您好,欢迎访问仪器信息网
注册
北京诚驿恒仪科技有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1029

仪器信息网认证电话,请放心拨打

当前位置: 诚驿科技 > 公司动态
公司动态

原子吸收光谱仪各项指标意义

1.波长范围:原子吸收分光光度计的波长范围,指的是原子吸收光谱仪能满足使用要求的使用波长范围;一般原子吸收分光光度计的波长范围为190-900nm ;个别采用中阶梯光栅的原子吸收分光光度计,其波长范围为190~875 nm。但是有些原子吸收分光光度计,使用的是一般平面光栅,其波长上限只给到860mm或875nm;这种原子吸收分光光度计的适用性将受到很大影响。因为,使用时,如果测Cs其特征吸收波长为852.1nm,如果仪器波长上限只有860 nm 或875nm ,将会出现边缘能量不足,此时会降低仪器的信噪比,使灵敏度大大下降。如果原子吸收分光光度计的波长下限只能到达195 nm,也是不实用的;因为As是一种经常要使用原子吸收分光光度计分析的元素,同时,又是用来检查测试原子吸收仪器的边缘能量的重要元素。它的特征吸收波长为193.7nm,所以,原子吸收分光光度计的波长下限必须达到190 nm才行,否则将影响其适用性。2.波长准确度:所谓波长准确度,是指波长的实际测定值与理论值的差。原子吸收分光光度计的波长准确度也是很重要的技术指标。特别是在对不同仪器的测试结果进行比较时,波长准确度更显得重要。例如:我们要比对两台原子吸收分光光度计对同一样品的分析测试结果,如果仪器的波长准确度不好,就无法进行比较。或比较不出正确的结果。因为,对同一物质,在不同波长测试时,就会有不同的灵敏度,因而,即使是同一样品,测试的数据就会不相同。这对国家的计量法执法部门(计量局所属的测试所、已通过计量认证的分析测试中心等单位)非常重要。3.波长:波长重复性的定义和重要性波长重复性是指多次波长测试数据的离散性或者说是指多次波长测试数据的符合程度;波长重复性又称波长精密度。波长重复性同样是非常重要的性能技术指标。和波长准确度一样,因为对同一物质,在不同波长测试时,就会有不同的灵敏度,因而,即使是同一样品、同一个人,测试的数据也会不相同。如果一台原子吸收分光光度计的波长重复性不好,就等于每次分析测试时所用的波长是不同的,不可能得到可靠得分析结果。因此,一台原子吸收分光光度计的波长重复性不好是不能满足使用要求的。4.稳定性:原子吸收光谱仪的稳定性应该包括基线漂移和重复性(RSD)两个方面。基线漂移和重复性(RSD)两者之和才是稳定性。仪器的基线漂移是指随时间变化的、无规律的输出。仪器的重复性是指分析测试数据的离散性,是指同一个样品、同一个测试者、在相同条件下多次测试的数据的符合程度。重复性(RSD)是指的分析测试结果数据的离散性或重复性。因为原子吸收分光光度计属于一种相对测量,是一种比较粗糙的分析工具,其分析误差一般都比较大(相对误差允许±15%);因此,重复性(RSD)非常重要。使用原子吸收分光光度计时,都有一个很重要的原则或宗旨,这是仪器要稳定可靠。如果一台仪器的稳定性差,就谈不上可靠,就不可能得到的分析测试结果。所以,稳定性是原子吸收分光光度计非常重要的性能技术指,它是评价和挑选原子吸收分光光度计的关键性能指标之一,必须引起使用者的高度重视。目前,经常有人把基线漂移说成稳定性,认为基线漂移小就是稳定性好,其实这是不全面的。我们说基线漂移只是稳定性的内容之一。稳定性的真正含义,必须包括基线漂移和光度重复性。如果一台原子吸收分光光度计的基线漂移符合使用要求,但其RSD很差,我们说它不是好仪器,它不能满足使用要求;反之,如果一台原子吸收分光光度计的RSD能满足使用要求,但其基线漂移不好,它也不能满足使用要求,也不是好仪器。好仪器的标准是它的基线漂移很小,同时RSD也很好。如果一台原子吸收分光光度计的基线漂移不好,它在整个分析测程中始终漂移,根本稳定不下来;或RSD不好,每次测试的结果都不能重妻,它肯定不是好仪器。5.特征浓度:所谓特征浓度,是指获得1%吸收时所对应的元素浓度,或能产生吸光度为0.0044A的元素浓度叫特征浓度。特征浓度是火焰原子吸收法的一个重要性能指标,它是表征火焰原子吸光度计灵敏度的性能技术指标。我国的计量检定规程(JJG)没有规定顷指标,而原机械工业部标准(JB)规定,特征浓度检测要求为0.05mg/ml。非常遗憾的是许多国外原子吸收分光光度计未给出特征浓度这一性能技术指(有些国内外的原子吸收分光光度计仪器对所有的性能技术指标都不给出),因使用者不知道它的灵敏度,不知道获得1%吸收时所对应的元素浓度,或能产生吸光度为0.0044A的元素浓度,不知道它是否能满足使用要求。所以,广大使用者在挑选原子吸收分光光度计时应该高度重视特征浓度以及其他性能技术指标。6.边缘能量:原子吸收光谱仪的边缘能量,是指仪器整个波段范围两端波长上能量的大小。即:两端波长上的能量能达到该波长上信噪比大于或等于2以上(如:等于3)的要求;边缘能量非常重要,它直接影响仪器的性噪比,检测限、特征浓度、特征量和仪器的适用性等。

厂商

2019.07.25

ICP点火异常原因及解决方法

ICP光谱仪应用范围1.地矿样品的分析:包括地质样品、矿石及矿物等。2.动植物及生化样品的分析:包括植物、中药及动物组织、生物化学样品等。3.核工业产品的分析:包括核燃料、核材料等。4.食品及饮料的分析:包括食品、饮料等。5.化学化工产品的分析:包括化学试剂化工产品无机材料化妆品油类等。6.钢铁及其合金的分析:包括碳素钢、铸铁、合金钢、高纯铁、铁合金等。7.有色金属及其合金的分析:包括有色金属及其合金、稀有金属及其合金、贵金属、稀土元素及其化合物。8.水质样品的分析:包括饮用水、地表水、矿泉水、高纯水及废水等。9.环境样品的分析:包括固体废物、土壤、粉煤灰、大气飘尘等。ICP光谱仪常见故障主要有两大类——点火失败以及灵敏度降低,其中点火失败原因相对较为复杂,今天就来讲讲如何排除ICP光谱仪点火失败的常见原因。点火失败是ICP光谱仪常见故障之一,即系统不能正常点燃等离子体。 故障原因及解决方法: 原因1:氩气不纯或压力低 解决方法:(1)更换新氩气,保证氩气纯度。需要注意的是,每次实验使用氩气钢瓶时,应时刻注意观察氩气钢瓶压力表,不能将氩气全部用尽在更换氩气瓶,空氩气瓶二次灌装容易混入空气,影响纯度。 (2)更换氩气在线过滤器,在仪器背面安装有氩气过滤器,使用时间一年或波长校正不通过时需要更换。 原因2:样品不能正确流入雾化器 解决方法:(1)如果是因为管路堵塞引起的,可以分段排查堵塞的管道,更换新管或将堵塞部分减掉再做链接即可。 (2)如果是喷针堵塞引起的,可以清洗喷针,将粗端链接上注射器,单向拉注射器推杆,使稀硝酸由细端拉入粗端,反复多次。需要注意的是,操作时不能推注射器,或使用超声波清洗,这样容易损坏喷针。 (3)防止蠕动泵管路链接错误,注意蠕动泵进样管和废液管的流动方向,点火前先将蠕动泵开启,使进样管进一段空气,观察空气柱在管路中流动情况,方向为进样管-喷针-雾化器-废液管。 原因3:炬管污染 解决方法:长时间使用仪器,通过视窗可观察炬管上有不透明状污染物。遇到这种情况时,可以更换干净的炬管。若要清洗炬管应注意,用王水浸泡炬管48小时以上后,先用大量自来水冲洗、蒸馏水冲洗,在将其在蒸馏水中浸泡过夜。后用去离子水冲洗,并用烘箱烘干。需要注意的是,更换炬管时,应该确保炬管上没有水,否则点火瞬间矩管会收高温影响融化变形。 原因4:冷风流量低 解决方法:冷风流量低可能是仪器内部碳化颗粒累积引起的,可以拆卸仪器外壳,清理风机扇叶、塑胶弯头、导风铝桶等内部灰尘。需要注意的是,清理前需拔掉导风铝桶上的传输胶管,同时注意不要碰到流量传感器。

厂商

2019.07.24

原子荧光法食品检测相关标准

近日公开发布了《关于深化改革加强食品安全工作的意见》,在《意见》中提出将要建立最严谨的标准,实施最严格的监管,并明确指出要在2020年初步建立食品安全监管体系。随着食品中重金属超标现象的愈加严重,食品中重金属的检测已经成为食品样品检测中的重要部分。在我国,砷、汞等重金属元素的检测主要是应用原子荧光光度计。本文总结一下应用原子荧光光度计检测检测食品的一些标准。原子荧光光度计食品检测相关标准GB 5009.11-2014 食品安全国家标准 食品中总砷及无机砷的测定GB 5009.137-2016 食品安全国家标准 食品中锑的测定GB 5009.16-2014 食品安全国家标准 食品中锡的测定GB 5009.17-2014 食品安全国家标准 食汞及有机汞的测定GB 5009.93-2017 食品安全国家标准 食品中硒的测定GB 31604.38-2016 食品安全国家标准 食品接触材料及制品 砷的测定和迁移量的测定GB 5009.76-2014 食品安全国家标准 食品添加剂中砷的测定GB/T 21729-2008 茶叶中硒含量的检测方法GB/T 5009.151-2003 食品中锗的测定SN/T 2888-2011 出口食品接触材料 高分子材料 高密度聚乙烯中锑的测定 原子荧光光谱法SN/T 2900-2011 出口食品接触材料 纸、再生纤维材料 砷的测定 原子荧光光谱法SN/T 3534-2013 搪瓷及玻璃器皿中砷、锑溶出量的测定 原子荧光法SN/T 3941-2014 食品接触材料 食具容器中铅、镉、砷和锑迁移量的测定 氢化物发生原子荧光光谱法SN/T 2006-2007  进出口果汁中铅、镉、砷、汞检测方法 原子荧光光谱法SN/T 3034-2011 出口水产品中无机汞、甲基汞和乙基汞的测定.液相色谱-原子荧光光谱联用(LC-AFS)法

厂商

2019.07.24

【实用】ICP-MS分析注意事项

  ICP-MS全称是电感耦合等离子体质谱仪,可以用于物质试样中一个或者多个元素的定性、半定量和定量分析;能测定周期表中90%的元素,特别是对金属元素分析最擅长,他和ICP-OES、AAS是化学元素分析的常用的三种仪器,其中ICP-MS的检测限zui低,标准偏差为2-4%,每个元素的测定时间仅为10s,非常适合多元素的同时测定分析。  那么,对于ICP-MS,我们特地为大家搜集一些小TIPS,以问答的形式呈现给大家,希望能对您的实验起到参考作用:  一.针对环境样品,使用ICP-MS检测时比较快的前处理方法有哪些?  1.采用高压微波消解系统,MILLSTONE或CEM等等;  2.微波消解或酸浸取,视样品和元素而定,如果作同位素丰度,用浸取就够了;  3.视哪种环境样品而定,水样用酸固定就可以了,土壤比较难做,微波消解也可以,按照所做的元素不同采用不同的速度和方法。  二.使用ICP-IES做土壤中金属的含量时。预处理用微波消解仪,先把土壤风干,然后用磨成粉,再过筛,之后大约称取0.2g左右,消解后无固体,但是检测结果两个平行样很差,相对偏差达到有200%是什么原因?  1. 如果所有的元素含量测出的平行性都不好的话,说明是制样或消解过程有问题,如果是个别元素,比如铁元素,则可能是由于污染引起的;  2. 有可能是样品不均匀造成;  3.微波消解过程很可能造成平行性不好。  三.ICP-MS测食品样品效果不好,怎样才能很好的应用?测食品样品中砷、铅、隔、铜、硒等,它们之间有互相干扰么 ?  1. 砷\硒要用CCT(或DRC);  2. 你的标准曲线如何(r值)?如果样品中Cu的含量比较高,你可以考虑Cu65测量.As应该考虑ArCl75的干扰,应用CCT(或DRC).另外在样品消化过程中Se容易跑;  3. As75要注意ArCl的干扰,如果CL很高的话用数学校正法比较困难;  4. Se82灵敏度较低, As75有干扰, 7500a没有碰撞反应池,这俩元素不好测,使用原子荧光较测这俩元素更好些,其他元素应该也没问题;  5. 样品处理时用微波消解器,硝酸加过氧化氢,高压下消解,Se和As应该用氢化物发生器进样ICP-AES或AFS做,ICP-MS不适合。  四.ICP-MS做Hg时系统清洗有什么好办法吗?  1. 在清洗液中加点金(Au)的化合物, Au与Hg易结合形成络合物;  2. 一般的浓度是10ppm,这样就能比较好的清洗Hg的残留了;  3. 用ICP-MS作汞不要作高浓度的,汞容易挥发,一般作  4. 用0.1%巯基乙醇 ;  5. 用金溶液是经验溶液,效果比较好。  五、ICP-MS测Hg效果如何?检测含量范围有多大?  ICP-MS测定Hg的范围可以低到ppt级,不过样品的处理和介质很重要,不然偏差很大,记忆效应也很大;测Hg很麻烦,主要是记忆,用碱性溶液洗才有效;一般来说作10ppb左右或者以下的比较好,因为记忆效果很大,做完了要清洗很长时间。可以用稀释的做,用金来洗比较好。  六、用ICP-MS可以做血样中微量元素吗?做的结果Fe总是偏低,内标Sc的回收率低,且不能固定选一个内标进行元素的测定,比方说,今天用209做Pb的内标,质控值很好,但隔天做Pb的质控值就低很多。什么原因?  1. 血样重点看消化过程,一般基体影响不太大,Fe用冷焰做的话,Sc本身电离的不好,信号不是很稳定的,至于209内标校正Pb的测定不稳定,或者是仪器的质量数有所漂移,或者是Bi的溶液水解导致不稳定。  2. 血样直接稀释测定,有机质没有被消化,粘度较大,导致进样管道记忆效应严重,测定效果不好。应该用HNO3封闭溶样消化有机质,这样稀释倍数可以降低,测试效果好。  3. 我做血清,现在还在建立方法阶段。文献有用10%氨水和EDTA做的,加0.01%TritonX-100,在稀释剂中加1.5%正丁醇对As和Se会好一些。  4. 用1%的硝酸不会有沉淀,但很多元素的日间精密度很差。  七、用ICPMS测海水中的重金属该如何处理样品?包括样品的稀释,质量数的选择等  1. 酸化,过膜。注意硝酸和器皿一定要干净。硝酸建议用重蒸后的。   2. 你测的是重金属 不管是ORS,DRC,CCT作用都不是太大,反应池对85以下质量数效果比较好。cd 111 会受MOZr等氧化物干扰,可以编辑校正方程,Pb用206+207+208 ,Hg 202。  八、我用6ml硝酸在微波消解器中做PP塑料的前处理时,消解液很清亮,可是当移入容量瓶加超纯水后,溶液就浑浊了(可以排除其他污染)随着加入的水增加溶液浑浊度增加。之后溶液的酸度为6%左右。是什么原因?如何解决?  1. 可能是消解后一些物质在不同酸度下的溶解度不同,可以先加入一定量的水,然后过滤,滤液应不会再浑浊,注意将滤纸多洗几次后定容。  2. 原来消解生物样品的时候,如果消解不完全,加水会有浑浊出现,你把酸量加大一些试试,看是不是没有消解完全。  九、最近用ICP做矿石样,用标准加入法测得线性还可以,但是用内标法测得的工作曲线不太好。而且很多定量分析都用内标法。采用标准加入法的多不多呢?  1. 用标准加入法可以很好地克服基体匹配的问题,矿样的基体比较复杂所以用标准加入法好一些,对于背景简单的样品内标法简便一些。  2. 如果用内标法首先要保证你的样品基体中不含有你选择的作为内标的元素。  3. 个人认为首xuan内标法,实在不能克服基体才用标准加入法。太麻烦,样品多的话就没辙了。  十、有机质谱禁止无机的东西进去,因为无机盐类不挥发,会污染质谱。那么无机质谱又是怎么克服这个问题呢?  1. 无机质谱的样品处理一般经过消解,有机物残留很少,经过ICP会完全分解。  2. 无机质谱进入仪器内的离子非常少,而且很快被真空系统抽到外部。当然如果很长时间做高基体的样品仪器内部还是会被污染的,这时就需要清洗四极杆、离子透镜了。  3. 所有的质谱耐受盐分的能力都是有限的,有机质谱和无机质谱的离子源温度不同,有机质谱离子源温度较低,无机盐无法分解,因此沉积现象会非常严重。无机质谱高温源可以使大部分无机化合物解离,但是依然会有部分氧化物沉积于锥口附近,因此接口需要经常清洗。

厂商

2019.07.23

气相色谱六通阀进样技术与技巧

  在气相色谱分析中,进样是定量分析误差的主要来源之一。因为进样系统的原理、结构、使用材料、进样时的温度、进样量、进样快慢、进样用的工具等都会对气相色谱分析的定性定量的重复性和准确性产生直接影响。在实际分析中由于样品的气、液、固、状态不同,分析目的不同,要求不同,用于GC的进样系统种类繁多,如:常压气体样品就有六通阀气体进样或注射针筒进样两种。仅供参考。  常压气体样品采用医用注射器(1毫升~5毫升)通过注射隔垫注射进样,简单、灵活,但缺点时有样品反冲和渗漏,定量误差大,重复性一般在2.5%以上。这是因为柱前压高于环境大气压力,样品气会沿注射管内壁渗漏造成的。这时虽然可以通过在管内壁上涂一层高温真空硅脂提高气密性来弥补,但又会出现硅脂对有机物的吸附作用,定量误差仍然很大。若用六通阀定体积进样,不但操作方便、迅速切结果也较准确。只要操作合理又掌握一定的技巧,重现性可小于0.5%。即使环境温度、压力变化或不同校正起来也很容易方便。另外,六通阀还可以直接用于高压气体进样。  1.分析了解您所配用的六通阀的工作原理、结构和样品直接接触阀材料是否适合你的  分析要求;  2.由于阀的气密性差异很大(0.1~0.6Mpa),接入您的气路系统时,能否保证不漏气?否则不但影响仪器的稳定性,且不能保证仪器进样的重现性;  3.定量管体积: 在灵敏度满足要求的情况下尽量小,zui大定量管体积应在实验时,塔片数下降不超过10%为限。否则进一步增加进样量,只增加峰宽而不增加峰高,或者说,应使色谱峰宽基本不展宽时的进样量为zui大定量管体积,对于填充柱一般不易大于5ml。  4.目前为了不影响液体注射进样,常把六通阀串接在汽化室的入口处,显然这种接法增加了一定的死空间。分析要求较高时,应跨过汽化室直接进入色谱柱或把六通阀载  气出口直接通过注射垫插入柱头;  5.在环境温度下,样品组分有可能冷凝或含有微量液体气体样品时,应考虑六通阀(含导入仪器的管线)温度影响:a)把阀放入色谱柱箱;b)单独控温加热;  6.样品予处理问题: a)应防止灰尘、机械颗粒进入阀内影响气密性或正常工作; b)避免高沸点杂质对阀的污染;  7.取样方式: 为防止可能造成的环境中的气体成分对样品的污染或干扰,应该通过大注射器针头象液体进样一样打入定量管。不易用各种胶管或塑料管接入这可能:a)管材本身不纯净; b)各种管材原则上讲都会有渗透作用,这对痕量分析尤其不利。  8.取样工具:目前常用的是金属镀膜取气袋、大注射器或专用取气钢瓶。除非要求极低,目前已很少采用球胆、塑料袋取气等;  9.定量管内样品的气压:由于气体的含量和气压直接有关,为保证每次进样的重复性,取样后要使定量管的压力与大气压平衡,依据经验一般在取样后平衡20~30秒即可;  10.冲洗定量管样品体积:由于被分析的气体样品浓度不同,为防止进较高浓度后又进较低浓度样品时,定量管中原有高浓度气体残留的干扰。取样时要求用新样品气对定量管进行冲洗,冲洗气量依据经验不小于定量体积的5倍。实际影响也可以通过实验峰的重现性来判断与选择;  11.进样后什么时间,在把六通阀旋回到取样位置?  要视分析情况,如:进样后基线的波动性,定性定量的重复性来决定,依据经验一般是在进样数秒后(此时第yi个色谱峰还未出现之前),把阀旋回到取样位置比较好。这时易消除阀气密性欠佳和定量管体积过大对基线或出峰地影响;  12.如发现阀的气密性差或被污染有经验的操作者可以对六通阀进行拆洗,但应注意阀体和阀瓣的密封面只准用柔软的棉织品擦、溶剂应用易挥发的己烷、丙酮、三氯甲烷等,清洗后用干燥空气吹干。但应特别注意,用于ECD的气体六通阀进样系统应避免使用含卤族的碳氢化合物(如:三氯甲烷)做清洗剂,否则这些干扰溶剂将长时间以痕量水平存在而出现怪峰。

厂商

2019.07.22

原子吸收光谱分析如何选择实验条件

  原子吸收光谱分析中影响测量条件的可变因素多,在测量同种样品的各种测量条件不同时,对测定结果的准确度和灵敏度影响很大。选择最适的工作条件,能有效地消除干扰因素,可得到较好的测量结果和灵敏度。  实验条件选择  1.吸收波长(分析线)的选择  通常选用共振吸收线为分析线,测量高含量元素时,可选用灵敏度较低的非共振线为分析线。如测Zn时常选用最灵敏的213.9nm波长,但当Zn的含量高时,为保证工作曲线的线性范围,可改用次灵敏线307.5nm波长进行测量。As,Se等共振吸收线位于200nm以下的远紫外区,火焰组分对其明显吸收,故用火焰原子吸收法测定这些元素时,不宜选用共振吸收线为分析线。测Hg时由于共振线184.9nm会被空气强烈吸收,只能改用此灵敏线253.7nm测定。  2.光路准直在分析  之前必须调整空心阴极灯光的发射与检测器的接受位置为zui佳状态,保证提供测量能量。  3.狭缝宽度的选择  狭缝宽度影响光谱通带宽度与检测器接受的能量。调节不同的狭缝宽度,测定吸光度随狭缝宽度而变化,当有其它谱线或非吸收光进入光谱通带时,吸光度将立即减少。不引起吸光度减少的狭缝宽度,即为应选取得适合狭缝宽度。对于谱线简单的元素,如碱金属、碱土金属可采用较宽的狭缝以减少灯电流和光电倍增管高压来提高信噪比,增加稳定性。对谱线复杂的元素如铁、钴、镍等,需选择较小的狭缝,防止非吸收线进入检测器,来提高灵敏度,改善标准曲线的线性关系。  4.燃烧器的高度及与光轴的角度  锐线光源的光束通过火焰的不同部位时对测定的灵敏度和稳定性有一定影响,为保证测定的灵敏度高应使光源发出的锐线光通过火焰中基态原子密度zui大的“中间薄层区”。这个区的火焰比较稳定,干扰也少,约位于燃烧器狭缝口上方20mm-30mm附近。通过实验来选择适当的燃烧器高度,方法是用一固定浓度的溶液喷雾,再缓缓上下移动燃烧器直到吸光度达zui大值,此时的位置即为zui佳燃烧器高度。此外燃烧器也可以转动,当其缝口与光轴一致时(0)由zui高灵敏度。当欲测试样浓度高时,可转动燃烧器至适当角度以减少吸收的长度来降低灵敏度。  5.空心阴极灯工作条件的选择  预热时间:灯点燃后,由于阴极受热蒸发产生原子蒸汽,其辐射的锐线光经过灯内原子蒸汽再由石英窗射出。使用时为使发射的共振线稳定,必须对灯进行预热,以使灯内原子蒸汽层的分布及蒸汽厚度恒定,这样会使灯内原子蒸汽产生的自吸收和发射的共振线的强度稳定。通常对于单光束仪器,灯预热时间应在30分钟以上,才能达到辐射的锐性光稳定。对双光束仪器,由于参比光束和测量光束的强度同时变化,其比值恒定,能使基线很快稳定。空心阴极灯使用前,若在施加1/3工作电流的情况下预热0.5-1.0h,并定期活化,可增加使用寿命。  6.测器光电倍增管工作条件的选择  日常分析中光电倍增管的工作电压一定选择在zui大工作电压的1/3-2/3范围内。增加付高压能提高灵敏度,噪音增大,稳定性差;降低负高压,会使灵敏度降低,提高信噪比,改善测定的稳定性,并能延长光电倍增管的使用寿命。  7.火焰燃烧器操作条件的选择  进样量:选择可调进样量雾化器,可根据样品的黏度选择进样量,提高测量的灵敏度。进样量小,吸收信号弱,不便于测量;进样量过大,在火焰原子化法中,对火焰产生冷却效应,在石墨炉原子化法中,会增加除残的困难。在实际工作中,应测定吸光度随进样量的变化,达到最满意的吸光度的进样量,即为应选择的进样量。  原子化条件的选择  a、火焰原子化法  火焰类型和性质是影响原子化效率的主要因素。火焰类型的选择原则:对低、中温元素(易电离、易挥发),如碱金属和部分碱土金属及易于硫化合的元素(如Cu、Ag、Pb、Cd、Zn、Sn、Se等)可使用低温火焰。如空气-乙炔火焰对高温元素(难挥发和易生成氧化物的元素)如Al、Si、V、Ti、W、B等,使用氧化二氮-乙炔高温火焰。对分析线位于短波区(200nm以下),使用空气-氢火焰对其余多数元素,多采用空气-乙炔火焰(背景干扰低)火焰性质的选择调节燃气和助燃气的比例,可获得所需性质的火焰。  对于确定类型的火焰,一般来说呈还原性火焰(燃气量大于化学及量)是有利的。对氧化物不十分稳定的元素如Cu、Mg、Fe、Co、Ni等用化学计量火焰(燃气与助燃气比例与它们之间化学反应计量相近)或氧化性火焰(燃气量小于化学计量)。  b、石墨炉原子化法  在石墨炉原子化法中,合理选择干燥、灰化、原子化及除残温度与时间是十分重要的。干燥应在稍低于溶剂沸点的温度下进行,以防止试剂飞溅。灰化的目的是除去基体和局外组分,在保证被测元素没有损失的前提下尽可能使用较高的灰化温度。原子化温度的选择原则是,选用达到吸收信号的zui低温度作为原子化温度。原子化时间的选择,应以保证完全原子化为准。在原子化阶段停止通保护气,以延长自由原子在石墨炉中的停留时间。除残的目的是为了消除残留物产生的记忆效应,除残温度应高于原子化温度.惰性气体原子化时常采用氩气和氮气作为保护气,氩气比氮气更好。氩气作为载气通入石墨管中,一方面将已气化的样品带走,另一方面可保护石墨管不致因高温灼烧被氧化。通常仪器都采用石墨管内、外单独供气,管外供气连续的且流量大,管内供气小并可在原子化期间中断。  灰化温度和原子化时间干燥时间常选择100℃,时间为60S。灰化阶段为除去基体组分,以减少共存元素的干扰,通过绘制吸光度A与灰化温度t的关系来确定zui佳灰化温度。在低温下吸光度A保持不变,当吸光度A下降时对应的较高温度即为zui佳灰化温度,灰化时间约为30s。原子化阶段的zui佳温度也可通过绘制吸光度A与原子化温度t的关系来确定,对多数元素来讲,当曲线上升至平顶形时,与zui大A值对应的温度就是zui佳原子化温度。在每个样品测定结束后,可在短时间内使石墨炉的温度上升至zui高,空烧一次石墨管,燃尽残留样品,以实现高温净化。

厂商

2019.07.17

凯氏定氮仪使用常见问题

  1. 凯氏定氮仪在蒸馏时翻滚剧烈,会对操作者构成危险吗?  答:一般不会,凯氏定氮仪在蒸馏时翻滚剧烈,是水蒸气大量进入消化管液体翻滚,并非剧烈反应造成;而且仪器有超压保护装置,可以保持管路内部常压,避免危险。  2. 凯氏定氮仪工作中对水质有什么要求?  答:凯氏定氮仪的蒸馏水桶内要装蒸馏水或纯水,机器长期不用要将蒸馏器里水放掉。  3 . 凯氏定氮仪开机没声音是怎么回事?  答:凯氏定氮仪开机没声音,如果机器电源开关内红灯亮,说明是定氮仪内保险管烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。  4 . 凯氏定氮仪开机后蒸馏器内不加水怎么解决?  答:开机半分钟后检查蒸馏水桶是否漏气,能被气充鼓是正常;检查蒸馏水桶内水位是否超过三分之一,不够补齐;检查蒸馏水桶的位置,低于放置仪器的台面,压力不够,加不上水;检查蒸馏水桶进气、进液管是否接错,接错桶内会产生气泡并发出声响;检查排水阀,应呈关闭状态。  5 . 凯氏定氮仪蒸锅不加热,不能产生蒸气,为什么?  答:如果机器能正常加碱,不能加热出蒸气,判定加热丝可能烧坏了,可拿万用表量一下加热丝正负极,不通可确定加热丝损坏,换新加热丝。  如果机器不能正常加碱,开机后又没有任何声音,判断是保险丝烧断了,保险管位置在机器内部靠近电源开关接口5公分处黑色壳子内。  6 . 凯氏定氮仪工作时声音大,是否正常?  答:属于正常现象,这是机器内部气泵工作的声音。  7 . 凯氏定氮仪工作中不能加碱、加碱没有声音,为什么?  答:检查碱桶是否漏气,被气充鼓机器才能正常工作;仪器使用时间过长,碱管内部会产生结晶,导致加液时流速降低,没有声音。  8 . 定氮仪在工作时,从顶部冒出类似烟的气体,怎么回事?  答:检查冷却水进水的水龙头是否打开,冷却水关闭或者水量小都会导致消化管出来的蒸气不能被冷凝,从机器里冒出来的水蒸气,看起来类似烟。  9 . 定氮仪使用中发现消化管进满水,怎么解决?  答:定氮仪使用中发生消化管进满水,是由于机器控制水位器导电性降低造成的,解决办法:打开水位器取出探针用砂纸打磨,去掉氧化层;在蒸馏水桶里加入3-5克实验室用氯化钠,摇匀溶解。  10 . 定氮仪使用中发生蒸馏器、水位器进满水,硼酸吸收液容器中进水,怎么解决?  答:是机器控制水位器导电性降低造成的,解决办法:打开水位器取出探针用砂纸打磨,去掉氧化层;在蒸馏水桶里加入3~5克实验室用氯化钠,摇匀溶解。  11 . 定氮仪使用中消化管中白色管子发生倒吸,怎样解决?  答: 仪器停止工作(蒸馏器停止加热),气阀未能及时关闭,会产生倒吸现象,可在白色管子上扎一些小孔。气阀损坏,不能关闭,也会倒吸。  12 . 定氮仪工作中隔 3 ~ 5 秒钟会发出声响,是否正常?  答:这种声响属于正常现象,仪器工作状态下,蒸馏器会不断加热产生水蒸汽而消耗水,仪器会自动打开水阀进行补水,声响就是水阀打开、关闭的声音,属于正常现象。  注意  1.每次使用仪器前,应让仪器空煮一次,清洗仪器的内部管路。  2.仪器使用完毕,应将其中一只桶的桶盖打开,将桶内的气体排出,延长附件的使用寿命(3个或2个桶串联,排气时只打开一只桶盖即可)。

厂商

2019.07.16

实验室色谱仪的日常维护和保养

  维护与保养的一个重要作用就是保障保证一个良好的检测状态,确保得到准确的检测数据 , 影响分析仪器的可持续运行有因素主要有:  1.易损件清理更换不及时;  2.硬件使用不科学;  3.仪器本身选购及配置不当;  ※各种分析仪器从结构、功能、应用各方面差别极大,但是经常出的问题以及维护保养的方向还是有一定的共性。这种共性就是:“仪器本身各个固定部件很少出问题,只有使用者经常接触到的地方才容易出故障”。  下面分别就气相色谱仪、气质联用仪、液相色谱仪谈谈各自的常见故障及常用维护:  第yi部分:气相色谱仪  在使用气相色谱仪时(以下主要以配有分流进样口和氢火焰检测器的气相色谱仪为例),使用者经常做的对仪器结构有改变的行为莫过于换柱了,虽然换柱和扎针一样,都是气相色谱工作者的基本功,但是,至少有一半的问题与之相关。  问题1:漏气  进样垫漏气,接柱的固定螺丝漏气,尤其是使用填充柱而又采用硅石墨垫更会如此。如果用橡胶圈好些,但是不需用,需要定期更换。毛细柱由于采用石墨垫圈则漏气问题相对好些。  问题2:固定位置不准:  这是制约灵敏度的一个关键点。填充柱由于是刚性的,尺寸形状固定,在换装时,一般容易掌握。常出问题的是毛细柱,由于其本身柔性,在进样口和检测器内的长度完全由使用者个人掌握,如果把握不准,会成为制约实验效果的一个重要因素。不同公司仪器的装柱尺寸是不同的,在使用不同衬管时也有很大区别。有些仪器提供了专用的测量工具,有些则没有。  问题3:清理更换不及时:  这是硬件无故障而检测状态不好的主要原因,其具体表现就是污染,如,进样口衬管及玻璃棉污染,柱内污染,检测器污染,如果不及时更换或清洗,会造成基线不稳,灵敏度下降等现象。  对策:  定期清洗,定期更换,用检漏液测漏,是常用但不是好的处理方法。我觉得,zui好的方法是状态监控,时刻观察系统状态,发现问题马上判断问题再处理问题。同一台机,同一根柱,在同yi流量,同一柱头压下,应该有基本一致的信号基线和差不多的稳定时间,仪器状态的不同问题会有各种不同的反映。(仪器的信号远不只检测信号那么简单,它不仅表述了实验对象,也表述了仪器本身的状态)  例 1 : 装柱后,通上一定的流量,柱头压和平时不一样。如果柱头压明显比平时高,可能是柱头堵塞。如果低,可能是漏气或柱断裂,漏气可以在关闭柱箱风扇后应该能听到声音,柱断裂可以很容易看出来。  例 2: 流量正常,柱头压正常,但基线信号明显地低且稳定奇快。这种现象在使用毛细柱时常发生,原因多半就是喷嘴堵塞。确定是否这个原因的方法就是进空白溶剂,如果信号比平时低了很多,而且出峰时间又晚了一些,就基本就是这个原因,这时只能关机清洗。  例 3 : 流量正常,柱头压正常,在三温(OVEN,INJ,DET)到达设定值后,但基线信号明显地偏高且不稳定。这种情况多是污染。污染又分:进样口污染,柱污染,检测器污染。确定是哪一种故障并不容易(有时还是交叉反应),但是处理方法却一致:停机-清洗-升温烤。我建议每次清洗zui好把检测器和进样口都处理一下,毕竟最耗时间的是降温升温。以上三个例子都强调了一个“与平时不同”,这就需要我们在做实验时有一个长期的状态观察积累。(不同检测器有不同的特性,以上针对FID )  第二部分 : 气质联用仪  气质联用仪可以看作是毛细管柱气相色谱仪加上质量检测器的组合,它常出的问题也是两者相加。我们对气质联用仪本身的操作一般是换柱和清洗离子源,大多数问题也是由这两步操作而来。它们最主要的表现就是漏气而造成的抽真空不正常。出问题的位置在于毛细管柱进入质谱腔的接口和质谱腔体开门时的密封圈,毛细管柱进入质谱腔的接口密封不严:  需要注意的有:  1. 伸入质谱腔中的长度不适当,太长或太短都不行;  2. 垫圈 要松紧合适,太松会有漏气的隐患,太紧则会压碎垫圈;  清洗离子源时打开腔体后密封不严:  门上的密封圈(岛津的是门,安捷伦的是盖)上只要沾了一点点肉眼无法察觉的毛发或绒线就会引起漏气。这时一般操作书上要求的都是戴上尼龙手套清洁,但这对于处理离子源时是很重要的,但是对于处理密封圈来说,不戴手套的效果更好。原因是手上多少会有一些油脂,只要沿着密封圈抹上一圈,可以有效地消除绒线的影响,而这些油脂离加热源远,和离子源也远,基本属大分子有机物,对于检测没有影响。平时操作质谱时,要对在通气和不通气的情况下,多长时间真空度能达到多少有一个大致的数值概念标准。如果换柱或清洗离子源后,抽真空的速率比平时差距太远,就要先考虑是否是安装不当漏气的问题,早些降温关机处理。溶剂延迟是其它气相检测器没有的概念,如果忘记设置合理的溶剂延迟时间,会对灯丝造成严重的损害,这是质谱初学者常犯的错误。  另一个可能造成严重后果的行为是: 没有等温度降到室温就急着拆机拆离子源,曾经发生过在热的时候拆机,冷了以后装不回去的案例。在实验状态方面,主要还是污染问题。进样口和柱污染的处理和普通气相一致,至于质谱检测器,一般来说,80%以上的污染是在离子源部分。我们需要对调谐后的电压时常注意,升高到一定程度就要考虑是否要清洗离子源了,而四极杆部分一般不用动,也不要由用户动。气质联用的日常保养容易忽视的是机械泵的保养,主要是换机油和分子筛。  特别提示:买气质时千万别忘记配 UPS 。  第三部分液相色谱仪  液相色谱仪是属于易学难用的仪器,特别讲究“正确使用”和经验。液相工作者接触最多的是流动相,也就是流动相,是造成液相色谱各种问题的最主要源头。液相色谱仪最常见的故障一是堵,二是漏。下面就这两点分别展开讨论。(注:流动相以甲醇为例,色谱柱以 C18 为例)  “堵”的表现现象就是柱压异常升高,直接原因就是流路不畅。堵塞的主要位置就是在色谱柱的前端,最主要原因就是流动相里有杂质,杂质的主要来源就是细菌,“堵”的原因之一:配制流动相时细菌污染。首先我们要认识到,一般的国产甲醇其实不需要额外过滤处理,直接使用没有问题。即使是有些固态微粒杂质,也能在液相流路系统最前端的过滤头上排除,真正容易引起问题的,是水中的细菌。新制备的纯水在室内放置几天就会长菌,而这些细菌虽然肉眼不可见,却足以堵塞柱填料颗粒的空隙,造成柱子很快报废。这就是在配制流动相时造成的细菌污染的原因,解决它的方法很简单,就是确保水的可靠性,这里有两种方式推荐:  (1)最理想的方式当然是购买实验室专用纯水机,既方便又可靠,质量也放心,唯yi的缺点就是价格不菲。  (2)成箱购买市售品牌纯净水,如,500mL一支的怡宝或娃哈哈,这些水的质量足以应付液相色谱的要求。先随机抽取一支做一下细菌平板实验,待菌落数合格方可使用。这样每次只要单独开一支即可,也很方便。每次成本2 元左右。  这里特别指出一个细节:  在绝大多数书本上,凡谈到配制流动相都会谈到zui后有一个过滤的步骤,但是,从我们长期使用的实际效果来说,只要能保证水的质量,这一步完全可以也应当去除。原因有以下三点:  (1)流动相过滤在理论上有好处,但是,实际操作时由于不可能做到专瓶专用,反而容易造成的交叉污染,对于配比复杂的流动相影响更大。  (2)流动相过滤在经济成本上不划算。买一套过滤装置要6000多元,且过滤器公认是比较容易损坏的设备。最主要是过滤片的成本太高,一片就要几十元。按一般液相柱的正常使用寿命计算,过滤片的成本会远远高于色谱柱的成本。  (3)流动相过滤对于工作效率成本不划算。使用溶剂过滤器有一个预清洗、装备、使用、用后清洗,晾干的过程,至少也有一个小时的时间。这个成本也不能忽视。  (4)在实际工作未发现流动相不过滤会对柱寿命有任何影响。我们起码有6年时间没有做过流动相过滤的工作,但是和国内同行相比较,在同等使用强度下我们的柱寿命是比较长的。  “堵”的原因之二:使用流动相时的细菌污染:  指的是:  流动相刚开始没有长菌,在使用时却产生了细菌污染。这主要是在使用多元液相色谱仪时的一种不良使用习惯造成的。  举最简单的例子:  50%的甲醇水流动相,有两种使用方式。一种方式是在上机前就配好混合在一起,另一种方式是在流路A放纯甲醇,流路B放纯水。从单纯实验效果来说,后一种有明显的优点: 首先是简单,不需要实验者另个计算配比混合,其次就是比例准确,能得到保留时间重复性极好的实验效果,但是它有一个致命的缺陷,就是纯水在流动相瓶中几天时间就会长细菌(很多情况下不仅用纯水作流动相,而是用缓冲盐溶液,本身就是优质肥料,细菌长得更迅速),一旦有细菌柱子就坏得很快,所以,这种方式要求操作人员每次实验都要用新制备的纯水,更要求在每次实验后把水相换掉,换成甲醇冲洗干净,这一点在实际工作中很多人意识不强,就是意识到了但多次使用中总有一两次会遗漏,但是,往往这一两次就足以产生致命的影响。因为,液相色谱柱的堵塞是不可逆的,所以,宁可牺牲较小的保留时间重复性,也不要用纯水溶液作为流动相的一组。从实际实验效果来说,我建议用10%的甲醇水代替纯水溶液(以前我做过不同比例甲醇水的细菌总数实验,在5%就基本可以抑菌,在10%及以上就可以完全杀菌了),这样可以有效排除长细菌的隐患,既可作流动相,也可冲柱。就算是在配制流动相时会计算得麻烦一些,但是一次麻烦,终身受益,“堵”的原因之三:不适当操作。  常见问题的有以下几种:  (1)在更换零件时选择的型号有误,接口不是很匹配,在拧紧的时候产生变形,而使得管路堵塞。  (2)样品处理液净化得不干净,长期会在六通阀和柱之间形成阻塞不畅。  (3)在使用手动六通阀时,有些人可能由于手劲小的原因,转动的不到位,于是造成流路形成了死堵,压力快速升高超过警戒值。  (4)在使用金属管路作出废液管时,应当注意废液瓶中先放一些水,并把废液管的出口端放在液面下。如果位于在液相上且实验使用较高浓度的缓冲盐溶液,在停机时可能在出口端结晶成块并造成堵塞。这种情况不常见,但却的确发生过。  “堵”的原因讲了不少,现介绍查堵的方法。在发生“堵”的现象后,就需要找出原因,主要是什么位置发生了“堵”。注意,绝大多数情况下,整个系统只会有一个地方发生堵塞。查堵的方法是从尾向前逆向分段拆开,仔细观察压力数值,如果某一个部件(柱子除外)装上和拆下时的压力差别很大,可发展变化判断。至于柱的堵塞,可以通过换同样规格的柱的压力是否一致来判断。  下面再谈一下“漏”的问题 , “漏”则分两种:漏液和漏气  一.漏液  液相色谱仪从流动相瓶到废液瓶之间的流路是一个全封闭体系,内部压力很高,但外部却能保证一滴不漏。如果某个部件发生了漏液,那就是故障所在,漏液的原因分两种:  ( 1 )接触硬件不当 :  在更换零件如流路管或换柱时,换的接头接口不匹配,造成漏液。要注意不同公司的柱子接头很多是不同的,甚至同一家公司在不同时期生产的液相柱接头也有很大区别。当然,选用PEEK接头是一个较好的解决方法,不仅通用性好,而且靠手拧就能保证不漏液,即使是接口本身是匹配的,但是,如果操作不当也会漏液,一种不当就是力度把握不好,拧得太紧或太松;  另一种不当就是致命的错误:滑丝,这是往往是动手能力不太强,螺丝钉很少拧的工作者犯的错误,滑丝的后果不仅是漏液那么简单,常造成重要部件的报废。解决这个问题只能靠恶补基本功来实验,那就是拧螺丝。  ( 2 )使用仪器不当 :  如果是输送泵漏液,最常见的原因就是在活塞位置缓冲盐析出造成,析出的原因有两个 : 一是使用缓冲盐溶液时突然加入了纯甲醇而析出,这种错误很容易避免,这是尽量不要用纯的甲醇和纯水。只要互相有10%的比例就不会出现这个问题。另一原因是在用缓冲盐溶液(不论甲醇含量有多少)作流动相时,实验结束后没有换甲醇水冲洗,使得微渗的流动相干燥形成晶体造成。不过,输送泵漏液并不是非得马上修不可,冲洗干净并在以后的使用中多加小心一般都可以正常使用。检测器漏液是个很麻烦的事,一般都是吸收池的问题,更换的费用相当高。但是并不是说一定要马上更换,还可以从实际实验效果看能否凑合使用。  二.漏气  漏液是从内部向外漏,而漏气则是外部的气体进入液相色谱仪的流路内部形成了气泡。下面按流路的方向逐个部件分析产生气泡的原因和相应解决方法 :  (1)过滤头抽液时,在流路管中有不规则但持续的小气泡产生,这时考虑的是流动相有没有脱气(需要特别提醒即使是有了真空脱气机也是要先超声脱气的,起码可以减少脱气机的工作压力并提高工作效率),如果已经脱了气,则要注意过滤头的污染也会造成这种现象。处理方法比较简单,拧下过滤头在稀硝酸中浸泡,超声半小时,洗净后装回去即可。  ( 2 )透明流路管  指的是在过滤头和输送泵之间的那一段管路。这一个部分往往不是有点气泡,而经常是整个管中全是空气而操作人员却浑然不知,以致输送泵工作了半天才发现流动相瓶里的液体一点也没少。这也是我们常说的液相色谱仪至少一周要开机一次的原因(我们做液相一定要有“微渗”的概念 )。如果长时间不用,这一段管路的液体会彻底干掉,而充满空气的管路和充满液体的管路不仔细看是分辨不出的。这种情况对于输送泵很危险,因为,泵从设计来说是输送液体而不是气体,内部的液体对于活塞来说起到了机油的作用,如果活塞杆上还残存了一些缓冲盐,则极易拉伤,造成不可逆转的影响。对于这种情况,要突出“预防为主”如:,液相色谱使用人员要相对固定和稳定,工作中合理搭配资源,每台机一周击至少作一次实验,如长期不用起码每周要冲流动相2小时。养成良好的工作习惯很重要。如果不慎出现了这种问题怎么办?我的建议是用外力使管路中充满液体,具体如下:  1.找到流路管进入输送泵的接头;  2.拧下来;  3.用一干净的洗耳球的尖duan对准管路的平整切口;  4.吸液体,看液面从流动相瓶里上升,至离洗耳球5厘米左右时停止该动作;  5.快速把接头拧回输送泵上(这个过程可能会有少许流动相外泄,这是正常现象);  6.开机,打开排液阀门,启动输送泵;  7.等排液管中流出的溶液没有气泡时,再关闭排液阀,仪器正常工作;  ( 3 )输送泵和柱子这些部分进了气泡一般不怕,冲掉就行 ;  ( 4 )检测器 :  应该说,整个流路中只要有一个气泡都会在检测器上得到强烈的信号反映,检测器内部的气泡一般都能被冲走,但也有很难冲掉的残留气泡的情况。如果检测器里有残留气泡,会有特征明显的表现形式,就是在走基线时会时不时间隔出现直上直下信号很大的信号峰。这时先看普通流量能否冲走,如果冲不走,那唯yi的办法就是拆柱,把检测器直接连到输送泵的出口,加大几倍流量冲洗,则肯定能冲走气泡。

厂商

2019.07.15

ICP—MS、ICP-AES及AAS的分析性能及应用

  随着ICP-AES的流行使很多的分析家在问购买一台ICP-AES是否是明智之举.还是留在原来可信赖的AAS上。现在一个新技术lCP-MS已呈现在世上,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GFAAS)更低的检出限。  ICP-MS是一个以质谱仪作为检测器的等离子体(ICP),而质谱学家则认为ICP-MS是一个以ICP为源的质谱仪。事实上,ICP-AES和ICP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(165~800nm),ICP-MS 测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息,因此,ICP-MS除了元素含量测定外,还可测量同位素。  检出限  ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级(必需记牢,实际的检出限不可能优于你实验室的清洁条件),石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素在洁净的试样中也可得到令人注目的亚ppb级的检出限。必须指出,ICP- MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如,S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,也将恶化其检出限。  干扰  以上三种技术呈现了不同类型及复杂的干扰问题.为此,我们对每个技术分别予以讨论。ICP-MS的干扰  1.质谱干扰  ICP-MS中质谱的干扰(同量异位素干扰)是预知的,而且其数量少于300个,分辨率为0.8amu的质谱仪不能将它们分辨开,例如,58Ni对58Fe、 40Ar对40Ca、40Arl60对56Fe或40Ar-Ar对80Se的干扰(质谱叠加)。元素校正方程式(与ICP-AES中干扰谱线校正相同的原理)可用来进行校正,选择性地选用一些低自然丰度的同位素、采用“冷等离子体炬焰屏蔽技术”或“碰撞池技术”可有效地降低干扰影响。  2.基体酸干扰  必须指出,HCI、HCIO4、H3PO4和H2S04将引起相当大的质谱干扰。Cl+、P+、S+离子将与其他基体元素Ar+、O+、H+结合生成多原子,例如,35Cl 40Ar对75As、35Cl160对51V的叠加干扰。因此,在ICP-MS的许多分析中避免使用HCl、HClO4、H3PO4和H2SO4是至关重要的,但这是不可能的。克服这个问题的方法有“碰撞池技术”、在试样导入ICP之前使用色谱(微栓)分离、电热蒸发(ETV)技术等,另外一个比较昂贵的选择是使用高分辩率的扇形磁场的ICP-MS,它具有分辩小于0.01amu的能力,可以清除许多质谱的干扰。ICP-MS分析用的试液通常用硝酸来配制。  3.双电荷离子干扰  双电荷离子产生的质谱干扰是单电荷离子M/Z的一半,例如138Ba2+对69Ga+,或208pb2+对104Ru+。这类干扰是比较少的,而且可以在进行分析前将系统zui佳化而有效地消除。  4.基体效应  试液与标准溶液粘度的差别将改变各个溶液产生气溶胶的效率,采用基体匹配法或内标法可有效地消除。  5.电离干扰  电离干扰是由于试样中含有高浓度的第1族和第1I族元素而产生的,采用基体匹配、稀释试样、标准加入法、同位素稀释法、萃取或用色谱分离等措施来解决是有效的。  6.空间电荷效应  空间电荷效应主要发生在截取锥的后面,在此处的净电荷密度明显的偏离了零。高的离子密度导致离子束中的离子之间的相互作用,形成重离子存在时首先损失掉轻离子,例如,Pb+对Li3+。基体匹配或仔细在被测物质的质量范围内选用内标有助于补尝这个影响,但这在实际应用是有困难的。同位素稀释法虽有效.但费用高,简单而最有效的方法是稀释样品。  lCP-AES干扰  1. 光谱干扰  ICP-AES的光谱干扰其数量很大而较难解决,有记录的ICP-AES的光谱谱线有50000多条,而且基体能引起相当多的问题。因此,对某些样品,例如,钢铁、化工产品及岩石的分析必须使用高分辩率的光谱仪。广泛应用于固定通道ICP-AES中的干扰元素校正能得到有限度的成功。ICP-AES中的背景较高,需离线背景校正,应用动态背景校正对增进准确度是很有效的。各种分子粒子(如,OH)的谱峰或谱带对某些低含量的被测元素会引起一些分析问题,影响其在实际样品中检出限。  在ICP-MS中的背景是相当低的,典型的是小于5 C/S(计数/秒),这就是ICP-MS具有极好的检出限的一个主要理由。  2.基体效应  与ICP-MS一样,ICP-AES可以应用内标来解决例如雾化室效应、试样与标准溶液之间粘度差异所带来的基体效应。  3.电离干扰  仔细选用每个元素的分析条件或加入电离缓衡剂(如,过量的I族元素)可以减少易电离元素的影响。  GFAAS干扰  1.光谱干扰  使用氘灯背景校正的GFAAS有少许光谱干扰,但使用Zeeman背景校正的GFAAS能去除这些干扰。  2.背景干扰  在原子化过程中,针对不同的基体,应仔细设定灰化步聚的条件以减少背景信号。采用基体改进剂有助于增加可以容许的灰化温度。在很多GFAAS应用中,与氘灯扣背景相比,Zeeman扣背景可得到更好的准确度。  3.气相干扰  这是由于被测物质的原子蒸汽进入一个较冷的气体环境而形成的。现在采用等温石墨管设计和平台技术,试样被原子化后进入一个热的惰性气体环境,可有效减少这种干扰。  4.基体效应  基体效应是被测物质在石墨管上不同的残留而生成的,它取决于样品的种类,应用基体改性剂和热注射能十分有效地减少这些影响。  容易使用  在日常工作中,从自动化来讲,lCP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS的操作直到现在仍较为复杂,自1993年以来,尽管在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GFAAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。  试样中的总固体溶解量TDS  在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但大部分分析人员乐于采用最多0.2%TDS的溶液。当原始样品是固体时,与ICP-AES,GFAAS相比,ICP-MS需要更高倍数的稀释.其折算到原始固体样品中的检出限显示不出很大优势的现象也就不令人惊奇了。  线性动态范围LDR  ICP-MS具有超过下的五次方的LDR,各种方法可使其LDR开展至十的八次方,但不管如何,对ICP-MS来说:高基体浓度会导致许多问题,而这些问题的zui好解决方案是稀释,正由于这个原因,ICP-MS应用的主要领域在痕量/超痕量分析。  GFAAS的LDR限制在2-3个数年量级,如选用次灵敏线可进行高一些浓度的分析。ICP-AES具有5个以上数量级的LDR且抗盐份能力强,可进行痕量及主量元素的测定,ICP-AES可测定的浓度高达百分含量,因此,ICP-AES外加ICP-MS,或GFAAS可以很好地满足实验室的需要。  精密度  ICP-MS的短期精密度一般是1-3%RSD,这是应用多内标法在常规工作中得到的。长期(几个小时)精密度为小于5%RSD。使用同位素稀释法可以得到很好的准确度和精密度,但这个方法的费用对常规分析来讲是太贵了。  ICP-AES的短期精密度一般为0.3~2%RSD,几个小时的长期精密度小于3%RSD。GFAAS的短期精密度为0.5-5%RSD,长期精密度的因素不在于时间而视石墨管的使用次数而定。  样品分析能力  ICP-MS有惊人的能力来分析大量测定痕量元素的样品,典型的分析时间为每个样品小于5分钟,在某些分析情况下只需2分钟。Consulting实验室认为ICP-MS的主要优点即是其分析能力。  ICP-AES的分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为2或6分钟,全谱直读型较快,一般为2分钟测定一个样品。  GFAAS的分析速度为每个样品中每个元素需3~4分钟,晚上可以自动工作,这样保证对样品的分析能力。  根据溶液的浓度举例如下,以参考:  1.每个样品测定1~3个元素,元素浓度为亚或低于ppb级,如果被测元素要求能满足的情况下,GFAAS是最合适的。  2.每个样品5~20个元素,含量为亚ppm至%,ICP-AES是最合适的。  3.每个样品需测4个以上的元素,在亚ppb及ppb含量,而且样品的量也相当大,ICP-MS是较合适的。  无人控制操作  ICP-MS,ICP-AES,和GFAAS,由于现代化的自动化设计以及使用惰性气体的安全性.可以整夜无人看管工作。为了高效的分析生产,整夜开机工作是可取的。  其他  由于是快速扫描测定方式,ICP-MS能对多元素模式中的瞬间信号进行测量,这就为大量附件打开了出路,电热蒸法、激光消蚀、辉光放电及火花消蚀等技术可以免除样品的溶解过程。有些附件可以将样品中的基体物质进行分离或进行预富集,例如,氢化法、色谱(高压液相HPLC、离子色谱、微栓)等。  用色谱来分离的好处在ICP-MS中得到完全的实现,它适合用于环保,毒理学,药品及食品中低浓度的被测物质。  虽然,ICP-AES也能采用上述的某些附件,但由于这些附件的价格及有限的好处,因此,很少看到它们在lCP-AES的常规分析中应用。

厂商

2019.07.12

实验室常用化学试剂注意事项

  1.乙酸(浓)  必须非常小心地操作。可能由于吸入或皮肤吸收而受到伤害。要戴合适的手套和护目镜。在化学通风橱\生物安全柜里使用。  2.乙腈  是非常易挥发和特别易燃的,它是一种刺激物和化学窒息剂,可因吸入、咽下或皮肤吸收而发挥其效应。严重中毒的病人可按氰化物中毒方式处理。操作时要戴合适的手套和安全眼镜。只能在通风橱\生物安全柜里使用,远离热、火花和明火。  3.氯化铵(NH4Cl)  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在通风橱\生物安全柜里进行。  4.氢氧化铵(NH4OH)  是氨的水溶液,是腐蚀剂。操作时应极为谨慎。氨会从溶液中散发出来,它是腐蚀性的和有毒的,并易引起爆炸。操作时戴合适的手套并只能在通风橱\生物安全柜里进行。  5.硫酸胺[(NH4)2SO4]  可因吸入、咽下或皮肤吸收而受到伤害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  6.硼酸(H3BO3)  可因吸入、咽下或皮肤吸收而危害健康。操作时戴合适的手套和护目镜。  7.溴酚蓝  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内操作。  8.亚硝酸钠(NaNO2)  对眼睛、黏膜、上呼吸道和皮肤有刺激作用。可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜内使用,切勿近酸。  9.氯仿(CHCl3)  对皮肤、眼睛、黏膜和呼吸道有刺激作用。它是一种致癌剂,可损害肝和肾。它也易挥发,避免吸入挥发的气体。操作时戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜里进行。  10.柠檬酸  是一种兴奋剂,可因吸入、咽下或皮肤吸收而受危害健康。它对眼睛可形成严重损伤的危险。操作时戴合适的手套和安全护目镜。勿吸入其粉末。  11.氯化钴(COCl2)  可因吸入、咽下或皮肤吸收而受到危害,操作时戴合适的手套和安全眼镜。  12.硫酸铜(CuSO4)  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  13.二乙胺[NH(C2H5)2]  是腐蚀剂,有毒并极易燃。可因吸入、咽下或皮肤吸收而受到危害。操作时要戴合适的手套和安全眼镜。仅在化学通风橱\生物安全柜内操作。远离热、火花和明火。  14.N,N-二甲基甲酰胺[DMF,HCON(CH3)2]  对眼睛、皮肤和黏膜有刺激作用。可通过吸入、咽下或皮肤吸收发挥其毒性效应。经常吸入可引起肝脾损伤。操作时要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内进行。  15.乙醇[CH3CH2OH]  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  16.乙酸乙酯  咽下可致命,可因吸入或皮肤吸收而受害。操作时戴合适的手套和安全护目镜。切勿吸入其粉末。在通风良好的地方使用。  17.氯化铁(FeCl3)  可因吸入、咽下或皮肤吸收而危害健康。要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内进行操作。  18.甲醛(HCOH)  有很大的毒性并易挥发,也是一种致癌剂。很容易通过皮肤吸收,对眼睛、黏膜和上呼吸道有刺激和损伤作用。避免吸入其挥发的汽雾。要戴合适的手套和安全眼镜。始终在化学通风橱\生物安全柜内进行操作。远离热、火花及明火。  19.甲酸(HCOOH)  毒性强,对黏膜组织、上呼吸道、眼睛和皮肤非常有害。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜(或面具)并在化学通风橱\生物安全柜内使用。  20.硝酸钠(NaNO3)  可因吸入、咽下或皮肤吸收而损害健康。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  21.玻璃棉  可因吸入而受害并引起皮肤过敏。戴合适的手套和面具。  22.硫酸(H2SO4)  毒性非常强,对黏膜、上呼吸道、眼睛和皮肤的组织有极大的破坏作用。可引起灼伤,与其他物质(如纸)接触可引起失火。戴合适的手套、安全眼镜和实验工作服,在化学通风橱。  23.盐酸(HCl)  易挥发并因吸入、咽下或皮肤吸收而受害。对黏膜、上呼吸道和皮肤有很大的伤害作用。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用并格外小心。当大量操作时要戴护目镜。  24.过氧化氢(H2O2)  具有腐蚀性、毒性,对皮肤有非常严重的损伤作用。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜并只能在化学通风橱\生物安全柜里进行操作。  25.硫化氢(H2S)  是非常强的毒性气体,能引起呼吸中枢麻痹。对皮肤有刺激和腐蚀性,能引起嗅觉疲劳。不要靠气味去检测其是否存在。操作时要格外小心。盛硫化氢的容器要放置在化学通风橱\生物安全柜里或放在装有通风设备的房间里。戴合适的手套和安全眼镜。它也非常易燃,要远离热、火花和明火。  26.氯化镁(MgCl2)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  27.硫酸镁(MgSO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  28.甲醇(MeOH或H3COH)  是有毒的,能引起眼睛失明。可因吸入、咽下或皮肤吸收而受害。适当的通风是必要的,以便减少与其挥发气体的接触。避免吸入这些挥发的气体。戴合适的手套和安全护目镜。只能在化学通风橱\生物安全柜里使用。  29.硫酸镍(NiSO4)  是致癌剂,可引起可遗传的遗传损伤。它是一种皮肤刺激物,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用,切勿吸入其粉末。  30.硝酸(HNO3)  易挥发,操作要格外小心。通过吸入、咽下或皮肤吸收而产生毒性作用。戴合适的手套和安全护目镜。在化学通风橱\生物安全柜里操作。切勿吸入其挥发的气雾。远离热、火花和明火。高氯酸可因吸入、咽下或皮肤吸收而致病。戴合适的手套和安全眼镜,只能在化学通风橱\生物安全柜里使用。  31.酚  具有很强的毒性和高度腐蚀性,并能引起严重的灼伤。可因吸入、咽下或皮肤吸收而受到危害。戴合适的手套、防目镜和防护服。始终在化学通风橱\生物安全柜里使用。如果皮肤接触到酚,要用大量的水冲洗接触酚的部位,并用肥皂和水洗,切记勿用乙醇洗!  32.磷酸(H3PO4)  具有高度腐蚀性,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。  33.哌啶  毒性高,对眼睛、皮肤、呼吸道和胃肠道有腐蚀性。它与酸和氧化剂剧烈反应,可因吸入、咽下或皮肤吸收而危害健康。切勿吸入其挥发的气体。远离热、火花和明火。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  34.氯化钾(KCl)  可因吸入、咽下或皮肤吸收而受到危害。戴合适的手套和安全眼镜。  35.氢氧化钾(KOH)/KOH/甲醇  毒性可能是很高的。可因吸入、咽下或皮肤吸收而受到危害。其溶液有腐蚀性。操作要非常小心。要戴合适的手套。  36.高锰酸钾(KMnO4)  是一种刺激剂和很强的氧化物。当与有机物混合时可形成爆炸性的混合物。所有溶液要在化学通风橱\生物安全柜里使用。不要与盐酸混合。  37.磷酸钾(KH2PO4/K2HPO4/K3PO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。勿吸入其粉末。  38.硝酸银(AgNO3)  是一种很强的氧化剂,要谨慎操作。它可因吸入、咽下或皮肤吸收而损害健康。避免接触皮肤,戴合适的手套和安全眼镜。与其他物质接触可引起爆炸。  39.磷酸氢二钠(Na2HPO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  40.氢氧化钠(NaOH)和含有NaOH的溶液  有很强的毒性和苛性,操作时要格外小心,戴合适的手套和防护面具。

厂商

2019.07.11

【科普】高效液相色谱分析法和气相色谱分析法区别

  高效液相色谱法与气相色谱法一样,都属于色谱法,具有:选择性高、分离效率高、灵敏度高、分析速度快等特点。本文就两种色谱法的应用范围、仪器构造等不同点做出比较。  气相与液相的概念  气相  气相色谱是一种物理的分离方法。利用被测物质各组分在不同两相间分配系数(溶解度)的微小差异,当两相作相对运动时,这些物质在两相间进行反复多次的分配使原来只有微小的性质差异产生很大的效果而使不同组分得到分离。  液相  高效液相色谱法是在经典色谱法的基础上引用了气相色谱的理论。在技术上,流动相改为高压输送;色谱柱是以特殊的方法用小粒径的填料填充而成,从而,使柱效大大高于经典液相色谱(每米塔板数可达几万或几十万);同时,柱后连有高灵敏度的检测器可对流出物进行连续检测。  应用范围  气相  分离能力好、灵敏度高、分析速度快、操作方便等。  受技术条件的限制,沸点太高的物质或热稳定性差的物质都难于应用气相色谱法进行分析,一般对500℃以下不易挥发或受热易分解的物质部分可采用衍生化法或裂解法。  液相  高效液相色谱法,只要求试样能制成溶液,而不需要气化,因此,不受试样挥发性的限制。对于高沸点、热稳定性差、相对分子量大(大于400以上)的有机物(些物质几乎占有机物总数的75%~80%)。原则上,都可应用高效液相色谱法来进行分离、分析。据统计,在已知化合物中能用气相色谱分析的约占20%,而能用液相色谱分析的约占70~80%。  气相仪器构造  气相  由载气源、进样部分、色谱柱、柱温箱、检测器和数据处理系统组成。进样部分、色谱柱和检测器的温度均在控制状态。  1.柱箱:  色谱柱是气相色谱仪的心脏,样品中的各个组份在色谱柱中经过反复多次分配后得到分离,从而达到分析的目的,柱箱的作用就是安装色谱柱。由于色谱柱的两端分别连接进样器和检测器,因此,进样器和检测器的下端(接头)均插入柱箱。柱箱能够安装各种填充柱和毛细管柱并且操作方便。色谱柱(样品)需要在一定的温度条件下工作,因此,采用微机对柱箱进行温度控制,并且由于设计合理,柱箱内的梯度很小。  对于一些成份复杂、沸程较宽的样品,柱箱还可进行三阶程序升温控制。且程序设定后自动运行无需人工干预,降温时还能自动后开门排热。  2.进样器:  进样器的作用是将样品送入色谱柱。如果是液体样品,进样器还必须将其汽化。因此,采用微机对进样器进行温度控制。  根据不同种类的色谱柱及不同的进样方式,共有五种进样器可供选择:  填充柱进样器  毛细管不分流进样器附件  毛细管分流进样器附件  毛细管分流/不分流进样器  六通阀气体进样器  3.检测器:  检测器的作用是将样品的化学信号转化为物理信号(电信号)。  检测器也需要在一定的温度条件下才能正常工作,因此,采用微机对检测器进行温度控制。  根据各种样品的化学物理特性,共有五种检测器可供选择:  氢火焰离子化检测器(FID);  热导检测器(TCD);  电子捕获检测器(ECD);  氮磷检测器(NPD);  火焰光度检测器(FPD);  4.数据处理系统:  该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。  高效液相仪器构造  液相:  高效液相色谱仪主要有:进样系统、输液系统、分离系统、检测系统和数据处理系统组成。  1.进样系统  一般采用:隔膜注射进样器或高压进样间完成进样操作,进样量是恒定的。这对提高分析样品的重复性是有益的。  2.输液系统  该系统包括高压泵、流动相贮存器和梯度仪三部分。高压泵的一般压强为l.47~4.4×107Pa流速可调且稳定,当高压流动相通过层析柱时,可降低样品在柱中的扩散效应,可加快其在柱中的移动速度,这对提高分辨率、回收样品、保持样品的生物活性等都是有利的。流动相贮存错和梯度仪,可使流动相随固定相和样品的性质而改变,包括改变洗脱液的极性、离子强度、pH值或改用。  3.分离系统  该系统包括:色谱柱、连接管和恒温器等。  色谱柱一般长度为10~50cm(需要两根连用时,可在二者之间加一连接管)内径为2~5mm,由优质不锈钢或厚壁玻璃管或钛合金等材料制成,柱内装有直径为5~10μm粒度的固定相(由基质和固定液构成),固定相中的基质是由机械强度高的树脂或硅胶构成,它们都有惰性(如,硅胶表面的硅酸基因基本已除去)、多孔性和比表面积大的特点,加之其表面经过机械涂渍(与气相色谱中固定相的制备一样)或者用化学法偶联各种基因(如,磷酸基、季胺基、羟甲基、苯基、氨基或各种长度碳链的烷基等)或配体的有机化合物。  因此,这类固定相对结构不同的物质有良好的选择性,例如,在多孔性硅胶表面偶联豌豆凝集素(PSA)后,就可以把成纤维细胞中的一种糖蛋白分离出来。  另外,固定相基质粒小,柱床极易达到均匀、致密状态,极易降低涡流扩散效应。基质粒度小、微孔浅,样品在微孔区内传质短。这些对缩小谱带宽度、提高分辨率是有益的。根据柱效理论分析,基质粒度小,塔板理论数N就越大。  这也进一步证明基质粒度小,会提高分辨率的道理。再者,高效液相色谱的恒温器可使温度从室温调到60℃通过改善传质速度,缩短分析时间,就可增加层析柱的效率。  4.检测系统  高效液相色谱常用的检测器有紫外检测器、示差折光检测器和荧光检测器三种:  (1)紫外检测器  该检测器适用于对紫外光(或可见光)有吸收性能样品的检测。  其特点:使用面广(如,蛋白质、核酸、氨基酸、核苷酸、多肽、激素等均可使用);灵敏度高(检测下限为10-10g/mL);线性范围宽;对温度和流速变化不敏感;可检测梯度溶液洗脱的样品。  (2)示差折光检测器  凡具有与流动相折光率不同的样品组分,均可使用示差折光检测器检测;糖类化合物的检测使用此检测系统。这一系统通用性强、操作简单,但是,灵敏度低(检测下限为10-7g/mL),流动相的变化会引起折光率的变化;因此,它既不适用于痕量分析,也不适用于梯度洗脱样品的检测。  (3)荧光检测器  凡具有荧光的物质,在一定条件下,其发射光的荧光强度与物质的浓度成正比。因此,这一检测器只适用于具有荧光的有机化合物(如,多环芳烃、氨基酸、胺类、维生素和某些蛋白质等)的测定,其灵敏度很高(检测下限为10-12~10-14g/mL)痕量分析和梯度洗脱作品的检测均可采用。  5.数据处理系统  该系统可对测试数据进行采集、贮存、显示、打印和处理等操作,使样品的分离、制备或鉴定工作能正确开展。  高效液相色谱与气相色谱法优点和不足分析  只有20%样品可不经化学处理而能满意地用气相色谱分离,80%的有机化合物要用高效液相色谱分析。  气相色谱中流动相是惰性的,它对组分没有作用力,仅起运载作用、而高效液相色谱的流动相不仅起运载作用,而且流动相对组分有一定亲合力,可以通过改变流动相种类和组成提高分离的选择性;另外,可作流动相的化合物多,选择余地广。  与气相色谱相比,高效液相色谱仪的另一个优点是:样品的回收比较容易,只要开口容器放在柱子末端,就可以很容易地将所分离的各组分收集。回收是定量的,可以用来提纯和制备具有足够纯度的单一物质。  高效液相色谱不足的是,日前,检测器的灵敏度不及气相色谱。必须特别注意“柱外效应”对柱效率及色谱分离的影响。

厂商

2019.07.11

ICP-AES分析使用日常注意事项

  ICP-AES,需要知道哪些注意事项呢?  1、良好的实验室环境  等离子体光谱仪与其它大型精密仪器一样,需要在一定的环境下运行,失去这些条件,不仅仪器的使用效果不好,而且改变仪器的检测性能,甚至造成损坏,缩短寿命。  ①室温  等离子体光谱仪属于精密光学仪器,对环境的温度有一定的要求,如果温度变化太大,光学元件受温度变化的影响就会产生谱线漂移,仪器寻峰不准,尤其是单道扫描型的仪器,甚至有时候会找不到峰。测量标准和样品时的温差大的话会造成测定数据不稳定,一般室温要求维持在20~25摄氏度间的一个固定温度,温度变化应小于±3/小时即可。一般空调就能达到,这也要求放置仪器的房间要适中。  ②湿度  湿度过大,光学元件,特别是光栅容易受潮损坏或性能降低。曾经有厂家去用户哪打开仪器发现光栅都长毛发霉的事情,厂家要求用户付高达1万多美金改换光栅(进口离子刻蚀光栅相当的贵,好象没有国产的代替)。电子系统,尤其是印刷电路板及高压电源上的元件容易受潮烧坏。湿度对高频发生器的影响也十分重要,湿度过大,轻则等离子体不容易点燃,重则高压电源及高压电路放电击毁元件,如功率管隔直陶瓷电容击穿,输出电路阻抗匹配、网络中的可变电容放电等,以至损坏高频发生器。广东一用户两个月没有开机使用,一开机直接造成包括计算机主板在内的几块电路板烧毁,虽在保修期,但厂家拒绝免费更换。可谓损失惨重。一般要求室内湿度应小于百分之70,应控制在百分之45~60之间,南方的用户一定要有抽湿机,不然在夏季,仪器很难正常工作,有人说,他们的仪器总是在夏季发生故障,仪器损坏是季节性的,和湿度应该有一定的关系。  ③排风  仪器上放,要有良好的抽风系统,这个厂家一般是要求的,平时要注意排风系统的正常运转,每个分析人员都不愿意在有大量重金属环境下工作吧。  ④防尘  国内一般实验室都不具备防尘、过滤尘埃的设施,当实验室内需要采用排风机,排除仪器的热量及工作时产生的有毒气体时,实验室与外部就形成压力差,实验室产生负压,室外含有大量灰尘的空气从门窗的缝隙中流入室内,大量积聚在仪器的各个部位上,容易造成高压元件或接头打火,电路板及接线、插座等短路、漏电等各种各样的故障,因此,需要经常进行除尘。特别是计算机、电子控制电路、高频发生器、显示器、打印机、磁盘驱动器等,定期拆卸或打开,用小毛刷清扫,并同时使用吸尘器将各个部分的积尘吸除。对光电倍增管负高压电源线、及计算机显示器的高压线及接头,还要用纱布沾上少许无水酒精小心的抹除积炭和灰尘。磁盘驱动器及打印机清出灰尘之后,要在机械活动部件滴加少许仪表油。打印机的打印头还要拆下,用软毛刷刷扫,并用绒布抹净,防止针孔被纸屑堵塞,然后按照说明书调整一定的打印压力。  2、仪器的供电线路要符合仪器的要求  ①足够大的容量  为了保证ICP仪的安全运行,供电线路必须要有足够大的容量,ICP点火的瞬间,功率能达到6KW以上,正常运行时,输入功率也有3KW,频繁的跳闸会损坏仪器,否则仪器运行时线路的电压降过大,影响仪器寿命。  ②稳定的电网  作为一台精密测量仪器,它还需要有相对稳定的电源,供电电压的变化一般不超过+百分之5,如超过这个范围,需要使用自动调压器或磁饱和稳压器,不能使用电子稳压器,由于电子稳压器在电压高时产生削波,造成电脉冲,影响电子计算机、微处理器及相敏放大器的工作,引起误动作。一般厂家会提供专用的稳压电源或提供型号。  等子体光源是高频电源,工作中还要保证供电电路频率的稳定,连续正弦波电源才能保证这些电子电路的正常工作,仪器供电线路应单独从供电变压器的配电盘上得到,尽量不与大电机,大的通风机,空调机,马弗炉等大的用电设备共用一条供电线路,以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。尤其是金属冶练企业,不要和大型的可控硅共用电源,曾经有一铅厂,从示波器上显示的全是方波和脉冲,这是不能保证仪器正常工作的。以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。允许电流大于30安培的仪器要单独接地。一般光谱仪地线电阻要小于5欧姆,计算机地线电阻要小于0.25欧姆(ASTM)标准,以防相互干扰。  在仪器的使用中,应经常注意电源的变化,不能长期在过压或欠压下工作,根据资料介绍,当仪器在过压下工作会造成高颇发生器功率大管灯丝过度的蒸发和老化,电子管的寿命将会大大的缩短(是正常寿命的五分之~一六分之一)。如果在欠压下工作,电子管灯丝温度过低,电子发射不好,也容易造成电子发射材料过早老化,同样也缩短电子管的寿命;仪器运行中供电电压的较大波动同样也会造成高频发生器输出功率的不稳定,对测定结果的好坏影响极大,因此,应当注意供电电源的质量。  3、对气体控制系统的维护保养  ①氩气的纯度  等离子光谱仪所用氩气的纯度要使用使用高纯氩气,一般要4个9以上,氩气不纯会造成点不着火或ICP熄火。  ②气流稳定  ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。  4、对进样系统及炬管的维护  ①雾化器  是进样系统中最精密,最关键的部份,需要很好的维护和使用。要定期的清理,特别是测定高盐溶液之后,如果不及时清洗,会造成雾化器堵塞,每次测定完以后,关机之前要把吸管放进稀酸溶液清洗一会。雾化器堵塞以后,要用手堵住喷嘴反吹,千成不要用铁丝等硬物去捅。  ②炬管  每次安装炬管,位置一定要装好,防止炬管烧掉,作样时尤其是高盐份样品,炬管喷嘴会积有盐份,造成气溶胶通道不畅,常常反映出来的是测定强度下降,仪器反射功率升高等。炬管上积尘或积炭都会影响点燃等离子体焰炬和保持稳定,也影响反射功率,甚至会造成熄火。因此,要定期用酸洗,水洗,用无水乙醇洗并吹干,经常保持进样系统及炬管的清洁。长时间不清洗炬管,会造成很难清洗干净的现象。  ③氢氟酸介质  由于雾化器和炬管以及雾室都是玻璃或石英,所以在进氢氟酸介质的样品时一定要赶氢氟酸,或者更换耐氢氟酸系统,不然,你的进样系统的寿命会大大的缩短,尤其是雾化器和雾室,最强的一个实验室,就用普通进样系统进氢氟酸介质的样品,一年买了30个雾化器,10个雾室,还好他用的是国产仪器,配件比较便宜。  5、使用中其它注意事项  ①开机测定前,必须做好安排,事先标好各项准备工作,切忌在同一段时间里开开停停,仪器频繁开启容易造成损坏,这是因为仪器在每次开启的时候,瞬时电流大大高于运行正常时的电流,瞬时的脉冲冲击,容易造成功率管灯丝断丝,碰极短路及过早老化等,因此使用中需要倍加注意,一旦开机就一气呵成,把要做的事做完,不要中途关停机。  ②就是平时没有样品可测时,保证每周开一次机,运行半个小时到一个小时,如果一年甚至更长时间从来不开机,基本上仪器就得大修。长时间没开机时,开机前一定要检查气、电等是否符合相关条件。  ③每次作完实验,一定要把样品、标准等溶液远离仪器,减少挥发对仪器的腐蚀。  ④使用循环水冷的仪器,一定要用蒸馏水,防止结垢。  

厂商

2019.07.10

拉曼光谱、红外光谱、XPS工作原理及应用

  拉曼光谱的原理及应用  拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:  CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。  1. 含义  光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征  2.拉曼散射光谱具有以下明显的特征:  a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;  b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。  c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。  3.拉曼光谱技术的优越性  提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量。  ①由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。  ②拉曼一次可以同时覆盖50~4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。  ③拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。  ④因为激光束的直径在它的聚焦部位通常只有0.2~2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势,而且拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。  ⑤共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。  4.几种重要的拉曼光谱分析技术  ①单道检测的拉曼光谱分析技术;  ②以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术;  ③采用傅立叶变换技术的FT-Raman光谱分析技术;  ④共振拉曼光谱分析技术;  ⑤表面增强拉曼效应分析技术;  5.拉曼频移,拉曼光谱与分子极化率的关系  ①拉曼频移:  散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的 ,与入射光的波长无关,适应于分子结构的分析  ②拉曼光谱与分子极化率的关系:  分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积;  诱导偶极矩与外电场的强度之比为分子的极化率;  分子中两原子距离zui大时,极化率也zui大;  拉曼散射强度与极化率成正比例;  6.应用激光光源的拉曼光谱法  应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段  ①共振拉曼光谱的特点:  (1)基频的强度可以达到瑞利线的强度。  (2)泛频和合频的强度有时大于或等于基频的强度。  (3)通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。  (4)和普通拉曼相比,其散射时间短,一般为10-12~10-5S。  ②共振拉曼光谱的缺点:  需要连续可调的激光器,以满足不同样品在不同区域的吸收。  7.电化学原位拉曼光谱法  电化学原位拉曼光谱法,是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光(包括:圆偏振光和线偏振光)激发受电极电位调制的电极表面,通过测定散射回来的拉曼光谱信号(频率、强度和偏振性能的变化)与电极电位或电流强度等的变化关系。一般物质分子的拉曼光谱很微弱,为了获得增强的信号,可采用电极表面粗化的办法,可以得到强度高104~107倍的表面增强拉曼散射(Surface Enahanced Raman Scattering,SERS)光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102~103。  电化学原位拉曼光谱法的测量装置主要包括:拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成,光源一般采用能量集中、功率密度高的激光,收集系统由透镜组构成,分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件。原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置。为了避免腐蚀性溶液和气体侵蚀仪器,拉曼池必须配备光学窗口的密封体系。在实验条件允许的情况下,为了尽量避免溶液信号的干扰,应采用薄层溶液(电极与窗口间距为0.1~1mm),这对于显微拉曼系统很重要,光学窗片或溶液层太厚会导致显微系统的光路改变,使表面拉曼信号的收集效率降低。电极表面粗化的最常用方法是电化学氧化—还原循环(Oxidation-Reduction Cycle,ORC)法, 一般可进行原位或非原位ORC处理。  目前,采用电化学原位拉曼光谱法测定的研究进展主要有:  一是通过表面增强处理把测检体系拓宽到过渡金属和半导体电极。虽然,电化学原位拉曼光谱是现场检测较灵敏的方法,但仅能有银、铜、金三种电极在可见光区能给出较强的SERS。许多学者试图在具有重要应用背景的过渡金属电极和半导体电极上实现表面增强拉曼散射。  二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述。三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题。  8.拉曼信号的选择  入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正。其内标的选择原则和定量分析方法与其他光谱分析方法基本相同。  斯托克斯线能量减少,波长变长  反斯托克斯线能量增加,波长变短  9.拉曼光谱的应用方向  拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。拉曼光谱的分析方向有:  定性分析:不同的物质具有不同的特征光谱,因此,可以通过光谱进行定性分析。  结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。  定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。  10.拉曼光谱用于分析的优点和缺点  ①拉曼光谱用于分析的优点  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点  ②拉曼光谱用于分析的不足  (1)拉曼散射面积;  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;  (3)荧光现象对傅立叶变换拉曼光谱分析的干扰;  (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题;  (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响;    红外光谱的原理及应用  (一)红外吸收光谱的定义及产生  分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱  红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。  (二)基本原理  1.产生红外吸收的条件  (1)分子振动时,必须伴随有瞬时偶极矩的变化。  对称分子:  没有偶极矩,辐射不能引起共振,无红外活性,如,N2、O2、Cl2等。  非对称分子:  有偶极矩,红外活性。  (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。  2.分子的振动类型  伸缩振动:  键长变动,包括:对称与非对称伸缩振动;  弯曲振动:  键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动;  3.几个术语  基频峰:  由基态跃迁到第yi激发态,产生一个强的吸收峰,基频峰;  倍频峰:  由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰;  组频:  如果分子吸收一个红外光子,同时,激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频;  特征峰:  凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率;  相关峰:  相互可以依存而又相互可以佐证的吸收峰称为相关峰;  4.影响基团吸收频率的因素  (1)外部条件对吸收峰位置的影响:  物态效应、溶剂效应;  (2)分子结构对基团吸收谱带的影响:  诱导效应:  通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。  共轭效应:  基团与吸电子基团共轭,使基团键力常数增加,因此,基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此,基团吸收频率降低。  当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。  (3)偶极场效应:  互相靠近的基团之间通过空间起作用。  (4)张力效应:  环外双键的伸缩振动波数随环减小其波数越高。  (5)氢键效应:  氢键的形成使伸缩振动波数移向低波数,吸收强度增强  (6)位阻效应:  共轭因位阻效应受限,基团吸收接近正常值。  (7)振动耦合;  (8)互变异构的影响;  (三)红外吸收光谱法的解析  红外光谱一般解析步骤  1. 检查光谱图是否符合要求;  2.了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度;  3.排除可能的“假谱带”;  4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U  ∪=(2+ 2n4+n3–n1)/2  n4,n3,n1分别为分子中四价,三价,一价元素数目;  5.确定分子所含基团及化学键的类型(官能团区4000-1330和指纹区1330-650cm-1)  6.结合其他分析数据,确定化合物的结构单元,推出可能的结构式;  7.已知化合物分子结构的验证;  8.标准图谱对照;  9. 计算机谱图库检索。  (四)红外吸收光谱法的应用  红外光谱法广泛用于有机化合物的定性鉴定和结构分析。  定性分析  1.已知物的鉴定  将试样的谱图与标准的谱图进行对照或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图检索,则采用相似度来判别。使用文献上的谱图应当注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。  2.未知物结构的测定  测定未知物的结构,是红外光谱法定性分析的一个重要用途。如果未知物不是新化合物,可以通过两种方式利用标准谱图进行查对:  (1)查阅标准谱图的谱带索引,与寻找试样光谱吸收带相同的标准谱图;  (2)进行光谱解析,判断试样的可能结构,然后在由化学分类索引查找标准谱图对照核实。  准备工作  在进行未知物光谱解析之前,必须对样品有透彻的了解,例如,样品的来源、外观,根据样品存在的形态,选择适当的制样方法;注意视察样品的颜色、气味等,它们住往是判断未知物结构的佐证。还应注意样品的纯度以及样品的元素分析及其它物理常数的测定结果。元素分析是推断未知样品结构的另一依据。样品的相对分子质量、沸点、熔点、折光率、旋光率等物理常数,可作光谱解释的旁证,并有助于缩小化合物的范围。  3.确定未知物的不饱和度  由元素分析的结果可求出化合 物的经验式,由相对分子质量可求出其化学式并求出不饱和度。 从不饱和度可推出化合物可能的范围。不饱和度是表示有机分子中碳原子的不饱和程度。计算不饱和度W的经验公式为:  W=1+n4+(n3-n1)/2  式中n4、n3、n1分别为分子中所含的四价、三价和一价元素原子的数目。二价原子如S、O等不参加计算。  当计算得:  当W=0时,表示分子是饱和的,为 链状烃及其不含双键的衍生物。  当W=1时,可能有一个双键或脂环;  当W=2时,可能有 两个双键和脂环,也可能有一个 叁键;  当W=4时,可能有一个苯环等。  官能团分析:  根据官能团的初步分析可以排除一部分结构的可能性,肯定某些可能存在的结构,并初步可以推测化合物的类别。  图谱分析:  图谱的解析主要是靠长期的实践、经验的积累,至今仍没有一一个特定的办法。一般程序是先官能团区,后指纹区;先强峰后弱峰;先否定后肯定。  首先,在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动,再根据指纹区的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。如果是芳香族化合物,应定出苯环取代位置。zui后再结合样品的其它分析资料,综合判断分析结果,提出最可能的结构式,然后用已知样品或标准图谱对照,核对判断的结果是否正确。如果样品为新化合物,则需要结合紫外、质谱、核磁等数据,才能决定所提的结构是否正确。  4.几种标准谱图  (1)萨特勒(Sadtler)标准红外光谱图;  (2)Aldrich红外谱图库;  (3)Sigma Fourier红外光谱图库;  定量分析  红外光谱定量分析是通过对特征吸收谱带强度的测量来求出组份含量。其理论依据是朗伯-比耳定律。  由于红外光谱的谱带较多,选择的余地大,所以能方便的对单一组分和多组分进行定量分析  此外,该法不受样品状态的限制,能定量测定气体、液体和固体样品。因此,红外光谱定量分析应用广泛。但红外光谱法定量灵敏度较低,尚不适用于微量组份的测定。  定量分析方法  可用标准曲线法、求解联立方程法等方法进行定量分析。  X射线光电子能谱的原理和应用  (一)X光电子能谱分析的基本原理  X光电子能谱分析的基本原理:  一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hn=Ek+Eb+Er;其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。  对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能 Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,  式(103)又可表示为:  hn=Ek+Eb+Φ(10.4)Eb= hn-Ek-Φ(10.5)  仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。  (二)电子能谱法的特点  (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。  (2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。  (3)是一种无损分析。  (4)是一种高灵敏超微量表面分析技术。分析所需试样约10-8g即可,绝dui灵敏度高达10-18g ,样品分析深度约2nm。  (三)X射线光电子能谱法的应用  (1)元素定性分析  各种元素都有它的特征的电子结合能,因此,在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H和He以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。  (2)元素定量分折  X射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1%~2%。  (3)固体表面分析  固体表面是指最外层的1~10个原子层,其厚度大概是(0.1~1)nnm。人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。测定表面原子的电子云分布和能级结构等。  X射线  光电子能谱是最常用的工具。在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。  (4)化合物结构签定  X射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷分布方面的信息。   (四)下面重点介绍一下X射线在表面分析中的原理及应用  X射线光电子能谱法(X-ray Photoelectron Spectrom——XPS)在表面分析领域中是一种崭新的方法。虽然,用X射线照射固体材料并测量由此引起的电子动能的分布早在本世纪初就有报道,但当时可达到的分辩率还不足以观测到光电子能谱上的实际光峰。直到1958年,以Siegbahn为首的一个瑞典研究小组首次观测到光峰现象,并发现此方法可以用来研究元素的种类及其化学状态,故而取名“化学分析光电子能谱(Eletron Spectroscopy for Chemical Analysis-ESCA)。目前,XPS和ESCA已公认为是同义词而不再加以区别。  XPS的主要特点是它能在不太高的真空度下进行表面分析研究,这是其它方法都做不到的。当用电子束激发时,如,用AES法,必须使用超高真空,以防止样品上形成碳的沉积物而掩盖被测表面。X射线比较柔和的特性使我们有可能在中等真空程度下对表面观察若干小时而不会影响测试结果。此外,化学位移效应也是XPS法不同于其它方法的另一特点,即采用直观的化学认识即可解释XPS中的化学位移,相比之下,在AES中解释起来就困难的多。  1.基本原理  用X射线照射固体时,由于光电效应,原子的某一能级的电子被击出物体之外,此电子称为光电子。如果X射线光子的能量为hν,电子在该能级上的结合能为Eb,射出固体后的动能为Ec,则它们之间的关系为: hν=Eb+Ec+Ws 式中Ws为功函数,它表示固体中的束缚电子除克服各别原子核对它的吸引外,还必须克服整个晶体对它的吸引才能逸出样品表面,即电子逸出表面所做的功。上式可另表示为: Eb=hν-Ec-Ws 可见,当入射X射线能量一定后,若测出功函数和电子的动能,即可求出电子的结合能。由于只有表面处的光电子才能从固体中逸出,因而测得的电子结合能必然反应了表面化学成份的情况。这正是光电子能谱仪的基本测试原理。  2.仪器组成  XPS是精确测量物质受X射线激发产生光电子能量分布的仪器。具有真空系统、离子枪、进样系统、能量分析器以及探测器等部件。XPS中的射线源通常采用AlKα(1486.6eV )和MgKα(1253.8eV),它们具有强度高,自然宽度小(分别为830meV和680meV)。CrKα和CuKα辐射虽然能量更高,但由于其自然宽度大于2eV,不能用于高分辩率的观测。为了获得更高的观测精度,还使用了晶体单色器(利用其对固定波长的色散效果),但这将使X射线的强度由此降低。  由X射线从样品中激发出的光电子,经电子能量分析器,按电子的能量展谱,再进入电子探测器,zui后用X Y记录仪记录光电子能谱。在光电子能谱仪上测得的是电子的动能,为了求得电子在原子内的结合能,还必须知道功函数Ws。它不仅与物质的性质有关,还与仪器有关,可以用标准样品对仪器进行标定,求出功函数。  3.应用简介  XPS电子能谱曲线的横坐标是电子结合能,纵坐标是光电子的测量强度(如下图所示)。可以根据XPS电子结合能标准手册对被分析元素进行鉴定。  XPS是当代谱学领域中最活跃的分支之一,虽然,只有十几年的历史,但其发展速度很快,在电子工业、化学化工、能源、冶金、生物医学和环境中得到了广泛应用。除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。  当元素处于化合物状态时,与纯元素相比,电子的结合能有一些小的变化,称为化学位移,表现在电子能谱曲线上就是谱峰发生少量平移。测量化学位移,可以了解原子的状态和化学键的情况。  例如,Al2O3中的3价铝与纯铝(0价)的电子结合能存在大约3电子伏特的化学位移,而氧化铜(CuO)与氧化亚铜(Cu2O)存在大约1.6电子伏特的化学位移。这样就可以通过化学位移的测量确定元素的化合状态,从而更好地研究表面成份的变化情况。  X光电子能谱法是一种表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。其信息深度约为3-5nm。如果利用离子作为剥离手段,利用XPS作为分析方法,则可以实现对样品的深度分析。固体样品中除氢、氦之外的所有元素都可以进行XPS分析。  (1)通过测定物质的表层(约10nm),可以获得物质表层的构成元素和化学结合状态等方面的信息。解析基板表层附着物,解析金属薄膜等的氧化状态,计算自然氧化膜厚度,解析CF系醋酸膜,评价金属材料的腐蚀,测定磁盘润滑膜厚度,解析各种反应生成物宽幅扫描测定。  (2)应用角度分解法进行的分析  通过改变光电子的取出角度,可以采用非破坏性的方法得到深度方向的信息。另外,浅化光电子的取出角度,可以提高超表层的灵敏度。  (五)对羊毛纤维分别进行氧化处理和氯化处理  用X射线光电能谱仪对改性前后的毛纤维进行表面元素分析和基团分析,研究羊毛表面化学结构的变化情况,从微观上分析羊毛的改性机理。测试结果表明:经过氧化改性的毛纤维表面增加了锰元素,氯化改性后的毛纤维表面增加了钠、氯和硫元素。毛纤维原有的接氨基基团经过改性后都被打断而接入了含其它元素的基团。

厂商

2019.07.09

燃煤电厂烟气中汞处理技术探讨

目前,二氧化硫、一氧化碳以及氮氧化物、碳氢化物等造成的污染已为人所熟知并警觉。但废气处理厂家耀先环境这里警告大家,有一些不为我们注意的污染物,正在对我们造成现实的危害,俗称“水银”的汞,便是这样的“隐形sha手”之一。日本汞污染受害“水俣病”汞是有剧du性的微量元素,它具有挥发性和积累性。作为重点控制的重金属之一,过量的汞排放不仅会污染空气,而且会通过各种环境界面的交换,向水、土壤迁移,对生态环境和人体健康产生危害。如果汞直接或者通过大气沉降进入水体,它将以毒性更大的形态在鱼和动物组织中积累,人体接触汞主要通过食用被汞污染的鱼,高浓度的汞接触将对人体的神经系统和生长发育产生影响。汞释放被人体吸收途径据有关资料,人为的活动中汞主要来源于燃煤,火电厂的重金属污染主要来自煤的燃烧。煤燃烧过程中,部分易挥发的重金属如Hg、Pb、Zn、Ni、Cd、Cu等极易气化挥发进入烟气,然后随粉煤灰颗粒一起向烟囱移动并逐渐降温,被粉煤灰颗粒吸附,经冲灰渣水排至贮灰场。在这一过程中灰渣中部分可溶的重金属微量元素转入水中,如果冲灰渣水外排至江河,则可能对环境水体造成污染。秘鲁小镇非法采矿致汞污染变“鬼城”据统计,燃煤电厂的汞排放量占到大气汞排放总量的1/3,位居各行业之首。目前,在现有的排放标准基础上,现行的污染控制技术已经大大减少火电厂烟尘、SO2和NOx的污染问题,相应的大气污染物处理设备也得到了广泛应用。然而,烟气中汞排放的危害与控制技术研究相对滞后。据统计,自1978年至2008年,我国燃煤工业累计向大气排放汞已达8000余吨,随着经济的发展,汞的排放量还将持续增加。美国环保署于2005年3月颁布了汞排放控制标准,成为世界上首先针对燃煤电厂汞排放实施限制标准的国家。然而,我国除对生活垃圾焚烧和危险废物焚烧出台相关的控制标准外,目前国家还没有制定针对火电厂燃煤过程汞排放的控制标准。因此,一直以来对全国燃煤电厂的汞排放水平缺乏了解。同时我国燃煤电厂大气汞监测技术体系也比较欠缺,各级监测部门开展大气汞监测工作也较少,也没有相关的监测设备开展工作,由于江苏省燃煤电厂数量多、装机总容量大,因此开展燃煤电厂汞的监测方法研究可以为我国研究燃煤电厂汞排放限值、制定相应的排放标准提供有力的依据。1 现有脱汞技术1.1 洗煤技术煤中的汞与黄铁矿物有密切的关系,利用磁分离法去除黄铁矿,同时也可以除去与黄铁矿结合在一起的汞。另外,化学方法、微生物法等也可以将汞从原煤中分离。有研究表明,传统的洗煤技术能够去除煤中约38.8%的汞,如果利用化学物理洗煤技术的话,则能使原煤中汞的去除率达到64.5%。1.2 煤的热处理技术由于汞的高挥发性,在煤加热的过程中,汞会由于受热而挥发出来。有研究结果显示在400℃范围内可以高达到80%的脱汞率。1.3 燃烧中脱汞主要是利用改进燃烧方式,在降低NOx的同时,抑制一部分汞的排放,流化床燃烧方式在降低NOx排放的同时可以降低烟气中汞及其他微量重金属的排放。1.4 燃烧后脱汞燃煤电厂现有的废气处理设施对烟气中的汞具有一定的去除作用。包括除尘器、脱硫装置和脱硝装置。静电除尘器:目前大型燃煤电厂除尘以电除尘为主,且除尘效果一般可达99%以上。烟气中以颗粒态形式存在的固相汞在经过电除尘器时可以得到去除。但以颗粒态形式存在的汞占煤燃烧中汞排放的比例较低,且这部分汞大多存在于亚微米级颗粒中,而一般电除尘器由于受自身工艺的限制对这部分粒径范围内的颗粒脱除效果较差,因此电除尘器的除汞能力有限。静电除尘器布袋除尘器:相比静电除尘器,布袋除尘器能够脱除高比电阻粉尘和细粉尘,尤其在脱除细粉尘方面效果更佳。由于了大量的汞富集在细颗粒上,因此布袋除尘器在脱除烟气中汞的效果远比静电除尘器要好。布袋除尘器脱硝设施:电厂原有的老机组大部分没有脱硝设施,随着国家对火电厂污染物控制的进一步严格,老机组将进行脱硝改造,加装脱硝装置。目前常见的脱硝工艺有选择性催化还原(SCR)和选择性非催化还原(SNCR)两种。脱硝工艺能够加强烟气中汞的氧化而增加将来烟气脱硫(FGD)对汞的去除率,随着脱硝装置的应用,脱硝设施对烟气中汞的去除作用将进一步显现。脱硝设施脱硫设施:目前大部分的燃煤电厂使用石灰石-石膏湿法脱硫,脱硫设施温度相对较低,有利于HgO的氧化和Hg2+的吸收。在湿法脱硫系统中,由于Hg2+易溶于水,容易与石灰石或石灰吸收剂反应,能去除约90%的Hg2+。Hg2+所占比例是影响脱硫设施对汞去除率的主要因素,因此提高烟气中Hg2+的比例,将直接影响脱硫设施对汞的去除效果。在湿法脱硫系统中,洗涤液有时会使氧化态汞通过还原反应还原成元素汞,造成汞的二次污染。使用一些化学添加剂能够阻止这种情况发生。脱硫设施近年来,我国区域性复合型大气污染日趋严重,且形势严峻。除了传统的氮氧化物、粉尘等细粒子外,雾霾中重金属粒子的危害也日益加剧,其中又以重金属汞危害为大。近几年媒体报道出的发生在我国的多起汞污染事件,因其污染的严重性而引起全民关注,汞污染也成为备受重视的民生问题。从烟气净化装置控制汞的方面来看,应该提高现有设备的利用率,加强燃煤过程中汞的析出规律以及汞污染控制的基础理论研究,对在实际废气处理中工艺设备的选择和效率具有十分深远的意义。

厂商

2019.07.08

傅里叶红外光谱操作注意事项

  傅里叶变换红外光谱(Fourier Transform infrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步,FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。  1. 压片法 KBr 的处理和保存  压片使用的KBr不一定要光谱纯的,国外也常常使用分析纯的,但是,必须注意以下几点:  ①选择正规的产品,有水份是没有关系的,关键是没有无杂质,尤其是有机物峰,还有SO42-,NO3-等。  ②如果符合要求的话,可以处理一大批KBr。首先,用干净的玛瑙研钵仔细研磨细,然后在120℃烘干24h,或马弗炉中400℃烧30分钟,置于专用的干燥器中冷却。  ③再做个KBr红外,看看吸收。如果没有特殊吸收,就放干燥器中,可以统一保存。  ④另外使用个小称量瓶和专用药勺,取出一小部分KBr供平常使用,与统一保存的KBr要分开。保存的KBr要尽量减少开启次数。  ⑤做红外的KBr一定要专用,不要和其它实验合成的混用。药品遵循只许出,不许进的原则。处理过的KBr也是这样,以免污染。  ⑥使用光谱纯的也可,但也要进行上述处理。  ⑦打破的,做液体的溴化钾单晶片纯度很高,不要扔掉破碎的溴化钾片,可以用来压片。  2. 液膜 KBr 晶片的处理  溴化钾单晶片盐片用时间久了,不太透明或不平整,有几个办法可以彻底处理 :  ①可以用附带的抛光附件抛光。  ②可以先用最细的金相(颜色最淡的那种,物理系常常有)砂纸抛光,然后再用平绒布面上蹭。  ③国外有用一份蒸馏水+5份异丙醇混和,先滴加在绒布面抛光,然后迅速转移在干燥的绒布面上蹭。效果也很好。处理时一定要带好手套,避免手上湿气的侵蚀。  3. 操作注意事项  a.理论上,研磨的粒度要小于其红外光的波长,这样才能避免产生色散谱,注意 : 研磨过程尽量不要吸收水分,不要对着样品呼气。  b.做红外放样品时候,注意轻开轻关样品室,同时,不要面对样品室呼气,可以使背景的吸收扣的很好。  c.擦洗盐片要由里向外,有机溶剂,比如,丙酮不要沾的很多。  d.液体样品要控制好厚度。  e.手洗干净和干燥是很重要的。  4. 一些特殊样品的处理方法a.有些在溶液中生成的样品,如,配合物一类等,不易提取出来。可以把溶液滴加在的KBr中干燥,研磨。如果样品不怕加温,可以加温干燥后测试。如果样品不能加温,可以待溶剂挥发后,再放入干燥器中自然干燥后再测红外。  b.有些含水的样品,如果,没有氟化钙的盐片,可以用KBr粉末压片,把样品滴加在上面,测完后抛弃。  c.平时用坏了的KBr片,比如,摔裂的半个片都行,专门用来测含水样品。如果光面不好了,可以用异丙醇5份加水1份,滴加在绒布上抛光后使用。  d.根据样品的特点来处理样品。  举个例子,轮胎橡胶制品无法研磨,一般压片法很难制样:  ①普通制样方法得到的谱图透过率差,看不到特征吸收;  ②使用全反射方法测全反射红外谱,不仅需要附件,而且由于橡胶制品是黑色的,得到的谱图效果也差,即使,放大以后的谱图,吸收峰透过率仍然在98%~100%,而且样品的平坦度不够,不成形,不平整就无法做;  ③采用普通的压片方法,利用溶剂溶解加研磨混合制样的方法,对比了不同几种溶剂,达到了较为满意的效果。  5. 一些异常谱带的介绍  波数         化合物或结构            来源  668  CO2 大气中CO2 吸收,正或负  697  聚苯乙烯  磨损的聚苯乙烯瓶子或其他机械处理样品过程中  719  聚乙烯  实验室中常使用聚乙烯产品,有时候作为污染物出现  730  聚乙烯  同上  787  CCl4 使用CCl4后没有处理干净  794  CCl4 CCl4气体,同上  823  KNO3 无机硝酸盐与溴化钾反应物  837  NaNO3 氧化氮与窗片上的水汽生成,光源点燃有时候出现  980  K2SO4 无机硫酸盐与溴化钾离子交换的反应物  1110-1053 Si-O  使用玻璃研钵,由玻璃粉末引起的谱带,宽峰  1110  Me-O  研钵或其它物品的灰尘造成的污染,宽  1265  Si-CH3 使用硅树脂有此污染  1365  NaNO3 同837  1380, 1450  2800~2900  (CH2)n 烃类物质  1378  NO3-  溴化钾的杂质,与CH3位置相近  1428  CO32-  溴化钾的碳酸盐,及其它杂质  1613-1515 ﹥COO- 碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生  1639  H2O  少量夹带水的吸收  1764-1696 >C=O  药品的瓶盖,涂层,增塑剂等等的污染  1810  COCl2 氯仿暴露在空气中或日光氧化生成少量光气的谱带  1996  BO3-  碱金属卤代盐,NaCl中的偏硼酸离子引起  2326  CO2  CO2吸收  2347  CO2  正或负的大气中CO2吸收  3450  H2O  压片中KBr含的微量水的谱带,宽,常见  3650  H2O  石英管出现附着水引起的锐谱带  3704  H2O  近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐  6. 一些红外透光材料介绍  选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :  (1) 溴化钾 KBr : 易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;  (2) 氯化钠 NaCl : 易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;  (3) 氟化钙 CaF 2 : 不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;  (4) 氟化镁 MgF 2 : 不易潮解,透过波长0.11~8.5μm,透过率大于90%;  (5) 氟化钡 BaF 2 :不易潮解,透过波长7800~800cm(1~12μm)透过率大于90%;  (6) 金刚石 : 碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;  (7) 锗 Ge : 纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;  (8) 硅 Si : 耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;  (9) 热压块 : 用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;  (10) 塑料 : 高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;  (11) 氯化银 AgCl : 软,不易破裂,435cm-1(23μm以下),易变黑,贵;  (12) 溴化银 AgBr : 软,不易破裂,285cm-1(35μm以下),作为全反射材料;  (13) 硫化锌 ZnS : 不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;  (14) 溴(碘)化鉈 KRS -5 : TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透过率大于92%,折射率高,全反射材料,贵,有毒;  (15) 硒化锌 ZnSe : 不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;  (16) 石英 SiO 2 : 不易潮解,透过波长190nm~4.5μm,透过率大于92%;  (17) 氟化锂 LiF : 120~7000cm-1,易潮解变形;  (18) 砷化镓 GaAs : 2~14μm,耐擦拭,可代替硒化锌。

厂商

2019.07.08

高效液相色谱常见故障及操作

  【高效液相色谱仪系统】液相色谱仪主要由贮液瓶、泵、进样器、柱子、柱温箱、检测器、数据处理系统组成。对于整个系统而言,柱子、泵和检测器是核心部件同时也是易出问题的主要部位。  常见问题及解决方法  一、柱压问题  柱压问题是使用高效液相色谱过程中需要密切注意的地方,柱压的稳定与色谱图峰形的好坏、柱效、分离效果及保留时间等密切相关。所谓柱压稳定并不是指压力值稳定于一个恒定值而是指压力波动范围在345kPa 以内或在50PSI之间(在使用梯度洗脱时,柱压平稳缓慢的变化是允许的)。压力过高、过低都属于柱压问题。  1压力过高这是高效液相在使用中最常见的问题,指的是压力突然升高,  1、一般都是由于流路中有堵塞的原因。此时,我们应该分段进行检查。  (1).首先断开真空泵的入口处,此时PEEK管里充满液体,使PEEK管低于溶剂瓶,看液体是否自由滴下,如果液体不滴或缓慢滴下,则是溶剂过滤头堵塞。处理方法:用30%的硝酸浸泡半个小时,在用超纯水冲洗干净。如果液体自由滴下,溶剂过滤头正常,在检查;  (2).打开Purge阀,使流动相不经过柱子,如果压力没有明显下降,则是过滤白头堵塞。处理方法:将过滤白头取出,用10%的异丙醇超声半个小时。如果压力降至100PSI以下,过滤白头正常,在检查;  (3).把色谱柱出口端取下,如果压力不下降,则是柱子堵塞。处理方法:如果是缓冲盐堵塞,则用95%的水冲至压力正常。如果是一些强保留的物质导致堵塞,则要用比现在流动相更强的流动相冲至压力正常。假如按上面的方法长时间冲洗压力都不下降,则可考虑将柱子的进出口反过来接在仪器上,用流动相冲洗柱子。这时,如果柱压仍不下降,只有换柱子入口筛板,但一旦操作不甚,很容易造成柱效下降,所以尽量少用。问题无法解决可考虑更换色谱柱。  2、流速设定不正确:可重新设定正确流量。  3、流动相配比不正确:不同配比的流动相其黏度系数不相同,较高黏度的流动相相应的系统压力也大,如果可能可更换黏度较小的溶剂或重新设定配比。4、系统压力零点漂移:调节压力传感器的零点。  2压力过低  1、一般是由于系统泄漏,处理方法:寻找各个接口处,特别是色谱柱两端的接口,把泄漏的地方旋紧即可。拆下柱子加适当力拧紧或衬四氟薄膜。  2、泵里进了空气,但此时表现的往往是压力不稳,忽高忽低,更严重一点会导致泵无法吸上液体。处理方法:打开Purge阀,用3~5ml/min的流速冲洗,如果不行,则要用专用针筒在排空阀处借住外力将气泡吸出。  3、无流动相流出:检查储液瓶中有无流动相,沉子是否浸在流动相中,泵是否运行。  4、参比阀未关闭:将流速降低后关闭参比阀。一般降至0.1~0.2mL/min后关闭参比阀。  基线问题  1基线漂移基线漂移是色谱工作者普遍遇到的问题,在实际工作中,我们经常能遇到基线漂移的情况,特别是在梯度洗脱的时候,基线漂移是常有的事。一般说来,机器刚起动时,基线容易漂移,大概要30min的平衡时间,如果你用了缓冲溶液或缓冲盐,还有就是在低波长下(220nm)平衡时间相对会比较长,但如果你在实验过程中发现基线漂移,则你要考虑下面的原因:  1、柱温波动 控制好柱子和流动相的温度,检查是否有打开的窗户或空调对着柱温箱。  2、(即使是很小的温度变化都会引起基线的波动。通常影响示差检测器、电导检测器、较低灵敏度的紫外检测器或其它光电类检测器。)控制好柱子和流动相的温度,在检测器之前使用热交换器。  3、流通池被污染或有气体 用甲醇或其他强极性溶剂冲洗流通池(应断开柱子)。如有需要,可以用1N的硝酸(不要用盐酸)。  4、紫外灯能量不足 更换新的紫外灯  5、流动相污染、变质或由低品质溶剂配成。 检查流动相的组成,使用高品质的化学试剂及HPLC级的溶剂。  2基线噪音  对于紫外检测器, 氘灯光源打开后要预热30 min以上, 基线才能稳定。噪声是指与被测物无关的检测器输出信号的随机扰动变化, 分短期噪声和长期噪声两种。  氘灯用的过久, 接近寿命期时( 氘灯的寿命约1 000 h) , 会使基线噪音明显增加, 应及时更换氘灯。除光源外, 流路中的气泡也会产生噪音。对于判断基线噪声增大是由于光源灯的老化还是来自流路中的气泡的问题, 可将泵关上, 继续走基线, 如果噪声立即停止, 基线呈一条直线, 说明基线噪声来自流动相中的气泡, 应设法排气; 若停泵后仍有噪音出现, 应考虑是灯的问题。  基线噪音(规则的)  产生基线噪音的原因有:在流动相、检测器或泵中有空气;漏液;流动相混合不完全;温度影响(柱温过高,检测器未加热);在同一条线上有其他电子设备;泵振动。  了避免基线噪音,在正式进样之前,需要对流动相脱气;冲洗系统以除去检测器或泵中的空气;检查管路接头是否松动;泵是否漏液;是否有盐析出和不正常的噪音,如有必要,更换泵密封;用手摇动使溶剂混合均匀或使用低粘度的溶剂减少差异或加上热交换器;有其他电子设备时断开LC、检测器和记录仪,检查干扰是否来自于外部,加以更正;泵振动时在系统中加入脉冲阻尼器。  基线噪音(不规则的)  (1) 漏液:检查接头是否松动,泵是否漏液,是否有盐析出和不正常的噪音。如有必要,更换密封,检查流通池是否漏液。  (2) 流动相污染、变质或由低质溶剂配成:检查流动相的组成。  (3) 流动相各溶剂不相溶:选择互溶的流动相。  (4) 检测器/记录仪电子元件的问题:断开检测器和记录仪的电源,检查并更正。  (5) 系统内有气泡:用强极性溶液清洗系统;检测器内有气泡,清洗检测器,在检测器后面安装背景压力调节器。  (6) 流通池污染(即使是极少的污染物也会产生噪音) :用硝酸清洗流通池;  (7) 检测器灯能量时不足更换灯;  (8) 色谱柱填料流失或阻塞:更换色谱柱。  (9) 流动相混合不均匀或混合器工作不正常:维修或更换混合器,在流动相不走梯度时,不建议使用泵的混合装置。  保留时间  保留时间的漂移往往由柱老化引起,而柱老化不可能引起保留时间的无规律波动。事实上,保留时间漂移的多半原因是由于不同机理的色谱柱老化,如固定相流失(例如通过水解) ,色谱柱污染(由样品或流动相所致)等。保留时间漂移的几种最常见的原因和解决方法如下:  1色谱柱平衡  如果观察到保留时间漂移,首先应考虑色谱柱是否已经平衡。在每一次运行之前给予足够的时间平衡色谱柱。通常平衡需要10~20个柱体积的流动相,但如果在流动相中加入少量添加剂(如离子对试剂)则需要相当长的时间来平衡色谱柱。流动相污染也可能是原因之一。溶于流动相中的少量污染物可能慢慢富集到色谱柱上,从而造成保留时间的漂移。应注意:水是很容易污染的流动相成分。  2固定相稳定性  固定相的稳定性都是有限的,即使在推荐的pH范围内使用,固定相也会慢慢水解。例如,硅胶基质在pH4时水解稳定性好,水解速度与流动相类型和配体有关。双官能团配体和三官能团配体比单官能团配体的键合相要稳定;长链键合相比短链键合相稳定;烷基键合相比氰基键合相稳定的多。经常清洗色谱柱亦会加速色谱柱固定相的水解。其他硅胶基质键合相在水溶液环境中也可以发生水解,如氨基键合相等。  3色谱柱污染  保留时间漂移的另一个常见原因是色谱柱污染。HPLC色谱柱是非常有效的吸附性过滤器,它可以过滤并吸附流动相携带的任何物质。污染源可以是:流动相本身,流动相容器,连接管、泵、进样器和仪器密封垫,以及样品等。通常通过实验可判断污染的来源。样品中如果存在色谱柱上保留很强的组分,就可能是使保留时间漂移的潜在根源。这些根源通常是样品基质,如:配药中的赋形剂,生化样品(如血清)中的蛋白及类脂类化合物,食品样品中的淀粉,环境水样中的腐殖酸等。通常样品中的强保留组分具有较高的分子量,在此情况下,保留时间漂移的同时或其后会有反压的增加,可以通过使用固相提取( SPE)等样品前处理方法来去除样品基质的影响,避免色谱柱污染最简单的方法是防患于未然。相比之下,找到问题的所在并设计有效的清洗步骤以去除污染物要困难的多。通常使用在给定色谱条件下的强溶剂,但并非所有污染物都可以在流动相中溶解。如THF可去除反相色谱柱中的许多污染物,但蛋白在THF中就不能溶解, DMSO常常用于去除反相色谱柱中的蛋白。使用保护柱是个非常有效的方法。反冲色谱柱仅是不得已时采用的办法。  4流动相组成  流动相组成的缓慢变化也是保留时间漂移的常见原因。如流动相中易挥发组分的挥发及循环使用流动相等,应防止流动相由于蒸发、反应等等原因造成的变化。  保留时间重现是液相性能好坏的一个重要标志,同一种东西,两次的保留时间相差不要超过15s,超过了半分钟可看做保留时间漂移,就无法进行定性。  峰型异常问题  峰型问题是液相的主要问题,在做液相过程中,我们就是要变换不同的条件来改善不好的峰型,对于各种各样的异常峰,要区别对待,从主要问题出发,一个一个加以解决。  1.色谱图中未出峰  系统未进样或样品分解;泵未输液或流动相使用不正确;检测器设置不正确;针对以上情况成因作相应调整即可。  2.一个峰或几个峰是负峰  流动相吸收本底高;进样过程中进入空气;样品组分的吸收低于流动相。  3.所有峰均为负峰  信号电缆接反或检测器输出极性设置颠倒;光学装置尚未达到平衡。  4.所有峰均为宽峰  系统未达到平衡;溶解样品的溶剂极性比流动相差很多;色谱柱尺寸及类型选择不正确;色谱柱或保护柱被污染或柱效降低;温度变化造成的影响。  5.所出峰比预想的小  样品黏度过大;进样品故障或进样体积误差;检测器设置不正确.定量环体积不正确;检测池污染;检测器灯出现问题。  6.出现双峰或肩峰  进样量过大;样品浓度过高;保护柱或色谱柱柱头堵塞;保护拄或色谱柱污染或失效;柱塌陷或形成短通道。  7.前伸峰  进样量或样品浓度高,溶解样品的溶剂较流动相极性强;保护柱或色谱柱污染或失效。  ①柱温低:升高柱温;②样品溶剂选择不恰当:使用流动相作为样品溶剂;③样品过载:降低样品含量;④色谱柱损坏:更换柱子。  8.拖尾峰  柱超载,降低样品量;增加柱直径采用较高容量的固定相;峰干扰,对样品进行清洁过滤;调整流动相;硅羟基作用,加入三乙胺,用碱致钝化柱增加缓冲液或盐的浓度降低流动相pH值;柱内烧结不锈钢失效,更换烧结不锈钢;加在线过滤器,对样品进行过滤;死体积或柱外体积过大,将连接点降至zui低;尽可能使用内径较细的连接管;柱效下降,更换柱子;采用保护柱,对柱子进行再生。  9.出现平头峰  检测器设置不正确;进样体积太大或样品浓度太高。  10.出现鬼峰  进样阀残余峰,可能为上次样品的残余。在每次进完样后用充足的时间来平衡和清洗系统;样品中存在未知物,改进样品的预处理;流动相污染,更换新流动相,尽可能现配现用,隔夜的流动相再次使用时要过滤;尽可能使用HPLC级试剂;流路中有小的气泡,打开Purge阀,加大流速排除。  11.峰分叉  ①保护柱或分析柱污染:取下保护柱再进行分析,如果必要更换保护柱。如果分析柱阻塞,拆下来清洗。如果问题仍然存在,可能是柱子被强保留物质污染,运用适当的再生措施。如果问题仍然存在,入口可能被阻塞,更换筛板或更换色谱柱。②样品溶剂不溶于流动相改变样品溶剂,如果可能采取流动相作为样品溶剂。  12.峰变形  样品过载,减少样品载量。  13.早出的峰变形  样品溶剂选择不恰当 ①减少进样体积 ②运用低极性样品溶剂  14.早出的峰拖尾程度大于晚出的峰  柱外效应 ①调整系统连接(使用更短、内径更小的管路) ②使用小体积的流通池  15.酸性或碱性化合物的峰拖尾  缓冲不合适①使用浓度50~100 mM的缓冲液②使用Pka等于流动相pH值的缓冲液  16.额外的峰  (1)样品中有其他组分:正常现象;  (2)前一次进样的洗脱峰:①增加运行时间或梯度斜率②提高流速;  (3)空位或鬼峰:①检查流动相是否纯净 ②使用流动相作为样品溶剂 ③减少进样体积。

厂商

2019.07.04

GC进样系统的选择与使用

  一、进样系统  1、首xuan填充柱进样系统的原因:  (1)结构简单,操作和维修方便。  (2)无隔垫吹扫功能对分析结果影响不大。  (3)填充柱容量大,进样量高达10μL且样品全部进入色谱柱,分析重复性和定量准确度高,有利于微量和痕量分析。  (4)对于极性和易吸附分解的样品,很容易用玻璃衬管或玻璃柱解决。  (5)只要分离度允许,填充柱进样适用于各种挥发性样品的分析,而毛细管柱分析时必须仔细选择进样系统。  (6)对于液体样品,由于柱效有限,进样速度对分析结果影响不大,手动进样和自动进样区别不大。为提高定量精度,只要注意进样量和进样速度尽量重现即可。  2、毛细管柱进样系统:  无论采用什么色谱分析方法,毛细管柱容量和载气流量与填充柱相比都较低,虽然根据毛细管柱分析特点,设计了多种进样系统,改进了进样技术,但进样引起的定量误差总体来说比填充柱进样大。因此,毛细管柱进样系统的选择比填充柱考虑的因素多。从理论上讲某一个样品可能有多种进样系统可供选择,但实际上在性价比、操作简便性和维修保养要求等方面可能存在很大不同。选择进样系统时,应首先列出不同进样系统的优缺点,经比较后再最终确定。如:  (1)对于热稳定样品,分流-不分流进样是首xuan。  (2)对于热不稳定或易分解的样品,应选用惰性小的进样系统。  (3)在某一样品操作参数的选择中,采用大分流比和低气化温度,样品仍可能分解,应选用冷柱上进样等。  实际工作中,无论哪种进样系统,完全避免样品歧视是不可能的。色谱分析是相对定量,只要操作参数和条件能稳定重现,即使有一定程度的样品歧视,分析结果也会重复,可通过标准样品的校准来消除样品歧视对定量准确度的影响。  二、进样量:  进样量主要由样品性质、色谱柱容量、检测灵敏度和进样系统等决定。进样量过大,保留时间会变化,峰展宽或畸变,分离度变差;若组分含量低,溶剂拖尾峰可能掩盖组分峰或难以定量。进样量小,可以克服上述问题,使峰分离良好,分析准确度提高,但保留时间会拖后;若样品组分含量相差较大,微量组分可能难以检出。  进样量还和检测器的响应线性范围和动态范围有关。若进样量响应在线性范围内,定量简单,精度高。若进样量响应在动态范围内(非线性段),虽然可以定量,但定量麻烦,误差明显增大。若进样量响应超出动态范围,无法定量。对于非线性响应的FPD分析硫化物时,为了提高信噪比,适当增加进样量有利于提高灵敏度。  色谱分析中,为了减少样品的预处理,实现直接进样,提高工作效率,设计了多种大体积进样系统。  三、气化温度:  气化温度对组分分离和峰形影响很大。温度过低,会产生前延峰。温度过高,会出现分解产物或峰前沿直立。气化温度一般根据样品组成、样品量、色谱柱类型和柱温选择。如冷柱上进样,由于色谱柱插入气化室,温度过高会使柱前沿部分固定相剥落或分解,造成基线不稳和引起鬼峰。  四、隔垫:  隔垫的作用是保证进样口处于密封状态,防止漏气,避免外部气体渗入。  1、隔垫选择:  隔垫的主要性能指标是耐温和耐穿刺次数。优良的隔垫zui高使用温度可达400℃,耐穿刺次数近400次。质劣的隔垫耐温不到100℃,耐穿刺次数仅几次。实际工作中,应根据分析要求选用能满足要求的隔垫,没有必要非选用高级隔垫,关键是了解隔垫是否会对分析产生不利影响和正确使用。  2、使用注意事项:  (1)气化温度应尽可能低,温度越高隔垫寿命越短。当气化温度过高,可能由于隔垫降解而流失,产生等距鬼峰。此时气化温度可每次降低25℃直到无峰出现来判断和解决。  (2)为了减小痕量分析时隔垫中挥发物对分析的干扰,常在高温下对隔垫进行老化。  (3)隔垫螺母不要拧得太紧。优良注样器的隔垫螺母不用拧得很紧,好穿刺并延长了隔垫寿命。实验表明,隔垫螺母拧得太紧更易漏气。  (4)注射针尖要锋利,无倒刺。针尖质量对隔垫的穿刺次数影响zui大,质量不高的注射针每次进样可能割下一个约100μg硅橡胶微粒,而积存在衬管内或柱内,每个微粒能吸收高达10ˉ9g溶剂或样品,一旦被脱吸,在痕量分析中会引起鬼峰。  (5)尽量使用隔垫吹扫功能。  (6)应及时定期更换。  (7)自动进样有利于延长隔垫寿命,可大大减少隔垫的不利影响。  3、隔垫引起的故障:  (1)漏气:  样品经过隔垫流失,载气和分流流量下降,分析重复性变差。  检漏,必要时更换新隔垫。  (2)大峰后基线上移或下移:  注射进样时隔垫可能有短时间的严重漏气。  更换新隔垫或选用较细的注射针。  (3)保留时间变化:  隔垫密封不良,有间断漏气。  检漏,必要时更换新隔垫。  (4)引起鬼峰:  隔垫表面吸附样品,当程序升温时脱附而产生鬼峰。样品注射过程中把隔垫碎片带入气化室,当温度高于250℃时发生分解而产生鬼峰。  选用耐高温隔垫或适当降低进样口温度。  五、衬管:  1、衬管作用:  (1)防止隔垫碎片和不挥发性样品组分进入色谱柱,保护色谱柱不被污染。  (2)玻璃衬管比不锈钢衬管活性小,可减少对样品的催化分解,基本消除活性对定性和定量分析的影响。  (3)不同的进样方法选择不同结构、形状和规格的衬管,可提高气化效率,大大减小样品气化过程中的样品歧视。  2、衬管设计要求:  (1)尽量减小进样时样品与金属表面的接触。  (2)有不同结构和容积的衬管供选用,以适应不同进样技术的要求。  (3)衬管内壁要进行去活处理。  (4)不会对载气流动造成不良影响。  (5)更换清洗方便。  3、衬管材质:  目前有石英玻璃和硬质(高温)玻璃两种。  4、衬管形状:  (1)毛细管柱分流进样的衬管一般不用直通式,衬管内有缩径结构、烧结玻璃粉、玻璃棉或石英玻璃棉等。这主要是为了增大与样品接触的表面积,加快气化速度,减小分流歧视。同时能防止不挥发性组分和机械杂质进入色谱柱,保护色谱柱不被污染。  (2)毛细管柱不分流进样的衬管zui好采用直通式。这主要是为了使样品在气化室中尽可能少稀释,减小初始谱带宽度。衬管容积小些有利,一般为0.25~1mL。  (3)冷柱上进样不用衬管,采用保留间隙管。  (4)采用自动进样时,因进样速度快,样品挥发快,一般采用容积大的直通式衬管。  5、衬管容积:  衬管容积是影响定性和定量分析结果的重要参数之一,基本要求是衬管容积至少等于样品和溶剂气化后的体积。如果衬管容积太小,进样时柱前压会突然升高,引起样品倒灌。如果衬管容积太大,会使样品初始谱带展宽,产生柱外效应。  常用样品溶剂气化膨胀后的体积:  条件:进样体积1μL,气化温度250℃,柱前压0.14 MPa  (1)异辛烷:110μL  (2)正己烷:140μL  (3)甲苯:170μL  (4)乙酸乙脂:185μL  (5)丙酮:245μL  (6)二氯甲烷:285μL  (7)二硫化碳:300μL  (8)乙氰:350μL  (9)甲醇:450μL  (10)水:1010μL  6、衬管填充物:  玻璃衬管中填充石英玻璃棉的目的是使样品混合物均匀,充分气化,防止不挥发性组分和机械杂质进入色谱柱。  (1)石英玻璃棉填充量:  1)分流进样衬管填充量较大,不分流进样和大口径毛细管柱直接进样约为分流进样的1/5,直接进样一般不用填充。  2)高吸附性样品如农药,少填会得到更好的分析效果。  3)样品中含有非挥发性化合物或某些特殊样品,减少或改变填充量可能分析效果更佳。  4)对于高气化热的溶剂如水,适当增加填充量会得到更好的分析效果。  5)石英玻璃棉填充应均匀,不宜太紧,也不宜太松。  (2)石英玻璃棉填充位置:  一般位于注射针尖下方1~2mm左右,太远太近都会使分析结果重复性差。  (3)衬管和石英玻璃棉的硅烷化:  虽然玻璃衬管的金属活性小,但其内表面仍有活性点,石英玻璃棉也存在活性点,对于某些样品特别是农药,为了减少吸附性和分解,需进行硅烷化处理。进样器在高温操作时,硅烷化处理的有效作用只有几天,应及时更换硅烷化衬管和石英玻璃棉,否则要重新硅烷化。  常用硅烷化方法是二甲基氯硅烷化。  1)衬管或石英玻璃棉用丙酮等清洗,凉干后在5%正己烷溶液中浸泡12h左右。  2)取出浸泡后的衬管或石英玻璃棉,立即用甲醇清洗2~3次,然后在甲醇中浸泡1h左右。  3)从甲醇中取出凉干后,与二甲基氯硅烷一起在干燥条件下保存。  7、衬管密封:  玻璃衬管常用密封材料是耐温硅橡胶和石墨。衬管上端的“O”形硅胶密封圈用一段时间后,会形成载气旁路(分流、柱流量),使峰忽大忽小,造成无法定量。因此,硅胶密封圈也需要经常更换。

厂商

2019.07.03

双光子荧光显微镜的原理及操作

  双光子荧光显微镜是结合了激光扫描共聚焦显微镜和双光子激发技术的一种新技术。  双光子激发的基本原理是:在高光子密度的情况下,荧光分子可以同时吸收 2 个长波长的光子,在经过一个很短的所谓激发态寿命的时间后,发射出一个波长较短的光子;其效果和使用一个波长为长波长一半的光子去激发荧光分子是相同的。双光子激发需要很高的光子密度,为了不损伤细胞,双光子显微镜使用高能量锁模脉冲激光器。这种激光器发出的激光具有很高的峰值能量和很低的平均能量,其脉冲宽度只有 100 飞秒,而其周期可以达到 80 至 100 兆赫。在使用高数值孔径的物镜将脉冲激光的光子聚焦时,物镜的焦点处的光子密度是zui高的,双光子激发只发生在物镜的焦点上,所以双光子显微镜不需要共聚焦针孔,提高了荧光检测效率。为形态学、分子细胞生物学、神经科学、和药理学等研究领域中重要的研究手段。  1.双光子显微镜出现的背景----传统激光共聚焦显微镜的两大局限:  1)一是光毒性现象:因为共聚焦的针孔必须足够小以获得高分辨率的图像,而孔径小又会挡掉很大部分从样品发出的荧光,包括从焦平面发出的荧光,相应的,激发光必须足够强以获得足够的信噪比;而高强度的激光会使荧光染料在连续扫描过程中迅速褪色,荧光信号会随着扫描进程度进行变得越来越弱。  2)光毒作用是另外一个问题,在激光照射下,许多荧光染料分子会产生诸如单态氧或自由基等细胞毒素,所以实验中要限制扫描时间和激发光的光功率密度以保持样品的活性。在针对活性样品的研究中,尤其是活性样品生长、发育过程的各个阶段,光漂白和光毒现象使这些研究受到很大的限制。  2.为什么说双光子显微镜一般不需要配备紫外激发激光器?  双光子显微镜技术是建立在双光子激发效应的基础上的一种荧光激发技术:荧光染料分子可以同时吸收低能量的两个光子而被激发(两个光子到达荧光分子的时间间隔小于1飞秒),其激发效果可以等同于吸收一个1/2波长的高能量光子。例如,吸收两个红色波长的光子,相当于一个吸收紫外的分子。长波长的光子不易被细胞吸收,因此对活细胞的光毒性减少,也降低了光漂白。这样即起到紫外激发的功能,又避免了紫外光线对样品的伤害。  3.双光子显微镜的激光器有何特别之处?  双光子吸收几率依赖于两个入射光子在空间和时间上的重合程度(两个光子必须在10-18秒内到达)。双光子吸收截面很小,只有在具有很大光子流量的区域的荧光团才会被激发。因此所用激光器多为钛宝石激光器,可以达到皮秒或者飞秒级的扫描速度,且具有非常高的峰值功率和较低的平均功率,从而可以减小或者消除光漂白和光毒作用。最主要的是在一个很小的范围提供非常高密度的光子,可以保证双光子的同时激发。  4.双光子激发的优点是什么?  1)增加了染料的选择性:共聚焦系统的激光器(Ar, Ar/Kr, HeNe)的激发光范围在 488nm - 647nm.  这就意味着想用紫外激发荧光染料的实验进行,例如使用 DAPI , Hoescht.  而双光子的激发波长是单光子的两倍,所以紫外激发的染料能被近红外光激发。  2)减少光漂白:因为光漂白减少的减少使得用 CFP/YFP 做荧光共振能量转移( FRET )的实验的成功率提高。  3)无需特殊的物镜:从硬件的角度出发,用近红外光的波长激发紫外激发染料不需要特殊的紫外光学组件。  4)提高信噪比:激发光波长和发射光波长具有很大的差别,提高了信噪比。  5)漂白局限于焦点处:因为荧光激发只发生在物镜的焦点上,所以就不需要共聚焦针孔了。这样提高了光的检测,而且光漂白只发生在焦点上。  6)更容易穿透标本:红外波长的光不易被细胞散射,能穿透更深的标本。  5.相对于激光扫描共聚焦显微镜,双光子显微镜做的zui大改进是什么?  1)减少了光漂白。  2)减少了光毒性。  3)不易散射,更易穿透厚样品,诸如脑片。

厂商

2019.07.02

土壤中多氯联苯的前处理方法

  土壤的采集处理  依据标准:  GB17378.3-2007海洋监测规范第3部分 样品采集储运和运输  HJ/T166-2004土壤环境检测技术规范  HJ613-2011土壤干物质和水分的测定 重量法  1、样品采集  采集的样品应具有代表性,采样点应在对地区自然条件、农业生产状况、土壤性状及污染历史及现状调研的基础上确定;取样量依样品类型,污染水平,潜在干扰物质与方法的检测限而定。  2、样品处理  采集的土壤样品在运到实验室后,为避免受微生物的作用引起发霉变质,要立即将全部样品倒在塑料薄膜上或瓷盘内进行风干。由于PCBs是半挥发性的并能够光解,所以要在阴凉处慢慢风干,避免阳光直接暴晒,且风干处应防止酸碱等气体及灰尘的污染。风干后的土壤样品再进行磨碎,然后根据分析目的过筛、保存。  3、处理时的特别注意  在样品的采集及处理过程中,应注意避免样品的交叉污染,特别是当待测物的污染水平相差很大时。  土壤的样品萃取技术  1 、索氏萃取法(SoxhletExtraction)  索氏萃取作为传统的萃取方法之一,至今仍受到人们的器重,在分析非极性和中等极性痕量有机物方面得到广泛应用,在分析PCBs方面的报道也有很多,如沉积物、土壤和动植物组织等。  索氏萃取法溶剂的选择原则是:对分析物选择性好;沸点低,便于纯化和浓缩:毒性低。  常用的溶剂包括:正己烷、丙酮、石油醚、二氯甲烷等。该法的不足之处在于干燥过程耗时长,另外萃取时,硫也易从基质中萃取出来,从而影响检测器的测定,延长分析时间。自动索氏萃取技术的出现则在一定程度上降低了萃取溶剂用量,也缩短了萃取时间。  2、超声萃取法(Ultrasonic Extraction)  超声萃取法是分析固体基质最简单的技术之一。其原理是在室温下用适当的有机溶剂和样品混合,超声萃取待测物质。  其zui大优点是萃取速度快、操作简单,而且不需要特殊的仪器设备。在优化条件下,可以基本达到甚至优于索氏萃取的回收率。  尽管超声萃取样品的提取时问较短,但萃取结束后仍需要进一步离心分离有机相,因而增加了人为误差的影响。在批量处理样品时,它仍需要消耗大量时间。  常用溶剂有丙酮、正己烷、石油醚、二氯甲烷等。  3、酸碱处理萃取法  有实验表明,在萃取混合液中加入有反应性的酸、碱或经酸碱处理过的硅胶可明显地改善萃取效果,提高萃取回收率。但该种方法是建立在其它萃取方法之上的,并不能从根本上改善这些方法的局限性,且酸碱对环境也不利,故实际应用的不多。  4、蒸汽相萃取法(Bleidner法)  蒸汽相萃取法的特点是所得萃取物不需进一步净化,可直接用于色谱分析。该法已被应用于分析湖泊沉积物中PCBs和有机氯沉淀物、水中氯代农药和PCBs等分析。但该法在实际应用中并未得到很大推广。  5、 超临界流体萃取  利用超临界流体在物理、化学方面的特性,根据样品类型、目标物的沸点、分子量等选择适当的操作条件可以有选择性地把目标化合物萃取出来。由于全过程不使用或少使用有机溶剂,避免了萃取过程中溶剂对人体的损害和对环境的污染。在所有的超临界流体中,CO2由于其合适的临界条件以及物理、化学特性而最为常用,己经在土壤和沉积物中PCBs的萃取中得到了广泛应用。  并且,SFE-CO2将萃取与分离合二为一,不需回收溶剂,操作方便;在萃取的同时,可实现萃取液的浓缩和定容,避免了浓缩步骤。如果SFE的条件优化的合适,可以将SFE的萃取物直接注射进GC/MS进行分析而不需要进一步净化。  SFE作为上世纪80年代才发展起来的一种新技术,仍然存在许多不成熟的地方,如超临界流体的萃取压力较高,萃取能力小而且能耗较大。因此,如何解决高压带来的一些不利因素,使得该技术可以可靠、安全地生产是非常重要的。  6、微波辅助萃取  微波辅助萃取技术在有机化合物萃取上的应用是近几年发展起来的。与传统的萃取方法不同的是,微波加热的能量直接作用于被加热物质,空气及容器对微波基本上不吸收和反射,从而保证了能量的快速传导和充分利用。且微波萃取能对体系中的不同组分进行选择性加热,从而使目标组分直接从基体分离,具有很好的选择性。  在溶剂的选择上,微波萃取一般选用极性有机溶剂,因为非极性溶剂不吸收微波能,或者选择非极性溶剂和极性溶剂的混合溶剂;并且要求所选溶剂对目标萃取物具有较强的溶解能力,对萃取成分的后续操作干扰较少。对于土壤中PCBs的萃取,常见报道是用丙酮/正己烷混合溶剂作为萃取溶剂的,也有的采用甲苯/水混合溶剂。  微波萃取快速(通常10-30min)、溶剂用量少(约25-50mL)、重现性提高,副反应少,溶剂利用率高。与超临界流体萃取不同的是,微波萃取可以同时分析14个样品,大大提高了工作效率,因此受到不同领域研究人员的重视。但迄今为止,还不能像超临界流体萃取那样实现与检测仪器的在线联机。  样品萃取液净化技术  1、 化学法  化学法是利用化学试剂与干扰物发生化学反应,将其分解或转化成有利于有机目标化合物测定的物质,从而达到去除干扰的目的。常用的化学试剂主要有浓硫酸、KOH、NaOH、高锰酸钾等。它的主要优点是快速、有效。  2、 柱层析法  柱色谱法是分离净化PCBs最常用的一种方法。它主要是根据目标组分与干扰组分的性质,选择固体吸附剂将液体样品中的化合物吸附,然后再用合适的洗脱液洗脱,达到分离净化的目的。  在使用柱色谱法时,不仅要选择合适的固定相和洗脱液,还要确定洗脱液体积、洗脱时间,绘制洗脱曲线以达到zui佳净化分离效果。因此,柱色谱法与传统的萃取方法一样,也是一个耗时长、溶剂用量大的过程。常用的色谱填料主要有弗罗里土、硅胶、活性炭、氧化铝、凝胶等。

厂商

2019.07.01

常用化学试剂 英文缩写一览表

  A  英文缩写 全称  A/MMA 丙烯jing/甲基丙烯酸甲酯共聚物  AA 丙烯酸  AAS 丙烯酸酯-丙烯酸酯-苯乙烯共聚物  ABFN 偶氮(二)甲酰胺  ABN 偶氮(二)异丁jing  ABPS 壬基苯氧基丙烷磺酸钠  ABR聚丙烯酸酯  ABS苯乙烯-丙烯jing-丁二烯共聚物  ABVN偶氮(二)异庚腈  AC偶氮(二)碳酰胺  ACB 2-氨基-4-氯苯胺  ACNU 嘧啶亚硝脲  ACP 三氧化铝  ACR 丙烯酸脂共聚物  ACS 苯乙烯-丙烯jing-氯化聚乙烯共聚物  ACTA 促皮质素  ADC 偶氮甲酰胺  ADCA偶氮二甲酰胺  AE 脂肪醇聚氧乙烯醚  AES 脂肪醇聚氧乙烯醚硫酸酯钠盐  AI 酰胺-酰亚胺(聚合物)  AK 醇酸树脂  AM丙烯酰胺  AN 丙烯jing  AN-AE 丙烯jing-丙烯酸酯共聚物  ANM 丙烯jing-丙烯酸酯合成橡胶  AP 多羟基胺基聚醚  APP 无规聚丙烯  AR丙烯酸酯橡胶  AS 丙烯jing-苯乙烯共聚物  ASA丙烯jing-苯乙烯-丙烯酸酯共聚物  ASE 烷基磺酸酯  ATT 靛蓝  AU 聚酯型聚氨酯橡胶  AW6-乙氧基-2,2,4-三甲基-1,2-二氢化喹啉  B  英文缩写 全称  BAA 正丁醛苯胺缩合物  BAC 碱式氯化铝  BACN 新型阻燃剂  BAD 双水杨酸双酚A酯  BAL 2,3-巯(基)丙醇  BBP 邻苯二甲酸丁苄酯  BBS N-叔丁基-乙-苯并噻唑次磺酰胺  BC 叶酸  BCD β-环糊精  BCG 苯顺二醇  BCNU 氯化亚硝脲  BD 丁二烯  BE 丙烯酸乳胶外墙涂料  BEE 苯偶姻yi醚  BFRM 硼纤维增强塑料  BG 丁二醇  BGE 反应性稀释剂  BHA 特丁基-4羟基茴香醚  BHT 二丁基羟基甲苯  BL 丁内酯  BLE 丙酮-二苯胺高温缩合物  BLP 粉末涂料流平剂  BMA 甲基丙烯酸丁酯  BMC 团状模塑料  BMU 氨基树脂皮革鞣剂  BN 氮化硼  BNE 新型环氧树脂  BNS β-萘磺酸甲醛低缩合物  BOA 己二酸辛苄酯  BOP 邻苯二甲酰丁辛酯  BOPP 双轴向聚丙烯  BP 苯甲醇  BPA 双酚A  BPBG 邻苯二甲酸丁(乙醇酸乙酯)酯  BPF 双酚F  BPMC 2-仲丁基苯基-N-甲基氨基酸酯  BPO 过氧化苯甲酰  BPP 过氧化特戊酸特丁酯  BPPD 过氧化二碳酸二苯氧化酯  BPS 4,4’-硫代双(6-特丁基-3-甲基苯酚)  BPTP 聚对苯二甲酸丁二醇酯  BR 丁二烯橡胶  BRN 青红光硫化黑  BROC 二溴(代)甲酚环氧丙基醚  BS 丁二烯-苯乙烯共聚物  BS-1S 新型密封胶  BSH 苯磺酰肼  BSU N,N’-双(三甲基硅烷)脲  BT 聚丁烯-1热塑性塑料  BTA 苯并三唑  BTX 苯-甲苯-二甲苯混合物  BX 渗透剂  BXA 己二酸二丁基二甘酯  BZ 二正丁基二硫代氨基甲酸锌  C  英文缩写 全称  CA 醋酸纤维素  CAB 醋酸-丁酸纤维素  CAN 醋酸-硝酸纤维素  CAP 醋酸-丙酸纤维素  CBA 化学发泡剂  CDP 磷酸甲酚二苯酯  CF 甲醛-甲酚树脂,碳纤维  CFE 氯氟乙烯  CFM 碳纤维密封填料  CFRP 碳纤维增强塑料  CLF 含氯纤维  CMC 羧甲基纤维素  CMCNa 羧甲基纤维素钠  CMD 代尼尔纤维  CMS 羧甲基淀粉  CN 硝酸纤维素  CNA α-蒎烯树脂  COPP 共聚聚丙烯  CP 丙酸纤维素  CPE丙酸纤维素  CPL 己内酰胺  CPPG 聚氯醚  CPVC 氯化聚氯乙烯(过氯乙烯)  CR氯丁橡胶  CS 酪蛋白塑料(酪素塑料)  CSPE 氯横化聚乙烯  CTA 三醋酸纤维素  CTEE 三氟氯乙烯(氯化三氟乙烯)  CUP 铜氨纤维  CV 粘胶纤维  D  英文缩写 全称  DAF 富马酸二烯丙酯  DAIP 间苯二甲酸二烯丙酯  DAM 马来酸二烯丙酯  DAP 间苯二甲酸二烯丙酯  DATBP 四溴邻苯二甲酸二烯丙酯  DBA 己二酸二丁酯  DBEP 邻苯二甲酸二丁氧乙酯  DBP 邻苯二甲酸二丁酯  DBR 二苯甲酰间苯二酚  DBS 癸二酸二癸酯  DCCA 二氯异氰脲酸  DCCK 二氯异氰脲酸钾  DCCNa 二氯异氰脲酸钠  DCHP 邻苯二甲酸二环乙酯  DCPD 过氧化二碳酸二环乙酯  DDA 己二酸二癸酯  DDP 邻苯二甲酸二癸酯  DEAE 二乙胺基乙基纤维素  DEP 邻苯二甲酸二乙酯  DETA 二乙撑三胺  DFA 薄膜胶粘剂  DHA 己二酸二己酯  DHP 邻苯二甲酸二己酯  DHS 癸二酸二己酯  DIBA 己二酸二异丁酯  DIDA 己二酸二异癸酯  DIDG 戊二酸二异癸酯  DIDP 邻苯二甲酸二异癸酯  DINA 己二酸二异壬酯  DINP 邻苯二甲酸二异壬酯  DINZ 壬二酸二异壬酯  DIOA 己酸二异辛酯  E  英文缩写 全称  E/EA 乙烯/丙烯酸乙酯共聚物  E/P 乙烯/丙烯共聚物  E/P/D 乙烯/丙烯/二烯三元共聚物  E/TEE 乙烯/四氟乙烯共聚物  E/VAC 乙烯/醋酸乙烯酯共聚物  E/VAL 乙烯/乙烯醇共聚物  EAA 乙烯-丙烯酸共聚物  EAK 乙基戊丙酮  EBM 挤出吹塑模塑  EC 乙基纤维素  ECB 乙烯共聚物和沥青的共混物  ECD 环氧氯丙烷橡胶  ECTEE 聚(乙烯-三氟氯乙烯)  ED-3 环氧酯  EDC 二氯乙烷  EDTA 乙二胺四醋酸  EEA 乙烯-醋酸丙烯共聚物  EG 乙二醇  2-EH :异辛醇  EO 环氧乙烷  EOT 聚乙烯硫醚  EP 环氧树脂  EPI 环氧氯丙烷  EPM 乙烯-丙烯共聚物  EPOR 三元乙丙橡胶  EPR 乙丙橡胶  EPS 可发性聚苯乙烯  EPSAN 乙烯-丙烯-苯乙烯-丙烯jing共聚物  EPT 乙烯丙烯三元共聚物  EPVC 乳液法聚氯乙烯  EU 聚醚型聚氨酯  EVA 乙烯-醋酸乙烯共聚物  EVE 乙烯基乙基醚  EXP 醋酸乙烯-乙烯-丙烯酸酯三元共聚乳液  F  英文缩写 全称  F/VAL 乙烯/乙烯醇共聚物  F-23 四氟乙烯-偏氯乙烯共聚物  F-30 三氟氯乙烯-乙烯共聚物  F-40 四氟氯乙烯-乙烯共聚物  FDY 丙纶全牵伸丝  FEP 全氟(乙烯-丙烯)共聚物  FNG 耐水硅胶  FPM 氟橡胶  FRA 纤维增强丙烯酸酯  FRC 阻燃粘胶纤维  FRP 纤维增强塑料  FRPA-101 玻璃纤维增强聚癸二酸癸胺(玻璃纤维增强尼龙1010树脂)  FRPA-610 玻璃纤维增强聚癸二酰乙二胺(玻璃纤维增强尼龙610树脂)  FWA 荧光增白剂  G  英文缩写 全称  GF 玻璃纤维  GFRP 玻璃纤维增强塑料  GFRTP 玻璃纤维增强热塑性塑料促进剂  GOF 石英光纤  GPS 通用聚苯乙烯  GR-1 异丁橡胶  GR-N 丁jing橡胶  GR-S 丁苯橡胶  GRTP 玻璃纤维增强热塑性塑料  GUV 紫外光固化硅橡胶涂料  GX 邻二甲苯  GY 厌氧胶  H  英文缩写 全称  H 乌洛托品  HDI 六甲撑二异氰酸酯  HDPE 低压聚乙烯(高密度)  HEDP 1-羟基乙叉-1,1-二膦酸  HFP 六氟丙烯  HIPS 高抗冲聚苯乙烯  HLA 天然聚合物透明质胶  HLD 树脂性氯丁胶  HM 高甲氧基果胶  HMC 高强度模塑料  HMF 非干性密封胶  HOPP 均聚聚丙烯  HPC 羟丙基纤维素  HPMC 羟丙基甲基纤维素  HPMCP 羟丙基甲基纤维素邻苯二甲酸酯  HPT 六甲基磷酸三酰胺  HS 六苯乙烯  HTPS 高冲击聚苯乙烯  I  英文缩写 全称  IEN 互贯网络弹性体  IHPN 互贯网络均聚物  IIR 异丁烯-异戊二烯橡胶  IO 离子聚合物  IPA 异丙醇  IPN 互贯网络聚合物  IR 异戊二烯橡胶  IVE 异丁基乙烯基醚  J  英文缩写 全称  JSF 聚乙烯醇缩醛胶  JZ 塑胶粘合剂  K  英文缩写 全称  KSG 空分硅胶  L  英文缩写 全称  LAS 十二烷基苯磺酸钠  LCM 液态固化剂  LDJ 低毒胶粘剂  LDN 氯丁胶粘剂  LDPE 高压聚乙烯(低密度)  LDR 氯丁橡胶  LF 脲  LGP 液化石油气  LHPC 低替代度羟丙基纤维素  LIM 液体侵渍模塑  LIPN 乳胶互贯网络聚合物  LJ 接体型氯丁橡胶  LLDPE 线性低密度聚乙烯  LM 低甲氧基果胶  LMG 液态甲烷气  LMWPE 低分子量聚乙稀  LN 液态氮  LRM 液态反应模塑  LRMR 增强液体反应模塑  LSR 羧基氯丁乳胶  M  英文缩写 全称  MA 丙烯酸甲酯  MAA 甲基丙烯酸  MABS 甲基丙烯酸甲酯-丙烯jing-丁二烯-苯乙烯共聚物  MAL 甲基丙xi醛  MBS 甲基丙烯酸甲酯-丁二烯-苯乙烯共聚物  MBTE 甲基叔丁基醚  MC 甲基纤维素  MCA 三聚氰胺氰脲酸盐  MCPA-6 改性聚己内酰胺(铸型尼龙6)  MCR 改性氯丁冷粘鞋用胶  MDI 3,3’-二甲基-4,4’-二氨基二苯甲烷  MDI 二苯甲烷二异氰酸酯(甲撑二苯基二异氰酸酯)  MDPE 中压聚乙烯(高密度)  MEK 丁酮(甲乙酮)  MEKP 过氧化甲乙酮  MES 脂肪酸甲酯磺酸盐  MF 三聚氰胺-甲醛树脂  M-HIPS 改性高冲聚苯乙烯  MIBK 甲基异丁基酮  MMA 甲基丙烯酸甲酯  MMF 甲基甲酰胺  MNA 甲基丙烯jing  MPEG 乙醇酸乙酯  MPF 三聚氨胺-酚醛树脂  MPK 甲基丙基甲酮  M-PP 改性聚丙烯  MPPO 改性聚苯醚  MPS 改性聚苯乙烯  MS 苯乙烯-甲基丙烯酸甲酯树脂  MSO 石油醚  MTBE 甲基叔丁基醚  MTT 氯丁胶新型交联剂  MWR 旋转模塑  MXD-10/6 醇溶三元共聚尼龙  MXDP 间苯二甲基二胺  N  英文缩写 全称  NBR 丁jing橡胶  NDI 二异氰酸萘酯  NDOP 邻苯二甲酸正癸辛酯  NHDP 邻苯二甲酸己正癸酯  NHTM 偏苯三酸正己酯  NINS 癸二酸二异辛酯  NLS 正硬脂酸铅  NMP N-甲基吡咯烷酮  NODA 己二酸正辛正癸酯  NODP 邻苯二甲酸正辛正癸酯  NPE 壬基酚聚氧乙烯醚  NR 天然橡胶  O  英文缩写 全称  OBP 邻苯二甲酸辛苄酯  ODA 己二酸异辛癸酯  ODPP 磷酸辛二苯酯  OIDD 邻苯二甲酸正辛异癸酯  OPP 定向聚丙烯(薄膜)  OPS 定向聚苯乙烯(薄膜)  OPVC 正向聚氯乙烯  OT 气熔胶  P  英文缩写 全称  PA 聚酰胺(尼龙)  PA-1010 聚癸二酸癸二胺(尼龙1010)  PA-11 聚十一酰胺(尼龙11)  PA-12 聚十二酰胺(尼龙12)  PA-6 聚己内酰胺(尼龙6)  PA-610 聚癸二酰乙二胺(尼龙610)  PA-612 聚十二烷二酰乙二胺(尼龙612)  PA-66 聚己二酸己二胺(尼龙66)  PA-8 聚辛酰胺(尼龙8)  PA-9 聚9-氨基壬酸(尼龙9)  PAA 聚丙烯酸  PAAS 水质稳定剂  PABM 聚氨基双马来酰亚胺  PAC 聚氯化铝  PAEK 聚芳基醚酮  PAI 聚酰胺-酰亚胺  PAM 聚丙烯酰胺  PAMBA 抗血纤溶芳酸  PAMS 聚α-甲基苯乙烯  PAN 聚丙烯jing  PAP 对氨基苯酚  PAPA 聚壬二酐  PAPI 多亚甲基多苯基异氰酸酯  PAR 聚芳酰胺  PAR 聚芳酯(双酚A型)  PAS 聚芳砜(聚芳基硫醚)  PB 聚丁二烯-[1,3]  PBAN 聚(丁二烯-丙烯jing)  PBI 聚苯并咪唑  PBMA 聚甲基丙烯酸正丁酯  PBN 聚萘二酸丁醇酯  PBR 丙烯-丁二烯橡胶  PBS 聚(丁二烯-苯乙烯)  PBS 聚(丁二烯-苯乙烯)  PBT 聚对苯二甲酸丁二酯  PC 聚碳酸酯  PC/ABS 聚碳酸酯/ABS树脂共混合金  PC/PBT 聚碳酸酯/聚对苯二甲酸丁二醇酯弹性体共混合金  PCD 聚羰二酰亚胺  PCDT 聚(1,4-环己烯二亚甲基对苯二甲酸酯)  PCE 四氯乙烯  PCMX 对氯间二甲酚  PCT 聚对苯二甲酸环己烷对二甲醇酯  PCT 聚己内酰胺  PCTEE 聚三氟氯乙烯  PD 二羟基聚醚  PDAIP 聚间苯二甲酸二烯丙酯  PDAP 聚对苯二甲酸二烯丙酯  PDMS 聚二甲基硅氧烷  R  英文缩写 全称  RE 橡胶粘合剂  RF 间苯二酚-甲醛树脂  RFL 间苯二酚-甲醛乳胶  RP 增强塑料  RP/C 增强复合材料  RX 橡胶软化剂  S  英文缩写 全称  S/MS 苯乙烯-α-甲基苯乙烯共聚物  SAN 苯乙烯-丙烯jing共聚物  SAS 仲烷基磺酸钠  SB 苯乙烯-丁二烯共聚物  SBR 丁苯橡胶  SBS 苯乙烯-丁二烯-苯乙烯嵌段共聚物  SC 硅橡胶气调织物膜  SDDC N,N-二甲基硫代氨基甲酸钠  SE 磺乙基纤维素  SGA 丙烯酸酯胶  SI 聚硅氧烷  SIS 苯乙烯-异戊二烯-苯乙烯嵌段共聚物  SIS/SEBS 苯乙烯-乙烯-丁二烯-苯乙烯共聚物  SM 苯乙烯  SMA 苯乙烯-顺丁烯二酸酐共聚物  SPP :间规聚苯乙烯  SPVC 悬浮法聚氯乙烯  SR 合成橡胶  ST 矿物纤维  T  英文缩写 全称  TAC 三聚氰酸三烯丙酯  TAME 甲基叔戊基醚  TAP 磷酸三烯丙酯  TBE 四溴乙烷  TBP 磷酸三丁酯  TCA 三醋酸纤维素  TCCA 三氯异氰脲酸  TCEF 磷酸三氯乙酯  TCF 磷酸三甲酚酯  TCPP 磷酸三氯丙酯  TDI 甲苯二异氰酸酯  TEA 三乙胺  TEAE 三乙氨基乙基纤维素  TEDA 三乙二胺  TEFC 三氟氯乙烯  TEP 磷酸三乙酯  TFE 四氟乙烯  THF 四氢fu喃  TLCP 热散液晶聚酯  TMP 三羟甲基丙烷  TMPD 三甲基戊二醇  TMTD 二硫化四甲基秋兰姆(硫化促进剂TT)  TNP 三壬基苯基亚磷酸酯  TPA 对苯二甲酸  TPE 磷酸三苯酯  TPS 韧性聚苯乙烯  TPU 热塑性聚氨酯树脂  TR 聚硫橡胶  TRPP 纤维增强聚丙烯  TR-RFT 纤维增强聚对苯二甲酸丁二醇酯  TRTP 纤维增强热塑性塑料  TTP 磷酸二甲苯酯  U  英文缩写 全称  U 脲  UF 脲甲醛树脂  UHMWPE 超高分子量聚乙烯  UP 不饱和聚酯  V  英文缩写 全称  VAC 醋酸乙烯酯  VAE 乙烯-醋酸乙烯共聚物  VAM 醋酸乙烯  VAMA 醋酸乙烯-顺丁烯二酐共聚物  VC 氯乙烯  VC/CDC 氯乙烯/偏二氯乙烯共聚物  VC/E 氯乙烯/乙烯共聚物  VC/E/MA 氯乙烯/乙烯/丙烯酸甲酯共聚物  VC/E/VAC 氯乙烯/乙烯/醋酸乙烯酯共聚物  VC/MA 氯乙烯/丙烯酸甲酯共聚物  VC/MMA 氯乙烯/甲基丙烯酸甲酯共聚物  VC/OA 氯乙烯/丙烯酸辛酯共聚物  VC/VAC 氯乙烯/醋酸乙烯酯共聚物  VCM 氯乙烯(单体)  VCP 氯乙烯-丙烯共聚物  VCS 丙烯jing-氯化聚乙烯-苯乙烯共聚物  VDC 偏二氯乙烯  VPC 硫化聚乙烯  VTPS 特种橡胶偶联剂  W  英文缩写 全称  WF 新型橡塑填料  WP 织物涂层胶  WRS 聚苯乙烯球形细粒  X  英文缩写 全称  XF 二甲苯-甲醛树脂  XMC 复合材料  Y  英文缩写 全称  YH 改性氯丁胶  YM 聚丙烯酸酯压敏胶乳  YWG 液相色谱无定型微粒硅胶  Z  英文缩写 全称  ZE 玉米纤维  ZH 溶剂型氯化天然橡胶胶粘剂  ZN 粉状脲醛树脂胶

厂商

2019.06.26

气相毛细管色谱柱的五大进样方式

  一、大口径毛细管柱的直接进样  内径≥0.53mm的毛细管柱称为大口径毛细管柱,由于其内径比一般毛细管粗,柱的样品容量为填充柱的1/10~1/20,介于填充柱和常规毛细管柱之间,柱内载气流速可高达10~20mL/min,因此只需将气化室的内衬管和柱接头稍加改进,就可采用填充柱的进样口直接进样。  图中a、b、c、d为4种装有改进内衬管的大口径毛细管柱气化室的结构示意图。其中仅(a)具有隔垫吹扫功能。图 (a)为最常用的衬管,适合柱流速快的大多数分析,但当进样量大时,因内衬管容积小,样品气化后体积膨胀,瞬间气化室压力可能超过载气柱前压,会发生倒灌,而使样品蒸气反扩散至载气管路中。为了防止倒灌可使用图 (b),它为具有大容积的衬管,其上部为锥形,可防止样品倒灌,下部的锥形可保证样品快速进入毛细管柱。图 (c)的衬管为对(a)的改进。图 (d)是为向毛细管柱内直接进样而设计的,色谱柱头一直伸到内衬管的上部,样品可直接进入柱头气化。  大口径毛细管柱直接进样用衬管  二、分流进样  它是毛细管气相色谱首xuan的进样方式,注入样品后大部分样品被放空,仅有约1/100的样品进入毛细管柱,分流比可在1/20~1/200的范围调节。适用于大部分气体或液体样品的分析,尤其对未知样品使用分流进样,可保护毛细管柱不被沾污,防止柱效降低。  分流进样方式,由总流量阀控制载气的总流量,载气进入气化室分成两路,一路作为隔垫吹扫气,流量仅为1~3mL/min。另一路进入气化室与气化的样品蒸气混合后再分为两部分,其中大部分经分流口放空,仅小部分进入毛细管柱。若载气总流量为104mL/min,隔垫吹扫气设置为3mL/min,则101mL/min进入气化室,当分流流量为100mL/min时,柱内流量仅为1 mL/min,此时分流比为1/100。应看到此气路设计将柱前压调节阀安装在分流气路上,在载气总流量不变的情况下,提高柱前压,使柱流速增大,可加快分析速度;若保持柱前压不变,通过调节总流量阀可改变分流比,即总流量愈大,分流比也愈大。  分流进样口原理示意图  1-总流量控制阀;2-进样口;3-隔垫吹扫气调节阀;4-隔垫吹扫气出口;5-分流器;6-分流(不分流)电磁阀;7-柱前压调节阀;8-柱前压力表;9-分流出口;10-色谱柱  分流进样时,气化室的内衬管如图所示,其大部分都不是直通式,管内有缩径处或装有烧结板,在缩口处放置有玻璃珠或硅烷化玻璃毛,以增大与样品接触的面积,保证样品完全气化。填充物应位于衬管的中间温度zui高处,也是注射器针尖所达到处,可减少分流歧视。  气化室的内衬管  分流歧视是指在一定分流比的条件下,由于样品中不同组分的沸点差异,而造成它们的实际分流比是不同的,因而会造成进入毛细管柱的样品组成不同于原始样品的组成,从而影响定量分析的准确度。消除分流歧视的方法是在柱容量允许的条件下,依据样品浓度尽量采用小的分流比,并尽量使样品快速气化。  三、不分流进样  当分流进样不能满足对分析灵敏度的要求,或分析含有大量溶剂的样品中痕量组分时,才使用不分流进样技术。  为消除溶剂效应可采用瞬间不分流技术,即当进样开始时关闭分流电磁阀,使系统处于不分流状态,如图所示,此时进入系统的载气,仅为进入毛细管柱和隔垫清扫所需的载气量(3~5mL/min),然后向气化室注入2~3uL样品,经30~80s,待大部分气化样品开始进入毛细管柱,立即开启分流电磁阀,使系统处于分流状态。此时存留在气化室的大部分溶剂气体(显然也包括约5%的样品组分)很快从分流口放空,从而明显地消除了溶剂拖尾,使分流状态一直保持到分析结束,就可将原来被掩盖在溶剂拖尾峰中的组分分离出来。  不分流进样口原理示意图  1-总流量控制阀;2-进样口;3-隔垫吹扫气调节阀;4-隔垫吹扫气出口;5-分流器;6-分流(不分流)电磁阀;7-柱前压调节阀;8-柱前压力表;9-分流出口;10-色谱柱  F,G-用于不分流进样或程序升温气化进样的气化室的内衬管  由上述可知不分流进样不是绝dui不分流,而是一种将瞬间不分流与大部分时间分流相组合的进样方式。为获得准确的分析结果,如何确定瞬间不分流的时间间隔,就成为操作的关键。依据大多数文献报道,此时间间隔多采用0.75min,就能保证95%的样品进入色谱柱。此时间间隔也可自行测定,方法为:首先设置一个长的时间间隔,如120s,以保证全部样品组分都进入色谱柱,分析后从谱图上找到紧挨拖尾溶剂峰后的一个被完全分离的色谱峰作测定标志,测出该峰的峰面积值,它就代表百fen百的样品进入了色谱柱。然后逐步缩短不分流时间间隔,如100s、80s、60s、40s,分别进样分析,再计算标志色谱峰的峰面积与第yi次分析时的峰面积比值,直到此值达到≥0.95,即为瞬间不分流的zui佳时间间隔,如图所示。  分流/不分流电磁阀开启时间的影响  (a)放空阀开启太早,只有少量样品进入柱内;  (b)放空阀开启太晚,zui后样品被大大稀释,溶剂峰严重拖尾;  (c)放空阀开启时间恰到好处  一般地讲,使用高沸点溶剂比低沸点溶剂有利,因为溶剂沸点高时,容易实现溶剂聚焦,且可使用较高的色谱柱初始温度,还可降低注射器针尖歧视以及气化室的压力突变。表1中列出了常见的溶剂及其沸点和实现溶剂聚焦宜采用的色谱柱初始温度。  表1 常贝溶剂的沸点和实现溶剂聚焦宜采用的色谱柱初始温度  注:①只能用于固定液交联的色谱柱。  对高沸点样品,不分流时间间隔长一些有利于提高分析灵敏度,而不影响测定准确度;对低沸点样品,则尽可能采用短的不分流时间间隔,以便既能zui大限度消除溶剂拖尾,又可保证分析的准确度。  使用不分流进样时,样品进入毛细管柱的绝dui量比分流进样多,并利用了溶剂效应(又称溶剂聚焦),使与溶剂挥发性相接近的微量组分被浓缩在尚未挥发的溶剂中,从而获得微量组分的狭窄谱带并提高了分离度,还可提高检测的灵敏度和定量测定结果的准确度。  应当指出,溶剂效应的正确应用会受到气化室温度,毛细管柱柱箱温度,进样量和样品中溶剂沸点的制约,它是在气化室温度、柱箱温度皆低于溶剂沸点20~25℃的条件下产生的。当气化后溶剂样品混合物大量进入色谱柱头时,大量低沸点的溶剂会在柱入口内壁短期凝聚一层越来越厚的溶剂液膜(df),起临时固定液的作用,因而会造成毛细管柱的相比β值大幅下降,但溶质的分配系数Kp保持恒定,因此会随溶剂液膜df的加厚,使样品中所有组分的容量因子k大大增加  式中,r0为柱内径。  这样使进样后的样品组分的谱带前沿,总是在一个越来越厚的混合固定液液膜上移动,而样品谱带的后部则是在一个相对较薄的液膜(主要是固定液的液膜)上移动,结果使样品谱带的前沿移动得慢,而谱带后部移动得快,从而使每个组分的谱带被压缩而变窄,呈现出溶剂聚焦的效应。  另一方面,溶剂的极性一定要与样品的极性相匹配,且要保证溶剂在所有被测样品组分之前出峰,否则早流出的峰就会被溶剂的大峰掩盖。同时,溶剂还要与固定相匹配,才能实现有效的溶剂聚焦。不分流进样也是分析高沸点痕量组分的首xuan方法。  当采用不分流进样方式时,气化室温度设置可比分流进样时稍低一些,以使样品在气化室滞留时间长一些,气化速度稍慢一些。但此温度下限应能保证待测组分在瞬间不分流时间间隔内能完全气化。进样后应尽量采用程序升温方式操作,以保证溶剂聚焦的良好结果。进样量不宜超过2~3uL,应采用容积大的内衬管,否则会产生样品倒灌;进样速度应快些,进样速度的重现性会影响分析结果的重复性。  四、冷柱头进样  对受热不稳定的样品,可将其直接注入处于室温或更低温度下的毛细管柱柱头。此时气化室的结构特点如图所示:无加热装置,但有冷空气或制冷剂(液态N2或CO2)的入口和出口;注射针入口处无进样隔垫,但有一停止阀可阻止或允许注射针将样品注入冷柱头。进样时,先把注射针头插入进样通道,停在停止阀上部,再开启停止阀,将针头插到毛细管柱头上,快速注射(约0.5uL)样品,然后将注射针头提回到停止阀上部,关上阀门,拔出注射针,立即开始程序升温分析。  此进样系统的密封是依据专用注射针头(外径0.23mm、长80mm)和进样通道(内径0.3mm)的紧密配合来实现的。  冷柱头进样口  冷柱头进样时,柱温比所用溶剂的沸点低25~30℃,气化后的溶剂在柱头处冷凝,此层溶剂形成临时性液膜固定相,在载气流的作用下伸展产生溢流区(图8-59中A),当溶质分布于整个溢流区,会引起进样谱带的展宽(图8-59中B),为抑制此种现象产生,可使用保留间隙技术。保留间隙是一段经过去活处理但没有固定相的毛细管,因此它对任何溶质或溶剂都无保留作用,即k'=0。保留间隙的去活试剂应与溶剂的性质相近,例如样品的溶剂是非极性时,则应采用非极性去活试剂(如D4;八甲基环四硅氧烷),以使溶剂与保留间隙表面有很好的润湿性。通常当进样1~2uL时,保留间隙长度为0.5~1.0m,溶剂的溢流区就处于保留间隙柱区,当溶剂蒸发时,随载气向前移动,较易挥发的组分(k  保留间隙的作用可总结为:  ①通过溶剂聚焦和固定液聚焦使进样谱带变窄;  ②解决溢流区太长产生峰劈裂问题;  ③可以作为保护柱使非挥发性脏组分不进入分析柱;  ④可作为细口径毛细管柱与自动柱上进样器匹配的界面;  ⑤用作 LC-GC联用的界面。  保留间隙使用很多次后,钝化层会剥落下来露出表面的吸附点,所以工作中要注意更换新的保留间隙,实际经验是保留间隙约可进样100次。  冷柱头进样方式的保留间隙作用机理  o为易挥发组分;·为高沸点组分  冷柱头进样的优点是消除了宽沸程样品组成的失真和受热不稳定样品的吸附与分解;分离的柱效高,灵敏度、准确度和精密度都比较高。缺点是仅适于分析浓度簇0.1%的样品,对高浓度样品需稀释后再进样,否则引起柱超载;专用的细长注射针头操作不当易损坏;长期使用柱头易被沽污;各组分的保留值重复性较差。  冷柱头进样远不及分流进样、不分流进样使用得那么普遍,冷柱头进样器不是气相色谱仪的标准配置,是需另购的选件,会增加分析成本。  五、程序升温气化进样(PTV)  将气体或液体样品注入气化室处于低温的内衬管后,立即按设定的程序升温步骤,迅速提高气化室的温度,再实现样品的快速气化。此种气化室的结构如图所示。它的结构特点是:  ①气化室既有实现快速升温的程序升温电热装置,又有可使之快速降温的半导体制冷装置或可通入制冷剂(液态N2或CO2)的进、出口通道;  ②配有分流阀,可实现分流进样和不分流进样;  ③进样口可采用无隔垫进样头,配有专用的停止阀,也可配备有隔垫的进样头。  采用无隔垫进样头的PTV进样口  由上述结构可看出,它在实现程序升温气化进样的同时,也兼有分流/不分流进样和冷柱头进样的功能,是用于毛细管柱气相色谱分析的通用进样器。由于其构造复杂,其价格约为分流/不分流进样器的3倍,为冷柱头进样器的1.5倍,因其功能齐全,gao档气相色谱仪已配备了此种通用进样器。  此进样器具有既可将样品低温捕集又可将样品快速气化的功能,完全消除了宽沸程样品的进样失真和分流歧视;可在气化室实现对样品的浓缩;使不挥发物滞留在内衬管中,保护了毛细管柱。它具有的进样操作方式如下:  ①程序升温气化分流进样,适合于绝大部分样品分析,当进行方法研究或筛选样品时,应首先使用此种进样方式。  ②程序升温气化不分流进样,适合于痕量组分分析,其操作要求和一般不分流进样相似,仅瞬间不分流时间间隔要长一些,0.5~1.5min,且进样量可大于一般不分流进样。  ③冷柱头进样,不启动程序升温,适合于受热易分解样品的分析。  ④溶剂消除不分流进样,可选择性地除去样品中的大量溶剂,达到浓缩痕量组分的目的。  进样时,先关闭分流阀,控制气化室温度稍低于溶剂的沸点,缓慢注入样品,进样后立即打开分流阀,可采用大的放空流量(可高达每分钟几百毫升),同时以低的程序升温速率升高气化室的温度,加速溶剂的气化一,待大部分溶剂蒸气放空后,立即关闭分流阀,待气化室达到设定高于柱温的温度,可启动色谱柱程序升温程序进行样品分析。此方法的缺点是有部分低沸点组分会随溶剂一起放空,而使分析获得的样品组成失真。  由以上介绍的用于毛细管柱的直接进样、分流进样、不分流进样、冷柱头进样和程序升温气化进样五种不同操作方式,可看到影响毛细管柱分离效果的因素远比填充柱复杂,但也提供了改善分离效果的更多调节因素。因此掌握毛细管柱的不同进样技术,也已成为色谱分析工作者必须掌握的基本功。

厂商

2019.06.25

温度与HPLC分离选择性的关系

  调整高效液相色谱仪的温度后会对分离的选择性产生影响,四种防腐剂的分离情况清楚地告诉我们,为什么用户关心的不仅是检测分析的速度还有分析的选择性。虽然几乎所有的现代化和和自动化的高效色谱仪都有色谱柱温度控制功能,但在大多数情况下,高效色谱检测分析方案的设计中色谱柱温度并不是一个重要参数。   在实验室的日常工作中,提高色谱柱温度的首先是一种降低流动相粘度的方法,其次是在流量恒定时降低色谱柱背压的方法,因此,提高柱温就是提高高效液相色谱检测分析的动力学性能。众所周知,温度提高之后不仅对色谱分析的速度有影响,而且对色谱柱中的物质滞留情况也有影响。原则上,范特霍夫方程描述了不同温度下某反应的平衡常数:  公式1  公式1中的保留因子k描述的就是与色谱柱的温度相关的系数;  式中△H0表示的是流动相和 固定相之间分析物的焓变;  △Hs表示的是相应的熵变;  ?是表示相位关系的反应商。  从公式中可以清楚的看出:lnk与时间1/T之间的关系是线性关系,也就是说可以通过两个检测点就确定它们之间的相互关系,但实际中,线性关系都有很好的相似性,尤其是高效液相色谱检测分析中,经常会出现出现偏差。因此,在要求严格的色谱分析中至少要采集三个检测点以上的数据,另外,应放弃利用外推法对测量范围以外的温度进行预测。图1所示的曲线就是非常有意思的范特霍夫方程曲线。这是邻苯二甲酸二乙酯、苯甲酸甲酯、对羟基苯甲酸甲酯和对羟基苯甲酸乙酯四种防腐剂在极性基团的反相色谱法分离时,利用含磷酸盐的水-甲醇洗脱液洗脱至酸碱度为PH 7时的色谱图。检测时,每5摄氏度进行一次检测,在20摄氏度至75摄氏度的范围内的检测结果显示出很好的线性度,因此,即使用很少的检测点也能够很好地描述这种相互关系。特别引人注目的是各条直线有着不同的斜率,而不同的斜率最终导致在观察温度范围内的洗脱点附近会出现直线交叉。这一点在实际工作中有着非常重要的意义,也是色谱分离成功与否的关键,必须给予高度的关注。图1 根据公式1得出的四种防腐剂的范特霍夫色谱曲线图图2:四种防腐剂在12个不同温度条件下的色谱分离图  zui佳的分析温度  在实验室日常工作中,通常都是在40摄氏度时开始HPLC高效液相色谱分离的。在这样的温度条件下不管洗脱液采用何种原理预热、色谱柱温度是如何监控的,常规的色谱柱温箱都能够可靠地进行调整。改变前例中的温度,即不是从40摄氏度开始,则注射到色谱柱中的四种物质只有一个“带肩”的色谱峰和一个乍看起来非常不起眼的色谱峰。这肯定不是适合这四种防腐剂样本的色谱检测方法,而不适合的唯yi原因就是选择性对温度的依赖关系。范特霍夫曲线告诉我们:在40摄氏度(垂直线)时苯甲酸甲酯和对羟苯甲酸乙酯共洗脱,而此时邻苯二甲酸二乙酯和对羟苯甲酸甲酯之间选择性还有些不足。  在图中可以看出邻苯二甲酸酯和苯甲酸在范特霍夫曲线有着相似的斜率,这同样也适用于两个对羟基苯甲酸酯类,不同的是它们的保留时间对温度的依赖性更强一些。究其原因是因为它们的化学结构有所不同,所用固定相也有所不同,固定相中的烷基链中含有甲酰胺的功能。在它们的作用下氮的孤对电子会结合成氢键,氢氧基相当强的氢键供体功能对两种对羟基苯甲酸酯有着相当强烈的相互作用,使它们两种物质不可能相互混合在一起。在这一分离系统中,对羟基苯甲酸酯的保留机制使其有着明显更大的焓变,而这也确保了它的保留因子有着更强的温度依赖性。  特殊的温度在实验室的实际应用中有什么意义呢?在图2可以看出,在20摄氏度时,方法选择性洗脱的顺序是邻苯二甲酸二乙酯  除了洗脱顺序发生了改变之外,四种物质在75摄氏度时的保留时间都明显缩短了。温度在20摄氏度时保留因子k=2.6~k=6.6,在75摄氏度时保留因子减小到k=1.0~2.6。由于较低的选择性和较低的保留因子,因此在温度较高时的分辨率明显下降了。另一方面,色谱分析时间也在多种因素作用下从1.3分钟左右缩短到了0.6分钟左右。原则上,一个必须注意的标准就是:第yi个色谱峰的保留时间要大于k=1,zui后一个色谱峰的保留时间不要大于k=10。根据这一标准, 20摄氏度的分析方法明显有着整体较高分辨率,是zui好的分析方法。不到1.5分钟的分析时间也属于足够快的色谱分析了。  有关温度的选择性优化  利用范特霍夫方程可以通过几次测量就能很好的预测物质不同温度下的保留因子k值。在一般情况下,在允许区域边界的两个温度条件下的检测就足够了,但建议使用三个温度、以便验证线性度。得到的曲线能够迅速地反应选择性的变化情况和洗脱顺序的变化情况。这也就可以利用图形来确定温度了:当图中所有温度点的垂直距离zui大时,选择性的整体分布也是zui佳的。

厂商

2019.06.24

利用色谱法测定食品中可溶性磷酸盐含量

  采用色谱法测定可溶性磷酸盐含量。由聚苯乙烯二乙烯苯树脂填装而成的Aminex HPLC 柱,通过离子调节分配层析技术,在特定的色谱条件下,将可溶性磷酸盐以PO43-形式被检测出来,并用外标法定量。  磷酸盐常被作为重要的食品配料和功能添加剂,然而膳食中磷酸盐食量过多,会降低人体对钙的吸收,造成缺钙。同时,磷酸盐又是引起水体富营养化的关键因素之一,是评价水体水质的重要指标。所以对于可溶性磷酸盐的测定显得尤为重要。目前实验室广泛采用的测定磷酸盐的方法——钼锑抗分光光度法,虽然操作简单,但其络合物稳定时间短,检测限高,灵敏度低,不利于样品中微量磷的测定。  为了提高检测灵敏度,降低检测限,本方法采用由聚苯乙烯二乙烯苯树脂填装而成的Aminex HPLC 柱,通过离子调节分配层析技术(包括离子排阻、离子交换、正相和反相分配、分子量排阻和配体交换),在特定的色谱条件下,将可溶性磷酸盐(包括H2PO4-、HPO42-、PO43-)以PO43-形式被检测出来,并用外标法定量。  实验部分  仪器与试剂  1.仪器  高效液相色谱仪,分析条件,如表1所示。  2.试剂  磷酸二氢钾:GB/T 1274-2011  高纯水: MILLI-Q超纯水器制备  实验步骤  1.制作标准曲线  称取0.0266g分析纯磷酸二氢钾(99%),用适量水溶解后转移至100ml容量瓶中,定容后混匀,称为磷酸二氢钾标准母液。取7个1.5ml的离心管分别编号为1、2、3、4、5、6、7,按表2所示,将磷酸二氢钾标准母液稀释成7个浓度梯度。  2.绘制标准曲线  将上述标准系列置于离心机中离心,从低至高浓度依次进样,进样体积为20ul,得到不同浓度磷酸盐的色谱图,如图1所示。记录7个梯度的磷酸盐浓度(以PO43-计,g/L)对应的峰面积数值,如表3所示,以磷酸盐的浓度(以PO43-计,g/L)为横坐标,峰面积为纵坐标,绘制标准曲线,如图2所示。  标准曲线的相关系数R2达到0.9994,符合线性要求,从而得到磷酸盐浓度(以PO43-计,g/L)的计算公式如下:  Y = aX + b  式中:  Y —— 峰面积  X ——磷酸盐的浓度(以PO43-计,g/L)  a —— 119426  b —— 0  3.样品测定  称量一定量的样品,加高纯水溶解,在100ml容量瓶中定容,混匀。(控制稀释后样品中的PO43-浓度不超过标准曲线的zui大测量范围)将稀释后的样品离心,取上清液,进色谱分析得到结果。  结果与讨论  1.准确度验证  向10个不同的样品中添加一定量的标准样品,色谱分析得到结果,计算加标回收率,回收率为96.67%~100.67%,平均值为98.67%,都在可接受的范围内,证明该实验方法符合要求的准确度,如表4所示。  2.精密度验证  6个样品分别重复进样6次,色谱分析得到结果,计算相对标准偏差,六组相对标准偏差数据本实验测定的相对标准偏差为0.1%~0.34%,平均值为0.19%,证明该实验方法符合要求的精密度,如表5所示。  结论  本实验利用色谱仪灵敏度高、检测限低、精密度高的特点,建立了一种色谱法测定食品中可溶性磷酸盐,操作简单方便、用时短,并且通过准确度和精确度实验,验证了该方法的可行性。  (源于实验与分析)

厂商

2019.06.24

傅里叶变换红外光谱常见问题及注意事项

  傅里叶变换红外光谱(Fourier Transform infrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步,FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。  1. 压片法 KBr 的处理和保存  压片使用的KBr不一定要光谱纯的,国外也常常使用分析纯的,但是,必须注意以下几点:  ①选择正规的产品,有水份是没有关系的,关键是没有无杂质,尤其是有机物峰,还有SO42-,NO3-等,可以先做个红外看看纯度。  ②如果符合要求的话,可以处理一大批KBr。首先,用干净的玛瑙研钵仔细研磨细,然后在120℃烘干24h,或马弗炉中400℃烧30分钟,置于专用的干燥器中冷却。  ③再做个KBr红外,看看吸收。如果没有特殊吸收,就放干燥器中,可以统一保存。  ④另外使用个小称量瓶和专用药勺,取出一小部分KBr供平常使用,与统一保存的KBr要分开。保存的KBr要尽量减少开启次数。  ⑤做红外的KBr一定要专用,不要和其它实验合成的混用。药品遵循只许出,不许进的原则。处理过的KBr也是这样,以免污染。  ⑥使用光谱纯的也可,但也要进行上述处理。  ⑦打破的,做液体的溴化钾单晶片纯度很高,不要扔掉破碎的溴化钾片,可以用来压片。  2. 液膜 KBr 晶片的处理  溴化钾单晶片盐片用时间久了,不太透明或不平整,有几个办法可以彻底处理 :  ①可以用附带的抛光附件抛光。  ②可以先用最细的金相(颜色最淡的那种,物理系常常有)砂纸抛光,然后再用平绒布面上蹭。  ③国外有用一份蒸馏水+5份异丙醇混和,先滴加在绒布面抛光,然后迅速转移在干燥的绒布面上蹭。效果也很好。处理时一定要带好手套,避免手上湿气的侵蚀。  3. 操作注意事项  a.理论上,研磨的粒度要小于其红外光的波长,这样才能避免产生色散谱,注意 : 研磨过程尽量不要吸收水分,不要对着样品呼气。  b.做红外放样品时候,注意轻开轻关样品室,同时,不要面对样品室呼气,可以使背景的吸收扣的很好。  c.擦洗盐片要由里向外,有机溶剂,比如,丙酮不要沾的很多。  d.液体样品要控制好厚度。  e.手洗干净和干燥是很重要的。  4. 一些特殊样品的处理方法  a.有些在溶液中生成的样品,如,配合物一类等,不易提取出来。可以把溶液滴加在的KBr中干燥,研磨。如果样品不怕加温,可以加温干燥后测试。如果样品不能加温,可以待溶剂挥发后,再放入干燥器中自然干燥后再测红外。  b.有些含水的样品,如果,没有氟化钙的盐片,可以用KBr粉末压片,把样品滴加在上面,测完后抛弃。  c.平时用坏了的KBr片,比如,摔裂的半个片都行,专门用来测含水样品。如果光面不好了,可以用异丙醇5份加水1份,滴加在绒布上抛光后使用。  d.根据样品的特点来处理样品。  举个例子,轮胎橡胶制品无法研磨,一般压片法很难制样:  ①普通制样方法得到的谱图透过率差,看不到特征吸收;  ②使用全反射方法测全反射红外谱,不仅需要附件,而且由于橡胶制品是黑色的,得到的谱图效果也差,即使,放大以后的谱图,吸收峰透过率仍然在98%~100,而且样品的平坦度不够,不成形,不平整就无法做;  ③采用普通的压片方法,利用溶剂溶解加研磨混合制样的方法,对比了不同几种溶剂,达到了较为满意的效果。  5. 一些异常谱带的介绍  波数         化合物或结构            来源  668 CO2 大气中CO2 吸收,正或负  697 聚苯乙烯 磨损的聚苯乙烯瓶子或其他机械处理样品过程中  719 聚乙烯 实验室中常使用聚乙烯产品,有时候作为污染物出现  730 聚乙烯 同上  787 CCl4 使用CCl4后没有处理干净  794 CCl4 CCl4气体,同上  823 KNO3 无机硝酸盐与溴化钾反应物  837 NaNO3 氧化氮与窗片上的水汽生成,光源点燃有时候出现  980 K2SO4 无机硫酸盐与溴化钾离子交换的反应物  1110-1053 Si-O 使用玻璃研钵,由玻璃粉末引起的谱带,宽峰  1110 Me-O 研钵或其它物品的灰尘造成的污染,宽  1265 Si-CH3 使用硅树脂有此污染  1365 NaNO3 同837  1380,1450  2800~2900 (CH2)n 烃类物质  1378 NO3- 溴化钾的杂质,与CH3位置相近  1428 CO32- 溴化钾的碳酸盐,及其它杂质  1613-1515 ﹥COO- 碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生  1639 H2O 少量夹带水的吸收  1764-1696 >C=O 药品的瓶盖,涂层,增塑剂等等的污染  1810 COCl2 lv仿暴露在空气中或日光氧化生成少量光气的谱带  1996 BO3- 碱金属卤代盐,NaCl中的偏硼酸离子引起  2326 CO2 CO2吸收  2347 CO2 正或负的大气中CO2吸收  3450 H2O 压片中KBr含的微量水的谱带,宽,常见  3650 H2O 石英管出现附着水引起的锐谱带  3704 H2O 近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐  6. 一些红外透光材料介绍  选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :  (1)溴化钾 KBr : 易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;  (2)氯化钠 NaCl : 易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;  (3)氟化钙 CaF 2 : 不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;  (4)氟化镁 MgF 2 : 不易潮解,透过波长0.11~8.5μm,透过率大于90%;  (5)氟化钡 BaF 2 :不易潮解,透过波长7800~800cm(1~12μm)透过率大于90%;  (6)金刚石 : 碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;  (7)锗 Ge : 纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;  (8)硅 Si : 耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;  (9)热压块 : 用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;  (10)塑料 : 高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;  (11)氯化银 AgCl : 软,不易破裂,435cm-1(23μm以下),易变黑,贵;  (12)溴化银 AgBr : 软,不易破裂,285cm-1(35μm以下),作为全反射材料;  (13)硫化锌 ZnS : 不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;  (14)溴(碘)化鉈 KRS -5 : TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透过率大于92%,折射率高,全反射材料,贵,有毒;  (15)硒化锌 ZnSe : 不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;  (16)石英 SiO 2 : 不易潮解,透过波长190nm~4.5μm,透过率大于92%;  (17)氟化锂 LiF : 120~7000cm-1,易潮解变形;  (18)砷化镓 GaAs : 2~14μm,耐擦拭,可代替硒化锌。

厂商

2019.06.20

想不到吧?废旧的PFA储液瓶可循环利用哦

  PFA储液瓶在使用过后,一些化工PFA储液瓶就会在仓库积存很长时间,从而引发火灾、中毒和环境污染等隐患。按照《化学药品管理规定》和《易燃易爆化学品管理制度》,废弃化工PFA储液瓶必须由专业机构进行无害化处理,工厂也需要建立化工PFA储液瓶等废弃物常态化处理制度。  化工PFA储液瓶在生活中的用途很多,这就需要自己在平时生活中善于发现,多多动手,不仅是化工PFA储液瓶,还可以是其他的塑料瓶呢。  今天悄悄滴告诉你一种简单可行的方法,将实验室大量废旧500ml液体细口PFA储液瓶进行简单加工,就能得到500ml烧杯和漏斗啦,这个法子既节约资源又保护了环境。  500ml烧杯是实验室中使用率很高的仪器之一。烧杯不仅使用率高破损率也高,原因主要有两点:  1、多次使用后,加热时破裂(该情况较少)。  2、不小心撞破。如有些人员使用不当,把烧杯当“笔筒”来使用。用来放试管、镊子、试管夹、玻璃棒、滴管等,因此经常发生往烧杯中放置试管、镊子等时,撞破烧杯底的情况。  由此可见,实验室需要大量500ml烧杯,而烧杯又易破损。笔者在实验室工作时,发现常要扔掉大量500ml废旧液体PFA储液瓶,PFA储液瓶的瓶壁厚度又明显比500ml烧杯壁厚。于是便想可不可以将PFA储液瓶瓶口部分切掉,这样既可以得到一个结实的烧杯又可以得到一个漏斗。  问题的分析与解决  PFA储液瓶的选取:有无色和棕色之分,由于无色较多,故以选500ml无色PFA储液瓶为主来制烧杯。  PFA储液瓶细口的切割:1、用玻璃刀切割,但实验室无工具,不易实现。2、笔者在杂志上读过一篇关于用热胀冷缩法来切割试管制玻璃管的文章,简单易行。那么可否利用该法来切割放大版的“试管”呢?经过十次试验,全部成功,且切口十分完美。  制作过程  第yi步:用棉质细线(笔者用的是做布鞋底的线),在瓶身变细处绕3圈左右(若线很细可以多绕几圈,以便可以多吸酒精)。要尽量使线绕的越窄越好。塞好线头,放平瓶身。用滴管吸取酒精,然后慢慢将细线用酒精润湿,注意不要使酒精流到线以外的地方。  第二步:放平瓶身,点燃棉线并不断转动,直到火焰熄灭为止。  第三步:用镊子迅速取掉细线,并尽快将烧热的部分浸没在冷水中。这时瓶口由于热胀冷缩会很快掉下来,分割成功。  第四步:由于分割口较锋利,可用砂纸打磨。

厂商

2019.06.19

【科普】色谱联用技术浅析

  人类进入21世纪,科学技术高度发展,先进的分析仪器不断涌现,每一类分析仪器在一定范围内起独特作用,并且要求在一定的条件下使用。如色谱作为一种分析方法,其zui大特点在于能将一个复杂的混合物分离为各自单一组分,但它的定性、确定结构的能力较差,而质谱(MS)、红外光谱(IR)、紫外光谱(UV)、等离子体发射光谱(ICP—AES)和核磁共振波谱(NMR) 等技术对一个纯组分的结构确定变得较容易。因此,只有将色谱、 固相(微)萃取、膜分离等分离技术与质谱等鉴定、检测仪器联用才能得到一个完整的分析,取得丰富的信息与准确的结果。  分析仪器联用技术已在全行业样品分析中得到应用,并有广阔的发展前景。随着新物质不断出现,以及科技的进步,对分析工具的技术要求更高,仪器联用将发挥重要的作用。  色谱—色谱联用技术  样品组分较简单时,通常用一根色谱柱,一种分离模式即可以得到很好的分离,但对于某些较复杂的组分,无论如何优化色谱条件、参数也无法使其中一些组分得到较好的分离,这时可采用色谱—色谱联用技术。色谱—色谱联用 技术也称为多维色谱。      气相色谱—气相色谱(GC—GC)联用  该联用技术已有30多年的历史,在工业分析中得到广泛的应用,GC—GC联用仪已商品化。如采用SE-52毛细管柱分析柠檬油时,采用二级GC联用能将化合物的对映异构体得到很好分离。  液相色谱—液相色谱(LC—LC)联用  Hube于20世纪70年代提出LC—LC联 用,技术的关键是柱切换,通过改变色谱柱与色谱柱、进样器与色谱柱、色谱柱与检测器之间的连接,以改变流动相的流向,实现样品的分离、净化、富集、制备和检测。液相色谱有多种分离模式,可以灵活选用分离模式的组合,其选择性调节能力远大于GC—GC联用技术,具有更强的分离能力。该接口技术比GC—GC联用的要复杂得多,至今市场上尚未见商品化的LC—LC 联用系统,分析工作者多是自行组装LC—LC系统,适用于特定组分的分离和分析。     其他联用技术  LC—LC联用主要用于解决GC分析中和 某些复杂样品分离时,基体组成复杂,不能直接进行GC分离与检测的难题。通过液相色谱(HPLC)的分离技术与GC高灵敏度的检测技术联用,提高方法的灵敏度和分辨率;超临界 流体色谱—超临界流体色谱(SFC—SFC)及 SFC—LC、SFC—CEC(毛细管电泳)等连用是20 世纪90年代中后期发展起来的联用技术,广泛用于复杂样品中如食品、生物样品、煤焦油等有机化合物、异构体、多环芳烃、生物大分子(如多肽、蛋白、核酸等)的分离分析,具有多种分离模式可 供选择,以及具有较高的柱效和分析灵敏度 。  2色谱—原子光谱联用技术  原子光谱仪器对于金属元素及部分非金属元素分析,具有简单、快速、准确、灵敏的特点。如原子荧光对As、Se、Sn、Sb、Hg等元素有非常高的灵敏度;等离子体光谱(I CP)使多元素同时测定成为可能,极大地促进了元素分析的发展与进步。  以色谱为分离手段的各种联用技术不断推出,在元素化学形态分析中发挥重要作用。Kolb等人于1966年首先提出原子吸收可 作为气相色谱的金属检测器,并测定了汽油中的烷基铅。  石英炉原子化器作为色谱的检测器灵敏度高,石墨炉原子化器已广泛作为与气相色谱、液相色谱、离子色谱 (IC)等连用的检测器,鉴别和测定大气、水样、生物等样品中的烷基铅、烷基砷、烷基硒、有机锰、有机锡,以及某些元素在自然界和生物体中的分布。但这些联用技术很少商品化,更多是分析者根据需要利用仪器的性能选择性地联用,解决实际问题。  这种系统干扰少、灵敏度高,仅适合于易形成挥发性共价氢化物的元素测定。 石墨炉原子吸收作为色谱的检测器成本和连接技术要求较高,火焰原子吸收检测器操作 容易,成本低,连接简单。 HPLC—AAS用于复杂基体样品如海水中金属元素、价态分析。液相色谱—原子荧光光谱(HPLC—AFS)用于海产品中无机和有机Hg形态分析,灵敏度较高。      3离子色谱联用技术  ICP—AES具有快速、简便、检出限低、灵敏度和精密度高、线形范围宽、稳定性好、选择性好、基本效应小且可以有效校正、可同时进行多元素分析、易于实现分 析自动化等特点。ICP—AES法测定Al、Zn、Ba、Be、Cd、Co、Cr、Cu、Fe、Na、K、Mg、Ni、Pb、Sr、Ti、V、Mn、As已在环境监测中得到广泛应用。  4色谱—质谱联用技术  气相色谱—质谱(GC—MS)联用  GC—MS联用,其GC部分用来分离多组分 的混合污染物,而MS部分则对各组分进行分析。  GC和MS联用技术得到快速发展,是联用技术中zui完善、应用zui广泛的技术,zui早实现商品化。目前市售的有机质谱仪、磁质谱、四极杆质谱、离子阱质谱、飞行时间质谱(TOF)、傅立叶变换质谱(FTMS)等均能与气相色谱联用。  GC—MS联用在分析检测和科研的许多领域起着重要作用,特别是在许多有机化合物常规检测工作中成为一种必备工具。在环保、卫生、食品、农业、石油、化工等行业得到广泛应用。如环境中有机污染物、二恶口英、DDT、六六六、多氯联苯、兴奋试剂测、水质及食品中的有机污染物、农药分析、化学毒剂检测等方面都有大量的报道。    液相色谱—质谱(LC—MS)联用  GC与GC—MS只能分析检测20%有机物,70%~80%有机物分析要采用LC、IC、LC—MS等检测。由于GC柱分离后的样品呈气态,流动相是气体,与质谱的进样系统相匹配,zui容易将2种仪器联用,而HPLC流动相是液体,不能直接进入质谱分析,因此接口技术更高,联用技术发展比较慢,直到20世纪80年代,才有成熟的商品LC—MS推出。  气相色谱—电感偶合等离子体质谱(GC—ICP—MS)联用  目前开发的用ICP—MS联机仪器作为GC的检测器测量痕量和超痕量有机金属污染物。ICP—MS作为GC的检测器可测定10-6级的金属元素,如Cr6+、Cu、Cd、Pb、Hg、Ti、Ba、Be、Ni、Mn、As等,选择不同质量数进行测定,还能大大提高其选择性,即使GC不能把干扰成分完全分离,也不会对 ICP—MS的测定产生影响。GC—ICP—MS的装置是通过接口将GC与ICP—MS相连接,用GC将待测成分分离后,用ICP—MS得到测定元素的有关信息。目前应用GC—ICP—MS技术测定有机锡、有机汞以及铅、锑、砷、硒 等有机污染物的技术和方法正在开发研究中。      5色谱—傅立叶变换红外光谱联用  色谱相当于分离装置,红外光谱仪相当于定性检测器,联合使用,起到的结合,能兼有2种仪器的功能。直到60年代后期,随着傅立叶变换红外光谱仪 (FTIR)的出现,扫描速度和灵敏度有很大提高,才使GC与IR联用成为可能。  GC—FTIR系统已在水质、废气等环境污染分析中得到广泛应用。主要检测多环芳烃、醚类、酯类、酚类、氯苯类、有机酸、有机氯农药、除莠剂和氯代芳香化合物等。     6色谱—核磁共振波谱(NMR)联用  目前该技术还不很成熟,应用较少。HPLC—NMR联用在应用中的主要问题是如何克服流动相产生的巨大的共振信号干扰,以观察到分析化合物的核磁共振信号,一般为了获得较好的HPLC—NMR图谱,要求HPLC柱分离样品量要大些,以提高NMR仪的检测限度。新近出现的LC—NMR联用技术可以直接测定经HPLC分离后的各种化合物一维1H-NMR谱图和“静态”操作下的二维NMR谱图,为鉴定化合物的结构提供了的、重要的在线结构信息,被认为是快速鉴定化学成分结构方面的一个重大突破。

厂商

2019.06.18

诚驿科技--精彩亮相【CIEPEC 2019】

2019年6月12日,北京诚驿恒仪科技有限公司(以下简称“诚驿科技”),携德国J.U.M. VOC监测、德国MI汞监测、美国Savillex环保专用PFA耗材、及自主研发产品同台亮相2019CIEPEC。诚驿科技,作为高端仪器技术推广和环境监测综合服务商,一直专注烟气、水、土壤和固废中汞和VOC的监测,为环境监测提供一站式综合解决方案。(2019CIEPEC)第十七届中国国际环保展览会(CIEPEC 2019)以“推动环保产业高质量发展 助力打好污染防治攻坚战”为主题,12日在北京•中国国际展览中心开幕,并受到党政和相关部门的高度重视与共同支持,共吸引了来自全球20多个国家和地区的近700家环保相关企业参展。(诚驿科技展台)展会期间:自主开发新品“VOC监测软件”,凭其可视化操作、无线wifi链接、多款VOC监测仪器适配、自动生成报告、兼容性等优势,引起众多专业观众的兴趣和驻足参观。此外,诚驿科技还向专家学者及业内人士介绍了全球领xian的VOC监测技术,并呈现可靠的综合服务实力。(诚驿科技部分产品)

厂商

2019.06.18

四号馆:4102--诚驿科技 邀您参加2019CIEPEC环保展

6月12日,2019中国国际环保展览会在北京国际展览中心开幕。届时,诚驿科技将如期赴约,四号馆:4102,期待您的光临。 北京诚驿科技恒仪科技有限公司将展出环境监测系列产品:VOC监测产品,涉及VOC监测软件、汽车内饰件挥发性有机物浓度(VOC)分析、在线烟气中挥发性有机物浓度(VOC)监测、烟气中挥发性有机物浓度(VOC)监测/分析移动工作站、移动式烟道气汞监测仪等;环境空气、燃气、烟囱气和实验室用汞监测系统;环保行业专滤器、滤膜、转接头、冲击瓶、试剂瓶等PFA耗材。 欢迎亲临现场了解产品详情,届时工作人员也会为您答疑解惑,提供优质的服务,给您舒适的参观体验。       诚挚邀请您作为特邀观众莅临参观!

厂商

2019.06.11

原子荧光光谱仪的构造原理

  原子荧光光谱法是以原子在辐射能激发下发射的荧光强度进行定量分析的发射光谱分析法。根据荧光产生机理的不同,原子荧光的类型达到十余种,但在实际分析中主要有:  共振荧光  处于基态或低能态的原子, 吸收光源中的共振辐射跃迁到高能态, 处于高能态的原子在返回基态或相同低能态的过程中, 发射出与激发光源辐射相同波长的荧光,这种荧光称为共振荧光。  直跃线荧光  当处于基态的价电子受激跃迁至高能态(E2),处于高能态的激发态电子在跃迁到低能态(E1)(但不是基态)所发射出的荧光被称为直跃线。  阶跃线荧光  当价电子从基态跃迁至高能态(E2)后, 由于受激碰撞损失部分能量而降至较低的能态(E1)。从较低能态(E1)回到基态(E0)时所发出的荧光称为阶跃线荧光。  热助阶跃线荧光  基态原子通过吸收光辐射跃迁至高能态(E2), 处于高能态的价电子在热能的作用下进一步激发, 电子跃迁至与能级E2相近的更高能态E3。当去激发至低能态(E1)(不是基态)时所发出的次级光被称为热助阶跃线荧光.  敏化荧光  当受激的第yi种原子与第二种原子发生非弹性碰撞时, 可能把能量传给第二种原子, 从而使第二个原子被激发, 受激的第二种原子去激发过程中所产生的荧光叫敏化荧光.  原子吸收和原子荧光结构类似,也可以分成四部分:激发光源、原子化器、光学系统和检测器。  1、激发光源:  可用连续光源或锐线光源。常用的连续光源是氙弧灯,常用的锐线光源是高强度空心阴极灯、无极放电灯、激光等。连续光源稳定,操作简便,寿命长,能用于多元素同时分析,但检出限较差。锐线光源辐射强度高,稳定,可得到更好的检出限。  空心阴极灯-工作原理  空心阴极灯是一种特殊的低压放电现象,在阴阳两极之间加以300~500V的电压,这样两极之间形成一个电场,电子在电场中运动,并与周围充入的惰性气体分子发生碰撞, 使这些惰性气体电离。气体中的正离子高速移向阴极,阴极在高速离子碰撞的过程中溅射出阴极元素的基态原子,这些基态原子与周围的的离子发生碰撞被激发到激发态,这些被激发的高能态原子在返回基态的过程中会发射出该元素的特征谱线 .  空心阴极灯–特点  • 灯结构简单、空心阴极灯制作工艺成熟;  • 工作性能稳定 ,寿命一般可以大于3000mA•h ,发光稳定性1小时漂移在±2%以内 发射强度基本可以满足常规分析要求;  • 对仪器的光源部分的电源无特别要求,也不需要其他辅助设施;  • 价格便宜.  HCL作为原子荧光的激发光源也有其美中不足的地方,主要是辐射能量偏低,限制了原子荧光分析检出下限的进一步降低 .  空心阴极灯的维护  选取适当大小的灯电流;  低熔点元素的灯在使用过程中不能有较大的震动,使用完毕后必须待灯管冷却后才能取下,以防阴极填充物被倒出或空心阴极变形;  激活处理.如果灯不经常使用,则zui好每隔一定时间在额定工作电流下点燃30min;  注意不要沾污发射线出射窗口,也不要有手指直接触摸出射窗口;  2、原子化器:  原子荧光分析仪对原子化器的要求与原子吸收光谱仪基本相同。但所用的火焰与AAS的不同,主是因为在通常的AAS火焰中,荧光猝灭严重,必须用Ar稀释的火焰。当用氢化物发生法时,直接使用Ar气氛下的石英加热方法进行原子化。  原子化器性能主要考虑的因素  原子化效率高。  低的辐射背景和背景闪烁。  原子荧光猝灭效应低。  被测元素的原子在光路中有较长的停留时间。  原子化效率稳定,记忆效应小,操作简单  使用成本低。  原子化器的主要类型  火焰原子化器  电热原子化器  电感耦合等离子体  石英管原子化器  微波等离子体  辉光放电等离子体  石英炉原子化器是一种适合于低温火焰的简单原子化器. 主要特点:  结构简单;  抗腐蚀能力强;  记忆效应小;  使用寿命长;  制作加工方便廉价等特点.  炉芯结构  内气----氢化物蒸汽、氩气、氢气  外气----氩气,作用如下:  (1)防止氢化物被氧化,提高原子化效率  (2)防止荧光猝灭  (3)保持原子化环境的相对稳定  在更换或清洗炉芯时要注意不要打碎,另外气管不要接错,载气接内管。炉丝要尽量和外管平齐       3、光学系统:  光学系统的作用是充分利用激发光源的能量和接收有用的荧光信号,减少和除去杂散光。色散系统对分辨能力要求不高,但要求有较大的集光本领,常用的色散元件是光栅。非色散型仪器的滤光器用来分离分析线和邻近谱线,降低背景。非色散型仪器的优点是照明立体角大,光谱通带宽,集光本领大,荧光信号强度大,仪器结构简单,操作方便。缺点是散射光的影响大。  4、检测器:  常用的是光电倍增管,在多元素原子荧光分析仪中,也用光导摄象管、析象管做检测器。检测器与激发光束成直 角配置,以避免激发光源对检测原子荧光信号的影响。  用于光信号的检测,主要类型有:  光电池  二极管阵列  光电倍增管  固态检测器  A: 电荷耦合检测器(CCD)  B: 电荷注入检测器 (CID)  日盲光电倍增管  光阴极材料—Cs-Te;  波长范围:160~320nm;  最灵敏响应波长:254nm;  窗体材料:石英。  原子荧光的5种进样方式:  *连续流动法:样品及还原剂均以不同的速度在管子中流动并在混合器中混合,产生氢化物。  优点:提供的信号是连续信号 缺点:严重浪费样品和还原剂  *流动注射法:与连续流动法类似,样品是通过采样阀进行“采样”“注射”切换,由于样品是间隔输送到反应器中,因而所得的信号为峰状信号。  优点:定量进样,相对连续流动节省试剂;分析速度快  缺点:结构复杂;国产电磁阀容易漏液;容易产生交叉污染,记忆效应  *断续流动法:是介于前两种方法之间的一种进样模式,利用计算机控制蠕动泵的转速和时间,定时定量采样进行测定。  优点:定量进样,节省试剂;记忆效应小  缺点:泵管易老化损坏造成进样精度差,有脉动效应,氢化物会有损失。

厂商

2019.06.04

【科普】拉曼光谱的工作原理

  拉曼散射效应的进展  1928年,印度物理学家拉曼(C.V.Raman)首次发现曼散射效应,荣获1930年的诺贝尔物理学奖。  1928-1940年,拉曼光谱成为研究分子结构的主要手段。  1960年以后,激光技术的发展使拉曼技术得以复兴。由于激光束的高亮度、方向性和偏振性等优点,成为拉曼光谱的理想光源。随探测技术的改进和对被测样品要求的降低,目前在物理、化学、医药、工业等各个领域拉曼光谱得到了广泛的应用,越来越受研究者的重视。  什么是拉曼光谱分析法  拉曼光谱分析法是基于印度科学家C.V.拉曼(Raman)所发现的拉曼散射效应,对与入射光频率不同的散射光谱进行分析以得到分子振动、转动方面信息,并应用于分子结构研究的一种分析方法。  拉曼光谱仪原理  当光线照射到分子并且和分子中的电子云及分子键结产生相互作用,就会发生拉曼效应。对于自发拉曼效应,光子将分子从基态激发到一个虚拟的能量状态。当激发态的分子放出一个光子后并返回到一个不同于基态的旋转或振动状态。在基态与新状态间的能量差会使得释放光子的频率与激发光线的波长不同。  如果最终振动状态的分子比初始状态时能量高,所激发出来的光子频率则较低,以确保系统的总能量守衡。这一个频率的改变被名为Stokes shift。如果最终振动状态的分子比初始状态时能量低,所激发出来的光子频率则较高,这一个频率的改变被名为Anti-Stokes shift。拉曼散射是由于能量透过光子和分子之间的相互作用而传递,就是一个非弹性散射的例子。  关于振动的配位,分子极化电位的改变或称电子云的改变量,是分子拉曼效应必定的结果。极化率的变化量将决定拉曼散射强度。该模式频率的改变是由样品的旋转和振动状态决定。  1.Rayleigh散射:弹性碰撞;无能量交换,仅改变方向;  2.Raman散射:非弹性碰撞;方向改变且有能量交换;  拉曼光谱的特征  1. 对不同物质Raman 位移不同;  2.对同一物质Δν与入射光频率无关;是表征分子振-转能级的特征物理量;是定性与结构分析的依据;  3.拉曼线对称地发布在瑞利线两侧,长波一侧为斯托克斯线,短波一侧为反斯托克斯线;  4.斯托克斯线强度比反斯托克斯线强;  拉曼谱图的构成和特征  一张拉曼谱图通常由一定数量的拉曼峰构成,每个拉曼峰代表了相应的拉曼位移和强度。每个谱峰对应于一种特定的分子键振动,其中既包括单一的化学键,例如C-C,C=C,N-O,C-H等,也包括由数个化学键组成的基团的振动,例如苯环的呼吸振动、多聚物长链的振动以及晶格振动等。  拉曼光谱可以提供样品化学结构、相和形态、结晶度及分子相互作用的详细信息。  主要的拉曼光谱仪  激光Raman光谱仪(laser Raman spectroscopy)  Ar激光器:  波长: 514.5nm,488.0nm;  单色器:  光栅,多单色器;  检测器:  光电倍增管,光子计数器;  傅立叶变换-拉曼光谱仪(FT-Raman spectroscopy)  光源:Nd-YAG钇铝石榴石激光器(1.064um);  检测器:高灵敏度的铟镓砷探头;  特点:  (1)避免了荧光干扰;  (2)精度高;  (3)消除了瑞利谱线;  (4)测量速度快。  拉曼光谱的分析方向  拉曼光谱仪分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。  拉曼光谱的分析方向有:  定性分析:不同的物质具有不同的特征光谱,因此可以通过光谱进行定性分析。  结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。  定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。  拉曼光谱的应用  由拉曼光谱可以获得有机化合物的各种结构信息:  1 同种分子的非极性键S-S,C=C,N=N,C ≡C产生强拉曼谱带, 随单键到双键再到三键谱带强度增加。  2 红外光谱中,由C ≡N,C=S,S-H伸缩振动产生的谱带一般较弱或强度可变,而在拉曼光谱中则是强谱带。  3 环状化合物的对称呼吸振动常常是最强的拉曼谱带。  4.在拉曼光谱中,X=Y=Z,C=N=C,O=C=O-这类键的对称伸缩振动是强谱带,反这类键的对称伸缩振动是弱谱带。红外光谱与此相反。  5 C-C伸缩振动在拉曼光谱中是强谱带。  6 醇和烷烃的拉曼光谱是相似的:I. C-O键与C-C键的力常数或键的强度没有很大差别。II. 羟基和甲基的质量仅相差2单位。 III.与C-H和N-H谱带比较,O-H拉曼谱带较弱。  拉曼光谱仪用于分析的优、缺点  1.拉曼光谱用于分析的优点  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点  2.拉曼光谱用于分析的不足  (1)拉曼散射面积  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响  (3)荧光现象对傅立叶变换拉曼光谱分析的干扰  (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题  (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响。

厂商

2019.05.30

< 1 ••• 2 3 4 5 6 ••• 27 > 前往 GO

北京诚驿恒仪科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京诚驿恒仪科技有限公司

公司地址: 北京市海淀区中关村东路18号财智国际大厦A座1102室 联系人: 廖经理 邮编: 100083 联系电话: 400-860-5168转1029

仪器信息网APP

展位手机站