激发消耗的能量,炬管壁传导和热辐射能量。当这些消耗能量的总和大于高频输入的正向功率时,会使等离子体炬焰熄灭,而高频输入的正向功率过大又会烧毁等离子体炬管,对每一支ICP石英炬管都有保持ICP炬焰稳定的曲线,对直径22 mm的ICP炬管的等离子体炬焰的稳定曲线如图4所示。  图4 ICP炬焰稳定曲线  (2)等离子体炬焰中,三股氩气的作用  ①工作氩气也称载气或样品雾化气,此股氩气经雾化器,使样品溶液转化成粒径只有1~10um的气溶胶,并将样品气溶胶引入到ICP炬焰中还起到不断清洗雾化器的作用,它的流量约为0.4~1.0L/min,其压力约为15~45psi(1psi=6894.76Pa)。  ②冷却氩气它沿中心炬管的切线方向引入,主要起冷却作用,保护中心炬管免被高温熔化,冷却等离子体炬焰的外表面并与中心炬管的管壁保持一定距离,保护中心炬管顶端温度不会发生过热。其流量一般为10~20L/min,新型炬管此流量可降至8L/min。  ③辅助氩气它从三个同心石英管的最外层通入,其作用是点燃等离子体火炬,也起到保护中心炬管和中间石英管的顶端不被烧熔,并减少样品气溶胶夹带的盐分过多沉积在中心炬管的顶端,其流量为0.1~1.5L/min。  冷却气和辅助气都可起到提升ICP火焰高度,实现变换高度来观测ICP火焰的作用。  (3)等离子体炬焰的观测方式  ①垂直观测又称径向观测或侧视观测。此时观测方向垂直于ICP炬焰,能够观测火焰气流方向的所有信号,是最常用的观测方式,适用于任何基体试液,并有较小的基体效应和干扰效应,此时,可以观察到电感耦合等离子体的炬焰分为焰心区、内焰区和尾焰区三个部分,如图5所示。各个区域的温度不同,功能也不相同。  图5 ICP焰炬观测区间  1-Ar气导入区;2-预热区;3-ICP焰心;4-ICP内焰;5-ICP尾焰;6-电感线圈;7-在电感线圈上方进行观测的高度  ICP的焰心区呈白炽状不透明,是高频电流形成的涡电流区,温度高达10000K,试样气溶胶通过该区时被预热、蒸发,停留约2ms。  ICP的内焰区在焰心上方,在电感线圈上方约10~20mm,呈浅蓝色半透明状,温度约6000~8000K,试样中的原子在该区被激发,龟离并产生光辐射,试样停留约1 ms,比在电弧光源和高压火花光源中的停留时间(约10-3~10-2 ms)长,利于原子的离解和激发。  ICP的尾焰区在内焰的上方,呈无色透明状,温度约6000K,仅能激发低能态原子的试样。  ②水平观测又称轴向观测或端视观测。此时水平放置ICP炬管,火焰气流方向与观测方向呈水平重合,由于整个火焰各个部分的光都可被采集,灵敏度高。缺点是基体效应高,电离干扰大,炬管易积炭和积盐而沾污,适用于水质分析。  此时由于尾焰温度低可能会产生自吸和分子光谱,导致测量偏差加大,为此应采用尾焰消除技术(如压缩空气切割技术、冷锥技术或加长炬管),以消除分子复合光谱干扰、降低基体效应,以提高灵敏度,扩展线性动态范围。  ③双向观测即在水平观测基础上,增加一套侧向观测光路,就可实现水平/垂直双向观测,可同时实现全部元素的水平观测及垂直观测,也可实现部分元素的水平测量或垂直测量。此时为实现垂直观测,会在炬管上开口,而导致缩短炬管使用寿命,此时会降低分析速度,增加了分析消耗。  3.雾化器雾化器可将试样溶液雾化后转化成气溶胶,并被工作氩气携带进入等离子体炬中。  现在广泛使用玻璃同心雾化器,又称迈哈德(Meinhard)雾化器,其构造如图6(a)所示。  图6 玻璃同心雾化器结构示意图  (a)雾化器的双流体结构;(b)喇叭口形雾化器结构(防止盐类在喷口处沉积);(c)雾化器喷口的A、C、K型的结构;1-液体样品入口;2-喷雾气体入口;3-喷液毛细管;4-气溶胶喷口;5-玻璃外壳  玻璃同心雾化的双流体结构中有两个通道,喷液毛细管(中心管)和外管之间的缝隙为0.01~0.35mm,毛细管气溶胶喷口的孔径约为0.15~0.20mm,毛细管壁厚为0.15~0.10mm。其喷雾原理是当喷雾气体(载气)通入雾化器后,在毛细管喷口形成负压而自动提升液体样品,将溶液粉碎成细小液滴,并载带微小液滴从喷口喷出气溶胶。  为防止液体盐类在喷口处沉积,可将喷口制成喇叭口形,使出口保持湿润,而不易堵塞[见图6(b)]。  由于加工方法不同,气溶胶喷口的形状有三种,即A、C、K型[见图6(c)]。A型为平口型(标准型),喷口内管和外管在同平面上,喷口端面磨平。C型为缩口型,中心管比外管缩进0.5mm,且中心管被抛光。K型与C型相同,但中心管未被抛光。A型喷口雾化效率高,C型和K型,耐盐能力强,不易堵塞。  雾化器的进样效率是指进入等离子体焰炬的气溶胶量与被提升试液量的比值。当增加载气压力时,会增加试液的提升量,但进样效率会降低,这点由雾化器的结构决定的,因此使用雾化器时,应确定进样效率适当值时,所对应载气的压力和流量。过度增加试液提升量,会增加大液滴的数量使废液量增加,易造成喷口阻塞,反而使进样效率下降。  在PE公司Optima系列仪器上还配备了eNeb雾化器。  eNeb雾化器的机理为:采用两个均匀微米级细孔的有机薄膜,不需高压雾化气流,仅在膜片的两端加以高频电场,在激烈振荡的电场作用下,从薄膜的微孔处不断喷射出大小一致的液滴,形成高效而均匀细小的气溶胶,直接进入等离子炬。其雾化效率可得到提高。气溶胶喷头的膜片,采用耐腐蚀的高分子Kapton材料薄膜制成,经激光打孔形成10um以下的均匀密集微孔,孔径和形状可保持严格的一致性,使得形成的气溶胶颗粒具有很好的一致性,并且粒径可控制在不超过10um的很窄范围内,从而使其雾化效率得到很好的提高。进样的精密度和长时间稳定性良好。  4.电感耦合等离子体光源的特性  (1)此光源的工作温度高于其它光源,等离子体炬表面层温度可达10000K以上,在中心管通道温度也达6000~8000K,在分析区内有大量具有高能量的Ar+等离子,它们通过碰撞极有利于试样的蒸发、激发、电离,有利于难激发元素的测定,可测70多种元素,具有高灵敏度和低的检测限,适用于微量及痕量元素分析。  (2)此光源不使用电极,可避免由电极污染带来的干扰。因使用氩气作为工作气体,产生的光谱背景千扰低、光源稳定性良好,可使分析结果获得高精密度(标准偏差为1%~2%左右)和准确度,定量分析的线性范围可达4~6个数量级。  由于电感耦合等离子体光源具有良好的分析性能和广泛的应用范围,在近二十年受到广泛重视,发展迅速。  此光源使用氮气发生器从空气中提取氮气,作为产生等离子体的气源,而不使用昂贵的氩气。它不使用高频发生器的电场作为等离子体炬的能源,而是使用大功率1000W工业级磁控管产生的电磁场作为N2等离子体炬的能源。这种使用磁场而非电场来耦合微波能量并激发N2等离子体的技术,大大降低了发射光源的成本,原子化温度达5000℃,并具有即开即用、操作简便的特点。  此光源使用的炬管,可随时拆卸,安装时可实现炬管的快速定位和与气源的连接,保证了定位精度和快速启动。  此光源使用One Neb通用雾化器(见图7),采用惰性材料制作,耐有机溶剂和强酸,其特殊的防阻塞设计使其成为高盐、高固体溶解浓度样品溶液进行雾化的选择。  图7 One Neb通用雾化器  1-试液样品入口;2-雾化N2入口;3-四氟乙烯喷液毛细管;4-气溶胶喷口;5-聚乙烯外壳  五、辉光放电光源  辉光放电(glow discharge, GD)可用作原子发射光谱的激发光源,它具有较高的稳定性,能直接用于固体样品的成分分析和逐层分析。  辉光放电有直流放电(DC)模式,可用于金属等导体分析,射频放电(RF)模式可用于所有固体样品(导体、半导体和绝缘体)的分析。  辉光放电光源,基本上都是格里姆(Grimm)型,其结构见图8。  此光源中,阳极空心圆筒伸入环形阴极中,它们之间为聚四氟乙烯绝缘体。两个电极间的距离和阳极圆筒下端面与阴极试样之间的距离皆为0.2 mm。光源内部抽真空至10Pa后,充入压力约100~1000Pa的低压放电气体氩,然后在两电极间施加500~1500V直流电压;阳极接地保持零电位,阴极施加负高压。使光源内氩气被激发、离解成Ar+和电子,在两电极间形成Ar+等离子体。在电场作用下Ar+与阴极样品碰撞,在样品表面的原子,获得可以克服晶格束缚的5~15eV的能量,并以中性原子逸出表面,其再与Ar+和自由电子产生一系列的碰撞,会被激发电离、产生二次电子发射,从而在负辉区产生样品特征的发射光谱。负辉区主要构成阴极的金属原子的溅射和光辐射,它产生zui大的电流密度和电子动能,会使挥发出的气态原子强烈电离,并激发出光辐射(见图9)。  图8 格里姆辉光放电光源结构示意图  1-石英窗;2-阳极;3-环形阴极;4-绝缘体;5-放电气体(Ar)入口;6-放电气体出口;7-样品;8-负辉区  图9 格里姆放电光源放电负辉区放大图  辉光放电光源,除使用直流电压供电分析金属导体外,还可在两电极间施加具有一定频率的射频电压,此时样品可交替作为阴极或阳极,其表面轮流受到正离子和电子的碰撞,增大了样品原子被撞击的频率,提高了样品原子化和被激发离子化效率,它可直接分析导体、半导体和绝缘体样品。  辉光放电过程,样品原子被不断地逐层剥离,随溅射过程的进行,光谱信息反映的化学组成,由表面到里层所发生的变化,可用于深度分析。

厂商

2018.12.06

食品汞中毒机理及其含量测定方法

汞的物理化学性质汞,俗称水银,原子序数80,ⅡB族,属于ds区元素,核外电子排布为1s22s22P63S23P63d104S24P64d104f145s25p65d106s2,是常温常压下(25℃,1atm)仅以液态形式存在的金属,其化合物有Hg2+和Hg22+两种价态。汞不溶于水,只溶于氧化性酸,汞与氧反应较慢,而与硫和卤素较容易反应。密度13.6g/cm3,,熔点-38.87℃,沸点356.6℃,是有银白色光泽的重质金属,汞单质及很多汞化合物是有剧du的,因此处理要十分小心,但也不用谈汞色变。汞受热膨胀均匀且不润湿玻璃,故常用来制造玻璃量具,比如水银体温度或气温计,水银血压计等汞单质在常温常压下容易蒸发,当以上玻璃制品打碎后,切勿慌张,用锡箔纸将汞收集起来,可以形成锡汞齐,将硫粉撒到剩余的汞上,轻轻摩擦几下,易挥发的汞单质变成硫化汞,及时清扫,开窗通风即可。或用5%-10%的FeCL3溶液,生成无毒的氯化亚汞,及时清理并通风。单质汞用10%的NaCL溶液封存防治其蒸发。Hg+S——HgS6Hg+2FeCL3——3Hg2CL2+2Fe硫粉易燃,放在家里总归不安全,还是把家里的这些水银制品换成电子的比较靠谱。无机汞结构决定性质,性质决定用途——汞极少以汞单质形式存在,多以化合物形式存在,主要常见含汞矿物有朱砂、氯硫汞矿、硫锑汞矿和其他一些与朱砂相连的矿物,常用于制造科学测量仪器、催化剂、汞蒸气灯、电极。毒性zui大的无机汞为HgcL2,属A级无机剧毒产品,HgCl2是直线型分子CL——Hg——CL共价化合物,其稀溶液有杀菌作用,在外科上用作消毒剂。HgCl2也用作有机反应的催化剂,此外还用于农药等。汞单质和HgCl2一起研磨可制得氯化亚汞HgCL2+Hg——Hg2CL2Hg2CL2为白色固体,难溶于水,略带甜味,俗称甘汞,常用来制作甘汞电极,常见的原电池的参比电极就是饱和甘汞电极。利用率比较高的无机汞化合物应该是硫化汞了,广泛用于传统医药、颜料等领域。有机汞20世纪50年代日本发生的水俣病事件就是因为人们食用了被甲基汞污染的海产品,致使汞侵害脑神经细胞导致的中毒。甲基汞是汞的甲基化产物,是一种具有神经毒性的环境污染物,在自然界中,无论是在厌氧还是需氧的条件下,含汞的化合物都能被微生物转化成甲基汞或二甲基汞。主要侵犯中枢神经系统;其损害的主要部位是大脑的枕叶和小脑,其神经毒性可能与扰乱谷氨酸的重摄取和致使神经细胞基因表达异常。汞中毒的机理汞中毒是指接触金属汞而引起的以中枢神经系统、口腔病变为主,并累及呼吸道、胃肠道、肾脏等的全身性疾病。汞蒸气较易透过肺泡壁含脂质的细胞膜,与血液中的脂质结合,很快分布到全身各组织。汞在红细胞和其它组织中被氧化成Hg2+,并与蛋白质结合而蓄积,很难再被释放。汞离子易与巯基结合,使与巯基有关的细胞色素氧化酶、丙酮酸激酶、琥珀酸脱氢酶等失去活性。汞还与氨基、羧基、磷酰基结合而影响功能基团的活性。由于这些酶和功能基团的活性受影响,阻碍了细胞生物活性和正常代谢,最终导致细胞变性和坏死。近年来,发现汞对肾脏损害,以肾近曲小管上皮细胞为主。汞还可引起免疫功能紊乱,产生自身抗体,发生肾病综合征或肾小球肾炎。汞中毒的表现汞中毒引起的临床表现与进入体内汞的形态、进入途径、接触剂量和接触时间密切相关《职业性汞中毒诊断标准》将汞中毒分为急性中毒和慢性中毒急性中毒主要发生于短期内吸入高浓度汞蒸气,急性中毒表现为:发热,头晕,头痛,震颤等全身症状,合并有口腔- 牙龈炎及胃肠炎或急性支气管炎为轻度中毒;在轻度中毒基础上,具备间质性肺炎或肾病综合征为中度中毒;合并急性肾功能衰竭、癫痫样发作或精神障碍之一者为重度中毒。慢性中毒多是职业性中毒,轻度中毒表现为脑衰弱综合征,口腔- 牙龈炎,眼睑、舌或手指震颤,尿汞增高;中度中毒会出现精神性格改变,粗大震颤,明显肾脏损害;若出现小脑共济失调或精神障碍为重度中毒。汞中毒的治疗1.驱汞治疗,是利用金属鳌合剂如二巯丙磺钠等,取代基团中的汞离子,形成汞复合物从尿中排出2.血液透析治疗汞中毒,血液透析能有效地吸附和清除积蓄在血液中的无机汞,减少汞对机体的损害,避免出现严重的并发症3.汞中毒疼痛治疗,己酮可可碱(POF)抑制HgCI2 激活脊髓星形胶质细胞,GFAP 表达上调,,使GFAP 平均灰度值显著升高、阳性反应细胞率显著降低,因此,POF 有可能在汞中毒疼痛治疗中起积极作用。食品中总汞及有机汞的测定食品中总汞的测定1、 原子荧光光谱法2、 冷原子吸收光谱法食品中甲基汞的测定LC-AFS联用法一根银针怎么够?银针只能试出能把银氧化的毒,银可以在氧气作用下与空气中的H2S缓慢反应,使银变黑4Ag+H2S+O2——2Ag2S+2H2O古代主要用的毒是pi霜,AS2O3,因提纯工艺不成熟,里面会有硫存在,与银反应变黑。 Ag+S——AgS至于在两位小主取暖的碳盘中加入朱砂,加热之后可以生成汞单质,蒸发后吸入系内。HgS+O2——Hg+SO2硫化汞有两种结晶状态。α-硫化汞为红色六方晶系结晶或粉末,也就是朱砂。β-硫化汞为深灰黑色立方晶体或无定型粉末,称为黑色硫化汞。也许炭盆中加的应该是这种黑色的硫化汞吧,都是黑色这样更不容易被发现。其实不用谈汞色变,掌握好度和量,科技改变生活,凡是在合理可控的范围内加以利用,注意防护,便不会有大的危害。

厂商

2018.12.06

氮 氢 空 发生器工作原理

气体发生器可以制备色谱、质谱分析检测时的燃料,是实验室常用设备之一,主要有空气发生器、氢气发生器和氮气发生器三种。三种气体发生器的产气原理和注意事项又分别是什么呢?空气发生器原理空气发生器是利用压缩机对气体进行压缩,贮藏在贮气罐内,方便日后使用。空气压缩器主要由压缩机、储气罐、过滤器、干燥器等组成。主要是把空气中的水分、油渍等杂质过滤出去,经过稳压装置,输出稳定、干净的空气。空气发生器用于国内外各种型号气相色谱仪、火焰光度计,它取代钢瓶使您的工作更加方便。 使用注意事项:1、为了确保气体纯度,空气发生器每工作1000小时,需要更换活性炭一次(活性碳为20-40目,铅笔芯式);2、空气发生器工作过程中压缩机不启动,热保护继电器启动,说明压缩机温度过高,待冷却后即可自动恢复正常;3、进气口过滤器需定期清洗(周期视室内粉尘情况而定,可用超声波清洗)以保持进气通畅,否则易引起压缩机工作负载增大并发热,温度过高时会发生过热保护而导致停机;4、从观察窗观看变色硅胶的情况,用户可根据需要更换新的硅胶,或进行干燥处理;5、因空气发生器压缩机是感性负载,通断电时的瞬时电流比正常工作时高数倍,较易熔断保险,应选用8A保险管;6、由于空气发生器压缩机为开路工作方式,故润滑油会随水排出机外,造成消耗,所以在使用一年后适当给压缩机加润滑油,加油口在压缩机出气口旁边(或从进气口亦可),建议加18号冷冻机油200克;7、为避免机内存水过多,影响空气纯度,所以,每次关机前需按下排水开关数秒钟即可。(可将排水口接入塑料瓶中避免水外溅),每日排水不得少于一次。氮气产生器原理压缩空气经压缩后进入冷干机降温脱水,在经过过滤器除油、除尘,然后进入装有碳分子筛的吸附塔,选择性地吸附掉氧气、二氧化碳等杂质气体组分,产生高纯度氮气。氮气发生器的工作原理大致分为三种:以电化学分离法和物理吸附法相结合的方式;采用中空纤维膜分离和采用气相色谱技术用新型合成分子筛分离。各种工作原理的注意事项电化学分离法和物理吸附法:采用这种原理产生的氮气存在的问题很多。主要的问题有:1.加KOH水溶液的氮气发生器所产生的氮气中含水量高且带有一定腐蚀性。2.存在返液现象。3.氮气纯度偏低,对色谱仪的热导检测器的热敏元件会造成氧化,时间一久热导检测器的灵敏度降低。鉴于存在以上三点的问题,很多色谱仪厂家、仪器经销商及维修人员均不建议使用该种原理产生氮气的发生器来做气相色谱仪载气。采用中空纤维膜法:氮膜系统可将廉价的空气中氮从78%提高到95%以上,zui高可得到99.9%的纯氮。该氮气发生器可以用于气相色谱仪做载气,仅适用于分析组分成分要求不高的行业。采用气相色谱技术用新型合成分子筛分离:这是一种新型的空气分离方法,它以压缩空气为原料,合成分子筛为吸附剂,气相色谱分离吸附流程,在常温低压下,利用空气中的氧和氮在分子筛中的扩散速度不同,把氧和氮加以分离,氮气的纯度和产气量可按客户需要调节。所产生气体流速稳定,氮气纯化彻底,产出的氮气纯度高,zui高可得到99.9995%的纯氮,适用于各种气相色谱检测器。该发生器可以生产出高质量和高纯度的氮气,运行稳定可靠,不需要任何化学消耗品。操作方便,可24小时无人值守。且它可以在不需任何监管和zui低保养的情况下无故障地运行。综上所述,采用气相色谱分离技术用合成分子筛分离法的氮气发生器优于采用电化学分离法和物理吸附法以及中空纤维膜法的氮气发生器。它可以应用于国内外各种不同类型的气相色谱仪用作载气,是性能优良维护方便的新一代氮气发生器。氢气发生器原理纯水水解,无腐蚀,纯度高(另一种方法是碱液电解,电解液为氢氧化钾或氢氧化钠,腐蚀性高,国产设备常用)。超纯氢气钯膜纯化原理电解采用目前膜分离技术,由红外光电反馈装置与开关电源组成的压力控制系统,使氢气的发生量根据输出的需要自动调整,维持输出流量和压力的稳定。这种原理主要的问题有:1.加KOH水溶液的氢发生器所产生的氢气中含水量高且带有一定腐蚀性,容易造成色谱仪调试不稳定,一旦长时间使用该氢气做载气必然造成色谱柱柱效降低。2.利用该原理产生的氢气如果长时间使用,会造成严重的返液现象。为了防止返液,厂家设计了各种装置来尝试解决这个问题,但是均不能解决根本性的问题。毕竟它还是要加液的,一旦防返液的装置出现故障就会造成气路及色谱柱报废,严重的甚至可能导致气相色谱仪全部报废。3.气体的纯度大多没有经过检测,虽然可以通过基线和柱子使用寿命判断其纯度,结果却是给色谱柱造成不必要的损失。所以,氢气作为辅助气还行,做载气纯度不够。在选择氢发生器时优先考虑质量有保证的厂家,也可以加装在线纯度检测装置保证气体纯度。气体发生器与钢瓶、液氮罐的比较

厂商

2018.12.05

< 1 ••• 6 7 8 9 10 ••• 27 > 前往 GO

北京诚驿恒仪科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京诚驿恒仪科技有限公司

公司地址: 北京市海淀区中关村东路18号财智国际大厦A座1102室 联系人: 廖经理 邮编: 100083 联系电话: 400-860-5168转1029

仪器信息网APP

展位手机站