您好,欢迎访问仪器信息网
注册
北京诚驿恒仪科技有限公司

关注

已关注

金牌17年 金牌

已认证

粉丝量 0

400-860-5168转1029

仪器信息网认证电话,请放心拨打

当前位置: 诚驿科技 > 公司动态
公司动态

固体废物鉴别标准通则 GB34330 2017

      固体废物鉴别标准 通则      1 适用范围      本标准规定了依据产生来源的固体废物鉴别准则、在利用和处置过程中的固体废物鉴别准则、不作为固体废物管理的物质、不作为液态废物管理的物质以及监督管理要求。      本标准适用于物质(或材料)和物品(包括产品、商品)(以下简称物质)的固体废物鉴别。      液态废物的鉴别,适用于本标准。      本标准不适用于放射性废物的鉴别。      本标准不适用于固体废物的分类。      对于有专用固体废物鉴别标准的物质的固体废物鉴别,不适用于本标准。      2 规范性引用文件      本标准内容引用了下列文件中的条款。凡是不注明日期的引用文件,其zui新版本适用于本标准。      GB 18599一般工业固体废物贮存、处置场污染控制标准       3 术语和定义      下列术语和定义适用于本标准。      3.1 固体废物 solid wastes      是指在生产、生活和其他活动中产生的丧失原有利用价值或者虽未丧失利用价值但被抛弃或者放弃的固态、半固态和置于容器中的气态的物品、物质以及法律、行政法规规定纳入固体废物管理的物品、物质。      3.2 固体废物鉴别 solid waste identification 是指判断物质是否属于固体废物的活动。      3.3 利用 recycle      是指从固体废物中提取物质作为原材料或者燃料的活动。      3.4 处理 treatment      是指通过物理、化学、生物等方法,使固体废物转化为适合于运输、贮存、利用和处置的活动。      3.5 处置 disposal      是指将固体废物焚烧和用其他改变固体废物的物理、化学、生物特性的方法,达到减少已产生的固体废物数量、缩小固体废物体积、减少或者消除其危险成份的活动,或者将固体废物zui终置于符合环境保护规定要求的填埋场的活动。      3.6 目标产物 target products      是指在工艺设计、建设和运行过程中,希望获得的一种或多种产品,包括副产品。      3.7 副产物 by-products      是指在生产过程中伴随目标产物产生的物质。      4 依据产生来源的固体废物鉴别      下列物质属于固体废物(章节 6 包括的物质除外)。      4.1 丧失原有使用价值的物质,包括以下种类:      a)在生产过程中产生的因为不符合国家、地方制定或行业通行的产品标准(规范),或者因为质量原因,而不能在市场出售、流通或者不能按照原用途使用的物质,如不合格品、残次品、废品等。但符合国家、地方制定或行业通行的产品标准中等外品级的物质以及在生产企业内进行返工(返修)的物质除外;      b)因为超过质量保证期,而不能在市场出售、流通或者不能按照原用途使用的物质;      c)因为沾染、掺入、混杂无用或有害物质使其质量无法满足使用要求,而不能在市场出售、流通或者不能按照原用途使用的物质;      d)在消费或使用过程中产生的,因为使用寿命到期而不能继续按照原用途使用的物质;      e)相关机构查处没收的需报废、销毁等无害化处理的物质,包括(但不限于)假冒伪劣产品、侵犯知识产权产品等禁用品;      f)以处置废物为目的生产的,不存在市场需求或不能在市场上出售、流通的物质;      g)因为自然灾害、不可抗力因素和人为灾难因素造成损坏而无法继续按照原用途使用的物质;      h)因丧失原有功能而无法继续使用的物质;      i)由于其他原因而不能在市场出售、流通或者不能按照原用途使用的物质。      4.2 生产过程中产生的副产物,包括以下种类:      a)产品加工和制造过程中产生的下脚料、边角料、残余物质等;      b)在物质提取、提纯、电解、电积、净化、改性、表面处理以及其他处理过程中产生的残余物质,包括(但不限于)以下物质:      1)在黑色金属冶炼或加工过程中产生的高炉渣、钢渣、轧钢氧化皮、铁合金渣、锰渣;      2)在有色金属冶炼或加工过程中产生的铜渣、铅渣、锡渣、锌渣、铝灰(渣)等火法冶炼渣,以及赤泥、电解阳极泥、电解铝阳极炭块残极、电积槽渣、酸(碱)浸出渣、净化渣等湿法冶炼渣;      3)在金属表面处理过程中产生的电镀槽渣、打磨粉尘。      c)在物质合成、裂解、分馏、蒸馏、溶解、沉淀以及其他过程中产生的残余物质,包括(但不限于)以下物质:      1)在石油炼制过程中产生的废酸液、废碱液、白土渣、油页岩渣;      2)在有机化工生产过程中产生的酸渣、废母液、蒸馏釜底残渣、电石渣;      3)在无机化工生产过程中产生的磷石膏、氨碱白泥、铬渣、硫铁矿渣、盐泥。      d)金属矿、非金属矿和煤炭开采、选矿过程中产生的废石、尾矿、煤矸石等;      e)石油、天然气、地热开采过程中产生的钻井泥浆、废压裂液、油泥或油泥砂、油脚和油田溅溢物等;      f)火力发电厂锅炉、其他工业和民用锅炉、工业窑炉等热能或燃烧设施中,燃料燃烧产生的燃煤炉渣等残余物质;      g)在设施设备维护和检修过程中,从炉窑、反应釜、反应槽、管道、容器以及其他设施设备中清理出的残余物质和损毁物质;      h)在物质破碎、粉碎、筛分、碾磨、切割、包装等加工处理过程中产生的不能直接作为产品或原材料或作为现场返料的回收粉尘、粉末;      i)在建筑、工程等施工和作业过程中产生的报废料、残余物质等建筑废物;      j)畜禽和水产养殖过程中产生的动物粪便、病害动物尸体等;      k)农业生产过程中产生的作物秸秆、植物枝叶等农业废物;      l)教学、科研、生产、医疗等实验过程中,产生的动物尸体等实验室废弃物质;      m)其他生产过程中产生的副产物。      4.3 环境治理和污染控制过程中产生的物质,包括以下种类:      a)烟气和废气净化、除尘处理过程中收集的烟尘、粉尘,包括粉煤灰;      b)烟气脱硫产生的脱硫石膏和烟气脱硝产生的废脱硝催化剂;      c)煤气净化产生的煤焦油;      d)烟气净化过程中产生的副产硫酸或盐酸;      e)水净化和废水处理产生的污泥及其他废弃物质;      f)废水或废液(包括固体废物填埋场产生的渗滤液)处理产生的浓缩液;      g)化粪池污泥、厕所粪便;      h)固体废物焚烧炉产生的飞灰、底渣等灰渣;      i)堆肥生产过程中产生的残余物质;      j)绿化和园林管理中清理产生的植物枝叶;      k)河道、沟渠、湖泊、航道、浴场等水体环境中清理出的漂浮物和疏浚污泥;      l)烟气、臭气和废水净化过程中产生的废活性炭、过滤器滤膜等过滤介质;      m)在污染地块修复、处理过程中,采用下列任何一种方式处置或利用的污染土壤:      1)填埋;      2)焚烧;      3)水泥窑协同处置;      4)生产砖、瓦、筑路材料等其他建筑材料。      n)在其他环境治理和污染修复过程中产生的各类物质。      4.4 其他:      a)法律禁止使用的物质;      b)国家相关环境保护行政主管部门认定为固体废物的物质。       5利用和处置过程中的固体废物鉴别      5.1 在任何条件下,固体废物按照以下任何一种方式利用或处置时,仍然作为固体废物管理(但包含在6.2条中的除外):      a)以土壤改良、地块改造、地块修复和其他土地利用方式直接施用于土地或生产施用于土地的物质(包括堆肥),以及生产筑路材料;      b)焚烧处置(包括获取热能的焚烧和垃圾衍生燃料的焚烧),或用于生产燃料,或包含于燃料中;      c)填埋处置;      d)倾倒、堆置;      e)国家相关环境保护行政主管部门认定的其他处置方式。      5.2 利用固体废物生产的产物同时满足下述条件的,不作为固体废物管理,按照相应的产品管理(按照5.1条进行利用或处置的除外):      a)符合国家、地方制定或行业通行的被替代原料生产的产品质量标准;      b)符合相关国家污染物排放(控制)标准或技术规范要求,包括该产物生产过程中排放到环境中的有害物质限值和该产物中有害物质的含量限值;      当没有国家污染控制标准或技术规范时,该产物中所含有害成分含量不高于利用被替代原料生产的产品中的有害成分含量,并且在该产物生产过程中,排放到环境中的有害物质浓度不高于利用所替代原料生产产品过程中排放到环境中的有害物质浓度,当没有被替代原料时,不考虑该条件;      c)有稳定、合理的市场需求。      6不作为固体废物管理的物质      6.1以下物质不作为固体废物管理:      a)任何不需要修复和加工即可用于其原始用途的物质,或者在产生点经过修复和加工后满足国家、地方制定或行业通行的产品质量标准并且用于其原始用途的物质;      b)不经过贮存或堆积过程,而在现场直接返回到原生产过程或返回其产生过程的物质;c)修复后作为土壤用途使用的污染土壤;      d)供实验室化验分析用或科学研究用固体废物样品。      6.2按照以下方式进行处置后的物质,不作为固体废物管理:      a)金属矿、非金属矿和煤炭采选过程中直接留在或返回到采空区的符合GB18599中第I类一般工业固体废物要求的采矿废石、尾矿和煤矸石。但是带入除采矿废石、尾矿和煤矸石以外的其他污染物质的除外;      b)工程施工中产生的按照法规要求或国家标准要求就地处置的物质。      6.3国家相关环境保护行政主管部门认定不作为固体废物管理的物质。      7 不作为液态废物管理的物质      7.1 满足相关法规和排放标准要求可排入环境水体或者市政污水管网和处理设施的废水、污水。      7.2 经过物理处理、化学处理、物理化学处理和生物处理等废水处理工艺处理后,可以满足向环境水体或市政污水管网和处理设施排放的相关法规和排放标准要求的废水、污水。      7.3 废酸、废碱中和处理后产生的满足7.1或7.2条要求的废水。      8 实施与监督      本标准由县级以上环境保护行政主管部门负责监督实施。

厂商

2018.10.29

吹扫捕集-气相色谱联用技术在样品分析中的应用

  环境中常见的挥发性或半挥发性有机化合物的样品前处理包括吹扫捕集(动态顶空)技术、静态顶空技术、固相萃取、固相微萃取、超临界流体萃取、微波辅助萃取、液-液萃取、超声振荡、索氏萃取、凝胶渗透色谱等技术。   吹扫捕集技术是20世纪70年代发展起来的一种新型、高效的样品预处理技术。它是将等份的样品注入到一个密封的玻璃样品瓶中,使用高纯氦气或者氮气以一定恒定的流量、温度和时间对样品进行吹扫,从样品基质中吹扫出来的挥发性物质被吹扫气体输送到捕集阱(主要由吸附管和制冷剂组成)中;吹扫气体通过捕集阱时,其中的挥发性物质被吸附管捕集浓缩,而吹扫气体流过吸附管并排空;在吹扫捕集之后,通过快速加热吸附管将其中的挥发性物质热解吸出来,并输送进入气相色谱分离柱中。  吹扫捕集技术作为样品的前处理方式,其取样量少,富集效率高,受基体干扰小,无需使用有机溶剂,对环境不造成二次污染,容易实现在线检测。  吹扫捕集技术适用于从液体或固体样品中萃取沸点低于200℃、溶解度小于2%的挥发性或半挥发性有机化合物。利用吹扫捕集与气相色谱联用技术可以测定水、土壤、地质、空气、食品、化妆品、生物材料等方面的挥发性和半挥发性有机化合物。  水样品中挥发性有机化合物的测定目前,饮用水中有机污染物的危害受到广泛的关注,迄今为止,在饮用水中发现的有机污染物达1000种以上,其中卤代烃污染主要来源于自来水消毒处理、工业废水及污染。由于部分卤代烃具有致癌、致突变作用,且难以降解而受到广泛重视。饮用水的消毒成为供水系统中zui基本处理工艺,加氯法是我国水厂普遍采用的消毒方式。加氯后水中会产生二氯一溴甲烷和一氯二溴甲烷等消毒副产品。在我国用于测定环境水样中挥发性有机化合物(VOCs)多采用静态顶空法,但静态顶空法的灵敏度低,不能满足微量测定要求。运用吹扫捕集与气相色谱联用技术可测定饮用水、地表水及海水中的μg/L(甚至ng/L级)的VOCs,其检出限比静态顶空技术低10~1 000倍。  挥发性卤代烃(VHC)是大气中的痕量气体,对臭氧层损耗和温室效应有重要作用。海洋是大气中VHC的主要自然排放源,开展海洋VHC的研究有助于了解海洋对大气VHC和全球变暖的贡献。吹扫捕集和高分辩气相色谱-质谱联用法分析海水样品中的27种(ng/L)浓度水平的VOCs(包括:氯代烷烃和烯烃、单环芳烃和氯代单环芳烃等)。  吹扫捕集气相色谱-质谱法同时测定土壤中卤代烃类、苯系物类、氯代苯类等20多种VOCs;地质样品中挥发性有机化合物的测定VOCs是一类组成复杂且广泛存在于大气、水体、沉积物和土壤中有机污染物。大多数是极性较弱或非极性的疏水性化合物,易于分配到非水相中,并通过各种途径进入海洋中,除了一部分由海-气界面进入大气外,很大一部分会分配到颗粒物相中,直至进入沉积物,溶解并存在于水体中的相对较少,由此可见沉积物是水性有机污染物在海洋中的主要归宿。用吹扫捕集法气相色谱-电子捕获检测器可以测定多泥沙的黄河水样中挥发性卤代烃;为降低卤代烃在水溶液中的溶解度,他们采用了饱和氯化钠溶液作为专用电解质,提高了方法的灵敏度。  化妆品样品中挥发性有机化合物的测定苯、甲苯、乙醛、丙酮、正丁醛,特别是醛类常被用来做为化妆品的防腐剂、防老剂;丙酮、甲苯常用来作为溶剂,这对人体皮肤和呼吸器官有刺激作用,对中枢神经系统有麻醉作用,而苯是化妆品中禁用物质。  生物材料样品中挥发性有机化合物的测定随着现代社会的发展,卤代烃、苯系物、氯苯类等有机化合物的使用越来越多。由于这类物质的大量使用,使其进入环境中的数量和种类都大幅增加,甚至人体血液、尿液中都发现VOCs的踪迹;由于VOCs在环境中产生积累效应,对人体健康产生危害而引起人们的关注。吹扫捕集-气相色谱-火焰离子化检测器可测定尿液和血液中苯乙烯。

厂商

2018.10.26

微生物检测实验室常用的消毒方法

  消毒和灭菌两个词在实际使用中常被混用,其实它们的含义是有所不同的。消毒是指应用消毒剂等方法杀灭物体表面和内部的病原菌营养体的方法,而灭菌是指用物理和化学方法杀死物体表面和内部的所有微生物,使之呈无菌状态。  物理方法  1.温度:  利用温度进行灭菌、消毒或防腐,是最常用而又方便有效的方法。高温可使微生物细胞内的蛋白质和酶类发生变性而失活,从而起灭菌作用,低温通常起抑菌作用。  1)干热灭菌法:  a.灼烧灭菌法:  利用火焰直接把微生物烧死。此法彻底可靠,灭菌迅速,但易焚毁物品,所以使用范围有限,只适合于接种针、环、试管口及不能用的污染物品或实验动物的尸体等的灭菌。  b.干热空气灭菌法:  这是实验室中常用的一种方法,即把待灭菌的物品均匀地放入烘箱中,升温至160℃,恒温1小时即可。此法适用于玻璃皿、金属用具等的灭菌。  2)湿热灭菌法:  在同样的温度下,湿热灭菌的效果比干热灭菌好,这是因为一方面细胞内蛋白质含水量高,容易变性。另一方面高温水蒸汽对蛋白质有高度的穿透力,从而,加速蛋白质变性而迅速死亡。  a.巴氏消毒法:  有些食物会因高温破坏营养成分或影响质量,如,牛奶、酱油、啤酒等,所以只能用较低的温度来杀死其中的病原微生物,这样既保持食物的营养和风味,又进行了消毒,保证了食品卫生。该法一般在62℃,30分钟即可达到消毒目的。此法为法国微生物学家巴斯德首创,故名为巴氏消毒法。  b.煮沸消毒法:  直接将要消毒的物品放入清水中,煮沸15分钟,即可杀死细菌的全部营养和部分芽孢。若在清水中加入1%碳酸钠或2%的石炭酸,则效果更好。此法适用于注射器、毛巾及解剖用具的消毒。  c.间歇灭菌法:  上述两种方法在常压下,只能起到消毒作用,而很难做到完全无菌。若采用间歇灭菌的方法,就能杀灭物品中所有的微生物。具体做法是:将待灭菌的物品加热至100℃,15~30分钟,杀死其中的营养体。然后冷却,放入37℃恒温箱中过夜,让残留的芽孢萌发成营养体。第2天再重复上述步骤,三次左右,就可达到灭菌的目的。此法不需加压灭菌锅,适于推广,但操作麻烦,所需时间长。  d.加压蒸汽灭菌法:  这是发酵工业、医疗保健、食品检测和微生物学实验室中最常用的一种灭菌方法。它适用于各种耐热、体积大的培养基的灭菌,也适用于玻璃器皿、工作服等物品的灭菌。  加压蒸汽灭菌是把待灭菌的物品放在一个可密闭的加压蒸汽灭菌锅中进行的,以大量蒸汽使其中压力升高。由于蒸汽压的上升,水的沸点也随之提高。在蒸汽压达到1.055公斤/厘米2时,加压蒸汽灭菌锅内的温度可达到121℃。在这种情况下,微生物(包括:芽孢)在15~20分钟便会被杀死,而达到灭菌目的,如,灭菌的对象是砂土、石蜡油等面积大、含菌多、传热差的物品,则应适当延长灭菌时间。  在加压蒸汽灭菌中,要引起注意的一个问题是,在恒压之前,一定要排尽灭菌锅中的冷空气,否则表上的蒸汽压与蒸汽温度之间不具对应关系,这样会大大降低灭菌效果。  3)影响灭菌的因素:  a.不同的微生物或同种微生物的不同菌龄对高温的敏感性不同。多数微生物的营养体和病毒在50~65℃,10分钟就会被杀死;但各种孢子、特别是芽孢最能抗热,其中抗热性zui强的是嗜热脂肪芽孢杆菌,要在121℃,12分钟才被杀死。对同种微生物来讲,幼龄菌比老龄菌对热更敏感。  b.微生物的数量多少显然会影响灭菌的效果,数量越多,热死时间越长。  c.培养基的成分与组成也会影响灭菌效果。一般地讲,蛋白质、糖或脂肪存在,则提高抗热性,pH在7附近,抗热性zui强,偏向两极,则抗热能力下降,而不同的盐类可能对灭菌产生不同的影响;固体培养基要比液体培养基灭菌时间长。  4)灭菌对培养基成分的影响:  a.pH值普遍下降。  b.产生混浊或沉淀,这主要是由于一些离子发生化学反应而产生混浊或沉淀。  例如:Ca2+与PO4-3化合,就会产生磷酸钙沉淀。  c.不少培养基颜色加深。  d.体积和浓度有所变化。  e.营养成分有时受到破坏。  2.辐射  利用辐射进行灭菌消毒,可以避免高温灭菌或化学药剂消毒的缺点,所以应用越来越广,目前主要应用在以下几个方面:  1)接种室、手术室、食品、药物包装室常应用紫外线杀菌。  2)应用β射线作食品表面杀菌,γ射线用于食品内部杀菌。经辐射后的食品,因大量微生物被杀灭,再用冷冻保藏,可使保存期延长。  3.过滤  采用机械方法,设计一种滤孔比细菌还小的筛子,做成各种过滤器。通过过滤,只让液体培养基从筛子中流下,而把各种微生物菌体留在筛子上面,从而达到除菌的目的。这种灭菌方法适用于一些对热不稳定的体积小的液体培养基的灭菌以及气体的灭菌。它的you点是不破坏培养基中各种物质的化学成分。但是比细菌还小的病毒仍然能留在液体培养基内,有时会给实验带来一定的麻烦。  化学方法  一般化学药剂无法杀死所有的微生物,而只能杀死其中的病原微生物,所以,是起消毒剂的作用,而不是灭菌剂。  能迅速杀灭病原微生物的药物,称为消毒剂。能抑制或阻止微生物生长繁殖的药物,称为防腐剂。但是一种化学药物是杀菌还是抑菌,常不易严格区分。消毒剂在低浓度时也能杀菌(如,1:1000硫柳汞)。由于消毒防腐剂没有选择性,因此,对一切活细胞都有毒性,不仅能杀死或抑制病原微生物,而且对人体组织细胞也有损伤作用,所以,只能用于体表、器械、排泄物和周围环境的消毒。常用的化学消毒剂有:石碳酸、来苏水、lv化汞、碘酒、酒精等。

厂商

2018.10.26

ICP-MS、ICP-AES及AAS的原理及应用

  随着ICP-AES的流行使很多的分析家在问购买一台ICP-AES是否是明智之举.还是留在原来可信赖的AAS上。现在一个新技术lCP-MS已呈现在世上,虽然价格较高,但ICP-MS具有ICP-AES的优点及比石墨炉原子吸收(GFAAS)更低的检出限。  这篇文章简要地论述这三种技术(地地道道的干货呦!),并指出如何根据你的分析任务来判断其适用性。  对于拥有ICP-AES技术背景的人来讲,ICP-MS是一个以质谱仪作为检测器的等离子体(ICP),而质谱学家则认为ICP-MS是一个以ICP为源的质谱仪。事实上,ICP-AES和ICP-MS的进样部分及等离子体是极其相似的。ICP-AES测量的是光学光谱(165~800nm),ICP-MS 测量的是离子质谱,提供在3~250amu范围内每一个原子质量单位(amu)的信息,因此,ICP-MS除了元素含量测定外,还可测量同位素。  检出限  ICP-MS的检出限给人极深刻的印象,其溶液的检出限大部份为ppt级(必需记牢,实际的检出限不可能优于你实验室的清洁条件),石墨炉AAS的检出限为亚ppb级,ICP-AES大部份元素的检出限为1~10ppb,一些元素在洁净的试样中也可得到令人注目的亚ppb级的检出限。必须指出,ICP- MS的ppt级检出限是针对溶液中溶解物质很少的单纯溶液而言的,若涉及固体中浓度的检出限,由于ICP-MS的耐盐量较差,ICP-MS检出限的优点会变差多达50倍,一些普通的轻元素(如,S、Ca、Fe、K、Se)在ICP-MS中有严重的干扰,也将恶化其检出限。  干扰  以上三种技术呈现了不同类型及复杂的干扰问题.为此,我们对每个技术分别予以讨论。ICP-MS的干扰  1.质谱干扰  ICP-MS中质谱的干扰(同量异位素干扰)是预知的,而且其数量少于300个,分辨率为0.8amu的质谱仪不能将它们分辨开,例如,58Ni对58Fe、 40Ar对40Ca、40Arl60对56Fe或40Ar-Ar对80Se的干扰(质谱叠加)。元素校正方程式(与ICP-AES中干扰谱线校正相同的原理)可用来进行校正,选择性地选用一些低自然丰度的同位素、采用“冷等离子体炬焰屏蔽技术”或“碰撞池技术”可有效地降低干扰影响。  2.基体酸干扰  必须指出,HCI、HCIO4、H3PO4和H2S04将引起相当大的质谱干扰。Cl+、P+、S+离子将与其他基体元素Ar+、O+、H+结合生成多原子,例如,35Cl 40Ar对75As、35Cl160对51V的叠加干扰。因此,在ICP-MS的许多分析中避免使用HCl、HClO4、H3PO4和H2SO4是至关重要的,但这是不可能的。克服这个问题的方法有“碰撞池技术”、在试样导入ICP之前使用色谱(微栓)分离、电热蒸发(ETV)技术等,另外一个比较昂贵的选择是使用高分辩率的扇形磁场的ICP-MS,它具有分辩小于0.01amu的能力,可以清除许多质谱的干扰。ICP-MS分析用的试液通常用硝酸来配制。  3.双电荷离子干扰  双电荷离子产生的质谱干扰是单电荷离子M/Z的一半,例如138Ba2+对69Ga+,或208pb2+对104Ru+。这类干扰是比较少的,而且可以在进行分析前将系统最佳化而有效地消除。  4.基体效应  试液与标准溶液粘度的差别将改变各个溶液产生气溶胶的效率,采用基体匹配法或内标法可有效地消除。  5.电离干扰  电离干扰是由于试样中含有高浓度的第1族和第1I族元素而产生的,采用基体匹配、稀释试样、标准加入法、同位素稀释法、萃取或用色谱分离等措施来解决是有效的。  6.空间电荷效应  空间电荷效应主要发生在截取锥的后面,在此处的净电荷密度明显的偏离了零。高的离子密度导致离子束中的离子之间的相互作用,形成重离子存在时首先损失掉轻离子,例如,Pb+对Li3+。基体匹配或仔细在被测物质的质量范围内选用内标有助于补尝这个影响,但这在实际应用是有困难的。同位素稀释法虽有效.但费用高,简单而最有效的方法是稀释样品。  lCP-AES干扰  1. 光谱干扰  ICP-AES的光谱干扰其数量很大而较难解决,有记录的ICP-AES的光谱谱线有50000多条,而且基体能引起相当多的问题。因此,对某些样品,例如,钢铁、化工产品及岩石的分析必须使用高分辩率的光谱仪。广泛应用于固定通道ICP-AES中的干扰元素校正能得到有限度的成功。ICP-AES中的背景较高,需离线背景校正,应用动态背景校正对增进准确度是很有效的。各种分子粒子(如,OH)的谱峰或谱带对某些低含量的被测元素会引起一些分析问题,影响其在实际样品中检出限。  在ICP-MS中的背景是相当低的,典型的是小于5 C/S(计数/秒),这就是ICP-MS具有极好的检出限的一个主要理由。  2.基体效应  与ICP-MS一样,ICP-AES可以应用内标来解决例如雾化室效应、试样与标准溶液之间粘度差异所带来的基体效应。  3.电离干扰  仔细选用每个元素的分析条件或加入电离缓衡剂(如,过量的I族元素)可以减少易电离元素的影响。  GFAAS干扰  1.光谱干扰  使用氘灯背景校正的GFAAS有少许光谱干扰,但使用Zeeman背景校正的GFAAS能去除这些干扰。  2.背景干扰  在原子化过程中,针对不同的基体,应仔细设定灰化步聚的条件以减少背景信号。采用基体改进剂有助于增加可以容许的灰化温度。在很多GFAAS应用中,与氘灯扣背景相比,Zeeman扣背景可得到更好的准确度。  3.气相干扰  这是由于被测物质的原子蒸汽进入一个较冷的气体环境而形成的。现在采用等温石墨管设计和平台技术,试样被原子化后进入一个热的惰性气体环境,可有效减少这种干扰。  4.基体效应  基体效应是被测物质在石墨管上不同的残留而生成的,它取决于样品的种类,应用基体改性剂和热注射能十分有效地减少这些影响。  容易使用  在日常工作中,从自动化来讲,lCP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。ICP-MS的操作直到现在仍较为复杂,自1993年以来,尽管在计算机控制和智能化软件方面有很大的进步,但在常规分析前仍需由技术人员进行精密调整,ICP-MS的方法研究也是很复杂及耗时的工作。GFAAS的常规工作虽然是比较容易的,但制定方法仍需要相当熟练的技术。  试样中的总固体溶解量TDS  在常规工作中,ICP-AES可分析10%TDS的溶液,甚至可以高至30%的盐溶液。在短时期内ICP-MS可分析0.5%的溶液,但大部分分析人员乐于采用最多0.2%TDS的溶液。当原始样品是固体时,与ICP-AES,GFAAS相比,ICP-MS需要更高倍数的稀释.其折算到原始固体样品中的检出限显示不出很大优势的现象也就不令人惊奇了。  线性动态范围LDR  ICP-MS具有超过下的五次方的LDR,各种方法可使其LDR开展至十的八次方,但不管如何,对ICP-MS来说:高基体浓度会导致许多问题,而这些问题的最好解决方案是稀释,正由于这个原因,ICP-MS应用的主要领域在痕量/超痕量分析。  GFAAS的LDR限制在2-3个数年量级,如选用次灵敏线可进行高一些浓度的分析。ICP-AES具有5个以上数量级的LDR且抗盐份能力强,可进行痕量及主量元素的测定,ICP-AES可测定的浓度高达百分含量,因此,ICP-AES外加ICP-MS,或GFAAS可以很好地满足实验室的需要。  精密度  ICP-MS的短期精密度一般是1-3%RSD,这是应用多内标法在常规工作中得到的。长期(几个小时)精密度为小于5%RSD。使用同位素稀释法可以得到很好的准确度和精密度,但这个方法的费用对常规分析来讲是太贵了。  ICP-AES的短期精密度一般为0.3~2%RSD,几个小时的长期精密度小于3%RSD。GFAAS的短期精密度为0.5-5%RSD,长期精密度的因素不在于时间而视石墨管的使用次数而定。  样品分析能力  ICP-MS有惊人的能力来分析大量测定痕量元素的样品,典型的分析时间为每个样品小于5分钟,在某些分析情况下只需2分钟。Consulting实验室认为ICP-MS的主要优点即是其分析能力。  ICP-AES的分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为2或6分钟,全谱直读型较快,一般为2分钟测定一个样品。  GFAAS的分析速度为每个样品中每个元素需3~4分钟,晚上可以自动工作,这样保证对样品的分析能力。  根据溶液的浓度举例如下,以参考:  1.每个样品测定1~3个元素,元素浓度为亚或低于ppb级,如果被测元素要求能满足的情况下,GFAAS是最合适的。  2.每个样品5~20个元素,含量为亚ppm至%,ICP-AES是最合适的。  3.每个样品需测4个以上的元素,在亚ppb及ppb含量,而且样品的量也相当大,ICP-MS是较合适的。  无人控制操作  ICP-MS,ICP-AES,和GFAAS,由于现代化的自动化设计以及使用惰性气体的安全性.可以整夜无人看管工作。为了高效的分析生产,整夜开机工作是可取的。  运行的费用  ICP -MS开机工作的费用要高于ICP-AES,因为,ICP-MS的一些部件有一定的使用寿命而且需要更换,这些部件包括了涡轮分子泵、取样锥和截取锥以及检测器。对于ICP-MS和ICP-AES来讲,雾化器与炬管的寿命是相同的。如果实验室选用了ICP-AES来取代ICP-MS,那么实验室最好能配备 GFAAS。GFAAS应计算其石墨管的费用。在上述三种技术中Ar气的费用是一笔相当的预算,ICP技术Ar费用远高于GFAAS。  基本费用  这是难于限定的一个项目,因为费用是根据自动化程度、附件与供应商而定的。大概的估计ICP-AES是GFAAS的两倍,而ICP-MS是lCP-AES的两倍。必须注意到附件的配置将打乱费用的估计。另外,必须考虑到超痕量分析需要一个干净的实验室和超纯的化学试剂,这些的费用不便宜。  附件  由于是快速扫描测定方式,ICP-MS能对多元素模式中的瞬间信号进行测量,这就为大量附件打开了出路,电热蒸法、激光消蚀、辉光放电及火花消蚀等技术可以免除样品的溶解过程。有些附件可以将样品中的基体物质进行分离或进行预富集,例如,氢化法、色谱(高压液相HPLC、离子色谱、微栓)等。  用色谱来分离的好处在ICP-MS中得到完全的实现,它适合用于环保,毒理学,药品及食品中低浓度的被测物质。  虽然,ICP-AES也能采用上述的某些附件,但由于这些附件的价格及有限的好处,因此,很少看到它们在lCP-AES的常规分析中应用。

厂商

2018.10.26

傅里叶红外光谱分析常见操作问题及使用

  傅里叶变换红外光谱(Fourier Transform infrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。  1. 压片法 KBr 的处理和保存  压片使用的KBr不一定要光谱纯的,国外也常常使用分析纯的,但是,必须注意以下几点:  ①选择正规的产品,有水份是没有关系的,关键是没有无杂质,尤其是有机物峰,还有SO42-,NO3-等,可以先做个红外看看纯度。  ②如果符合要求的话,可以处理一大批KBr。首先,用干净的玛瑙研钵仔细研磨细,然后在120℃烘干24h,或马弗炉中400℃烧30分钟,置于专用的干燥器中冷却。  ③再做个KBr红外,看看吸收。如果没有特殊吸收,就放干燥器中,可以统一保存。  ④另外使用个小称量瓶和专用药勺,取出一小部分KBr供平常使用,与统一保存的KBr要分开。保存的KBr要尽量减少开启次数。  ⑤做红外的KBr一定要专用,不要和其它实验合成的混用。药品遵循只许出,不许进的原则。处理过的KBr也是这样,以免污染。  ⑥使用光谱纯的也可,但也要进行上述处理。  ⑦打破的,做液体的溴化钾单晶片纯度很高,不要扔掉破碎的溴化钾片,可以用来压片。  2. 液膜 KBr 晶片的处理  溴化钾单晶片盐片用时间久了,不太透明或不平整,有几个办法可以彻底处理 :  ①可以用附带的抛光附件抛光。  ②可以先用最细的金相(颜色最淡的那种,物理系常常有)砂纸抛光,然后再用平绒布面上蹭。  ③国外有用一份蒸馏水+5份异丙醇混和,先滴加在绒布面抛光,然后迅速转移在干燥的绒布面上蹭。效果也很好。处理时一定要带好手套,避免手上湿气的侵蚀。  3. 操作注意事项  a.理论上,研磨的粒度要小于其红外光的波长,这样才能避免产生色散谱,注意 : 研磨过程尽量不要吸收水分,不要对着样品呼气。  b.做红外放样品时候,注意轻开轻关样品室,同时,不要面对样品室呼气,可以使背景的吸收扣的很好。  c.擦洗盐片要由里向外,有机溶剂,比如,丙酮不要沾的很多。  d.液体样品要控制好厚度。  e.手洗干净和干燥是很重要的。  4. 一些特殊样品的处理方法a.有些在溶液中生成的样品,如,配合物一类等,不易提取出来。可以把溶液滴加在的KBr中干燥,研磨。如果样品不怕加温,可以加温干燥后测试。如果样品不能加温,可以待溶剂挥发后,再放入干燥器中自然干燥后再测红外。  b.有些含水的样品,如果,没有氟化钙的盐片,可以用KBr粉末压片,把样品滴加在上面,测完后抛弃。  c.平时用坏了的KBr片,比如,摔裂的半个片都行,专门用来测含水样品。如果光面不好了,可以用异丙醇5份加水1份,滴加在绒布上抛光后使用。  d.根据样品的特点来处理样品。  举个例子,轮胎橡胶制品无法研磨,一般压片法很难制样:  ①普通制样方法得到的谱图透过率差,看不到特征吸收;  ②使用全反射方法测全反射红外谱,不仅需要附件,而且由于橡胶制品是黑色的,得到的谱图效果也差,即使,放大以后的谱图,吸收峰透过率仍然在98%~100 %,而且样品的平坦度不够,不成形,不平整就无法做;  ③采用普通的压片方法,利用溶剂溶解加研磨混合制样的方法,对比了不同几种溶剂,达到了较为满意的效果。  5. 一些异常谱带的介绍  波数         化合物或结构            来源  668 CO2 大气中CO2 吸收,正或负  697 聚苯乙烯 磨损的聚苯乙烯瓶子或其他机械处理样品过程中  719 聚乙烯 实验室中常使用聚乙烯产品,有时候作为污染物出现  730 聚乙烯 同上  787 CCl4 使用CCl4后没有处理干净  794 CCl4 CCl4气体,同上  823 KNO3 无机硝酸盐与溴化钾反应物  837 NaNO3 氧化氮与窗片上的水汽生成,光源点燃有时候出现  980 K2SO4 无机硫酸盐与溴化钾离子交换的反应物  1110-1053 Si-O 使用玻璃研钵,由玻璃粉末引起的谱带,宽峰  1110 Me-O 研钵或其它物品的灰尘造成的污染,宽  1265 Si-CH3 使用硅树脂有此污染  1365 NaNO3 同837  1380,1450  2800~2900 (CH2)n 烃类物质  1378 NO3- 溴化钾的杂质,与CH3位置相近  1428 CO32- 溴化钾的碳酸盐,及其它杂质  1613-1515 ﹥COO- 碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生  1639 H2O 少量夹带水的吸收  1764-1696 >C=O 药品的瓶盖,涂层,增塑剂等等的污染  1810 COCl2 氯仿暴露在空气中或日光氧化生成少量光气的谱带  1996 BO3- 碱金属卤代盐,NaCl中的偏硼酸离子引起  2326 CO2 CO2吸收  2347 CO2 正或负的大气中CO2吸收  3450 H2O 压片中KBr含的微量水的谱带,宽,常见  3650 H2O 石英管出现附着水引起的锐谱带  3704 H2O 近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐  6. 一些红外透光材料介绍  选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :  (1) 溴化钾 KBr : 易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;  (2) 氯化钠 NaCl : 易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;  (3) 氟化钙 CaF 2 : 不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;  (4) 氟化镁 MgF 2 : 不易潮解,透过波长0.11~8.5μm,透过率大于90%;  (5) 氟化钡 BaF 2 :不易潮解,透过波长7800~800cm(1~12μm)透过率大于90%;  (6) 金刚石 : 碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;  (7) 锗 Ge : 纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;  (8) 硅 Si : 耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;  (9) 热压块 : 用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;  (10) 塑料 : 高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;  (11) 氯化银 AgCl : 软,不易破裂,435cm-1(23μm以下),易变黑,贵;  (12) 溴化银 AgBr : 软,不易破裂,285cm-1(35μm以下),作为全反射材料;  (13) 硫化锌 ZnS : 不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;  (14) 溴(碘)化鉈 KRS -5 : TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透过率大于92%,折射率高,全反射材料,贵,有毒;  (15) 硒化锌 ZnSe : 不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;  (16) 石英 SiO 2 : 不易潮解,透过波长190nm~4.5μm,透过率大于92%;  (17) 氟化锂 LiF : 120~7000cm-1,易潮解变形;  (18) 砷化镓 GaAs : 2~14μm,耐擦拭,可代替硒化锌。

厂商

2018.10.25

实验室常用的化学品使用注意事项

  温、湿度是否适宜、有机无机是否分开、固体液体是否分开、是否根据化学品性质选择恰当的容器,有毒或有害药品存放环境是否恰当,易燃或易爆药品存放环境是否恰当等,这些都是困扰实验员的难题,下面我们就来解决这些难题。  四十种常用化学品使用注意事项  1.乙酸(浓)  必须非常小心地操作。可能由于吸入或皮肤吸收而受到伤害。要戴合适的手套和护目镜。在化学通风橱\生物安全柜里使用。  2.乙腈(jing)  是非常易挥发和特别易燃的,它是一种刺激物和化学窒息剂,可因吸入、咽下或皮肤吸收而发挥其效应。严重中毒的病人可按氰化物中毒方式处理。操作时,要戴合适的手套和安全眼镜。只能在通风橱\生物安全柜里使用,远离热、火花和明火。  3.氯化铵(NH4Cl)  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在通风橱\生物安全柜里进行。  4.氢氧化铵(NH4OH)  是氨的水溶液,是腐蚀剂。操作时应极为谨慎。氨会从溶液中散发出来,它是腐蚀性的和有毒的,并易引起爆炸。操作时戴合适的手套并只能在通风橱\生物安全柜里进行。  5.硫酸胺(NH4)2SO4  可因吸入、咽下或皮肤吸收而受到伤害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  6.硼酸(H3BO3)  可因吸入、咽下或皮肤吸收而危害健康。操作时戴合适的手套和护目镜。  7.溴酚蓝  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内操作。  8.亚硝酸钠(NaNO2)  对眼睛、黏膜、上呼吸道和皮肤有刺激作用。可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜内使用,切勿近酸。  9.氯仿(CHCl3)  对皮肤、眼睛、黏膜和呼吸道有刺激作用。它是一种致癌剂,可损害肝和肾。它也易挥发,避免吸入挥发的气体。操作时戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜里进行。  10.柠檬酸  是一种兴奋剂,可因吸入、咽下或皮肤吸收而受危害健康。它对眼睛可形成严重损伤的危险。操作时戴合适的手套和安全护目镜,勿吸入其粉末。  11.氯化钴(COCl2)  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  12.硫酸铜(CuSO4)  可因吸入、咽下或皮肤吸收而受到危害,操作时戴合适的手套和安全眼镜。  13.二乙胺NH(C2H5)2         是腐蚀剂,有毒并极易燃。可因吸入、咽下或皮肤吸收而受到危害。操作时要戴合适的手套和安全眼镜。仅在化学通风橱/生物安全柜内操作,远离热、火花和明火。  14.N,N-二甲基甲酰胺DMF/HCON(CH3)2  对眼睛、皮肤和黏膜有刺激作用。可通过吸入、咽下或皮肤吸收发挥其毒性效应。经常吸入可引起肝脾损伤。操作时要戴合适的手套和安全眼镜并在化学通风橱/生物安全柜内进行。  15.乙醇CH3CH2OH  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  16.乙酸乙酯  咽下可致命,可因吸入或皮肤吸收而受害。操作时戴合适的手套和安全护目镜。切勿吸入其粉末。在通风良好的地方使用。  17.氯化铁(FeCl3)  可因吸入、咽下或皮肤吸收而危害健康。要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内进行操作。  18.甲醛(HCOH)  有很大的毒性并易挥发,也是一种致癌剂。很容易通过皮肤吸收,对眼睛、黏膜和上呼吸道有刺激和损伤作用。避免吸入其挥发的汽雾。要戴合适的手套和安全眼镜。始终在化学通风橱\生物安全柜内进行操作。远离热、火花及明火。  19.甲酸(HCOOH)  毒性强,对黏膜组织、上呼吸道、眼睛和皮肤非常有害。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜(或面具)并在化学通风橱、生物安全柜内使用。  20.硝酸钠(NaNO3)  可因吸入、咽下或皮肤吸收而损害健康。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  21.玻璃棉  可因吸入而受害并引起皮肤过敏,戴合适的手套和面具。  22.硫酸(H2SO4)  毒性非常强,对黏膜、上呼吸道、眼睛和皮肤的组织有极大的破坏作用。可引起灼伤,与其他物质(如,纸)接触可引起失火。戴合适的手套、安全眼镜和实验工作服,在化学通风橱。  23.盐酸(HCl)  易挥发并因吸入、咽下或皮肤吸收而受害。对黏膜、上呼吸道和皮肤有很大的伤害作用。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用并格外小心。当大量操作时要戴护目镜。  24.过氧化氢(H2O2)  具有腐蚀性、毒性,对皮肤有非常严重的损伤作用。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜并只能在化学通风橱\生物安全柜里进行操作。  25.硫化氢(H2S)  是非常强的毒性气体,能引起呼吸中枢麻痹。对皮肤有刺激和腐蚀性,能引起嗅觉疲劳。不要靠气味去检测其是否存在。操作时要格外小心。盛硫化氢的容器要放置在化学通风橱\生物安全柜里或放在装有通风设备的房间里。戴合适的手套和安全眼镜。它也非常易燃,要远离热、火花和明火。  26.氯化镁(MgCl2)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  27.硫酸镁(MgSO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用。  28.甲醇(MeOH或H3COH)  是有毒的,能引起眼睛失明。可因吸入、咽下或皮肤吸收而受害。适当的通风是必要的,以便减少与其挥发气体的接触。避免吸入这些挥发的气体。戴合适的手套和安全护目镜。只能在化学通风橱、生物安全柜里使用。  29.硫酸镍(NiSO4)  是致癌剂,可引起可遗传的遗传损伤。它是一种皮肤刺激物,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用,切勿吸入其粉末。  30.硝酸(HNO3)  易挥发,操作要格外小心。通过吸入、咽下或皮肤吸收而产生毒性作用。戴合适的手套和安全护目镜。在化学通风橱\生物安全柜里操作。切勿吸入其挥发的气雾。远离热、火花和明火。高氯酸可因吸入、咽下或皮肤吸收而致病。戴合适的手套和安全眼镜,只能在化学通风橱\生物安全柜里使用。  31.酚  具有很强的毒性和高度腐蚀性并能引起严重的灼伤。可因吸入、咽下或皮肤吸收而受到危害。戴合适的手套、防目镜和防护服。始终在化学通风橱、生物安全柜里使用。如果,皮肤接触到酚,要用大量的水冲洗接触酚的部位并用肥皂和水洗,切记勿用乙醇洗!  32.磷酸(H3PO4)  具有高度腐蚀性,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。  33.哌啶  毒性高,对眼睛、皮肤、呼吸道和胃肠道有腐蚀性。它与酸和氧化剂剧烈反应,可因吸入、咽下或皮肤吸收而危害健康。切勿吸入其挥发的气体。远离热、火花和明火。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用。  34.氯化钾(KCl)  可因吸入、咽下或皮肤吸收而受到危害,戴合适的手套和安全眼镜。  35.氢氧化钾(KOH)/KOH/甲醇  毒性可能是很高的,可因吸入、咽下或皮肤吸收而受到危害,其溶液有腐蚀性,操作要非常小心,要戴合适的手套。  36.高锰酸钾(KMnO4)  是一种刺激剂和很强的氧化物,当与有机物混合时可形成爆炸性的混合物,所有溶液要在化学通风橱\生物安全柜里使用,不要与盐酸混合。  37.磷酸钾(KH2PO4/K2HPO4/K3PO4)  可因吸入、咽下或皮肤吸收而受害,戴合适的手套和安全眼镜,勿吸入其粉末。  38.硝酸银(AgNO3)  是一种很强的氧化剂,要谨慎操作,它可因吸入、咽下或皮肤吸收而损害健康。避免接触皮肤,戴合适的手套和安全眼镜并与其他物质接触可引起爆炸。  39.磷酸氢二钠(Na2HPO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  40.氢氧化钠(NaOH)和含有NaOH的溶液  有很强的毒性和苛性,操作时要格外小心,戴合适的手套和防护面具。

厂商

2018.10.25

实验室常用的化学品使用注意事项

  温、湿度是否适宜、有机无机是否分开、固体液体是否分开、是否根据化学品性质选择恰当的容器,有毒或有害药品存放环境是否恰当,易燃或易爆药品存放环境是否恰当等,这些都是困扰实验员的难题,下面我们就来解决这些难题。  四十种常用化学品使用注意事项  1.乙酸(浓)  必须非常小心地操作。可能由于吸入或皮肤吸收而受到伤害。要戴合适的手套和护目镜。在化学通风橱\生物安全柜里使用。  2.乙腈(jing)  是非常易挥发和特别易燃的,它是一种刺激物和化学窒息剂,可因吸入、咽下或皮肤吸收而发挥其效应。严重中毒的病人可按氰化物中毒方式处理。操作时,要戴合适的手套和安全眼镜。只能在通风橱\生物安全柜里使用,远离热、火花和明火。  3.氯化铵(NH4Cl)  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在通风橱\生物安全柜里进行。  4.氢氧化铵(NH4OH)  是氨的水溶液,是腐蚀剂。操作时应极为谨慎。氨会从溶液中散发出来,它是腐蚀性的和有毒的,并易引起爆炸。操作时戴合适的手套并只能在通风橱\生物安全柜里进行。  5.硫酸胺(NH4)2SO4  可因吸入、咽下或皮肤吸收而受到伤害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  6.硼酸(H3BO3)  可因吸入、咽下或皮肤吸收而危害健康。操作时戴合适的手套和护目镜。  7.溴酚蓝  可因吸入、咽下或皮肤吸收而危害健康。操作时要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内操作。  8.亚硝酸钠(NaNO2)  对眼睛、黏膜、上呼吸道和皮肤有刺激作用。可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜内使用,切勿近酸。  9.氯仿(CHCl3)  对皮肤、眼睛、黏膜和呼吸道有刺激作用。它是一种致癌剂,可损害肝和肾。它也易挥发,避免吸入挥发的气体。操作时戴合适的手套和安全眼镜并始终在化学通风橱\生物安全柜里进行。  10.柠檬酸  是一种兴奋剂,可因吸入、咽下或皮肤吸收而受危害健康。它对眼睛可形成严重损伤的危险。操作时戴合适的手套和安全护目镜,勿吸入其粉末。  11.氯化钴(COCl2)  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  12.硫酸铜(CuSO4)  可因吸入、咽下或皮肤吸收而受到危害,操作时戴合适的手套和安全眼镜。  13.二乙胺NH(C2H5)2         是腐蚀剂,有毒并极易燃。可因吸入、咽下或皮肤吸收而受到危害。操作时要戴合适的手套和安全眼镜。仅在化学通风橱/生物安全柜内操作,远离热、火花和明火。  14.N,N-二甲基甲酰胺DMF/HCON(CH3)2  对眼睛、皮肤和黏膜有刺激作用。可通过吸入、咽下或皮肤吸收发挥其毒性效应。经常吸入可引起肝脾损伤。操作时要戴合适的手套和安全眼镜并在化学通风橱/生物安全柜内进行。  15.乙醇CH3CH2OH  可因吸入、咽下或皮肤吸收而受到危害。操作时戴合适的手套和安全眼镜。  16.乙酸乙酯  咽下可致命,可因吸入或皮肤吸收而受害。操作时戴合适的手套和安全护目镜。切勿吸入其粉末。在通风良好的地方使用。  17.氯化铁(FeCl3)  可因吸入、咽下或皮肤吸收而危害健康。要戴合适的手套和安全眼镜并在化学通风橱\生物安全柜内进行操作。  18.甲醛(HCOH)  有很大的毒性并易挥发,也是一种致癌剂。很容易通过皮肤吸收,对眼睛、黏膜和上呼吸道有刺激和损伤作用。避免吸入其挥发的汽雾。要戴合适的手套和安全眼镜。始终在化学通风橱\生物安全柜内进行操作。远离热、火花及明火。  19.甲酸(HCOOH)  毒性强,对黏膜组织、上呼吸道、眼睛和皮肤非常有害。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜(或面具)并在化学通风橱、生物安全柜内使用。  20.硝酸钠(NaNO3)  可因吸入、咽下或皮肤吸收而损害健康。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  21.玻璃棉  可因吸入而受害并引起皮肤过敏,戴合适的手套和面具。  22.硫酸(H2SO4)  毒性非常强,对黏膜、上呼吸道、眼睛和皮肤的组织有极大的破坏作用。可引起灼伤,与其他物质(如,纸)接触可引起失火。戴合适的手套、安全眼镜和实验工作服,在化学通风橱。  23.盐酸(HCl)  易挥发并因吸入、咽下或皮肤吸收而受害。对黏膜、上呼吸道和皮肤有很大的伤害作用。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用并格外小心。当大量操作时要戴护目镜。  24.过氧化氢(H2O2)  具有腐蚀性、毒性,对皮肤有非常严重的损伤作用。可因吸入、咽下或皮肤吸收而危害健康。戴合适的手套和安全眼镜并只能在化学通风橱\生物安全柜里进行操作。  25.硫化氢(H2S)  是非常强的毒性气体,能引起呼吸中枢麻痹。对皮肤有刺激和腐蚀性,能引起嗅觉疲劳。不要靠气味去检测其是否存在。操作时要格外小心。盛硫化氢的容器要放置在化学通风橱\生物安全柜里或放在装有通风设备的房间里。戴合适的手套和安全眼镜。它也非常易燃,要远离热、火花和明火。  26.氯化镁(MgCl2)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  27.硫酸镁(MgSO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用。  28.甲醇(MeOH或H3COH)  是有毒的,能引起眼睛失明。可因吸入、咽下或皮肤吸收而受害。适当的通风是必要的,以便减少与其挥发气体的接触。避免吸入这些挥发的气体。戴合适的手套和安全护目镜。只能在化学通风橱、生物安全柜里使用。  29.硫酸镍(NiSO4)  是致癌剂,可引起可遗传的遗传损伤。它是一种皮肤刺激物,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用,切勿吸入其粉末。  30.硝酸(HNO3)  易挥发,操作要格外小心。通过吸入、咽下或皮肤吸收而产生毒性作用。戴合适的手套和安全护目镜。在化学通风橱\生物安全柜里操作。切勿吸入其挥发的气雾。远离热、火花和明火。高氯酸可因吸入、咽下或皮肤吸收而致病。戴合适的手套和安全眼镜,只能在化学通风橱\生物安全柜里使用。  31.酚  具有很强的毒性和高度腐蚀性并能引起严重的灼伤。可因吸入、咽下或皮肤吸收而受到危害。戴合适的手套、防目镜和防护服。始终在化学通风橱、生物安全柜里使用。如果,皮肤接触到酚,要用大量的水冲洗接触酚的部位并用肥皂和水洗,切记勿用乙醇洗!  32.磷酸(H3PO4)  具有高度腐蚀性,可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。  33.哌啶  毒性高,对眼睛、皮肤、呼吸道和胃肠道有腐蚀性。它与酸和氧化剂剧烈反应,可因吸入、咽下或皮肤吸收而危害健康。切勿吸入其挥发的气体。远离热、火花和明火。戴合适的手套和安全眼镜。在化学通风橱、生物安全柜里使用。  34.氯化钾(KCl)  可因吸入、咽下或皮肤吸收而受到危害,戴合适的手套和安全眼镜。  35.氢氧化钾(KOH)/KOH/甲醇  毒性可能是很高的,可因吸入、咽下或皮肤吸收而受到危害,其溶液有腐蚀性,操作要非常小心,要戴合适的手套。  36.高锰酸钾(KMnO4)  是一种刺激剂和很强的氧化物,当与有机物混合时可形成爆炸性的混合物,所有溶液要在化学通风橱\生物安全柜里使用,不要与盐酸混合。  37.磷酸钾(KH2PO4/K2HPO4/K3PO4)  可因吸入、咽下或皮肤吸收而受害,戴合适的手套和安全眼镜,勿吸入其粉末。  38.硝酸银(AgNO3)  是一种很强的氧化剂,要谨慎操作,它可因吸入、咽下或皮肤吸收而损害健康。避免接触皮肤,戴合适的手套和安全眼镜并与其他物质接触可引起爆炸。  39.磷酸氢二钠(Na2HPO4)  可因吸入、咽下或皮肤吸收而受害。戴合适的手套和安全眼镜。在化学通风橱\生物安全柜里使用。  40.氢氧化钠(NaOH)和含有NaOH的溶液  有很强的毒性和苛性,操作时要格外小心,戴合适的手套和防护面具。

厂商

2018.10.25

分析实验室常见120种有毒物质及防护

  (1) Tris: 吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。  (2) 氨基乙酸:吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。避免吸入尘埃。  (3) X-半乳糖 (X-gal):对眼睛和皮肤有毒性。使用粉剂时遵循常规注意事项。应注意的是,X-gal 溶液是在一种有机溶剂(DMF)中制备的。  (4)β-半乳糖苷酶:有刺激性,可产生过敏反应。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。  (5)苯二胺 :吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。在通风橱内操作。  (6)苯酚:有ju毒性和高度腐蚀性,可致严重烧伤。吸入,摄入,皮肤吸收可造成伤害。戴好合适的手套和护目镜,穿好防护服,在通风橱内操作。若有皮肤接触药物,可用大量清水冲洗,并用肥皂和水清洗,不要用乙醇洗。  (7)苯甲基huang酰氟化物(PMSF):为一有ju毒的胆碱酯酶抑制剂。对上呼吸道的黏膜、眼睛和皮肤有极大损害。戴好合适的手套和护目镜,在通风橱内操作。万一眼睛或皮肤接触到此药品,立即用大量的水冲洗,丢弃被污染的衣物。  (8)苯甲酸:有刺激性。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,不要吸入。  (9)苯甲酸苄酯:有刺激性。吸入,摄入,皮肤吸收可造成伤害。避免接触眼睛。戴好合适的手套和护目镜。  (10)苯乙醇:有刺激性。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,远离火源、火花和明火。  (11)丙烯酰胺(未聚合的):为一种潜在的神经毒素,可通过皮肤吸收(有累积效应)。避免吸入尘埃。称量丙烯酰胺和亚甲基双酰胺粉末时,戴好手套和面罩,在化学通风橱内操作。聚合的丙烯酰胺是无毒的,但是使用时也应小心,因为其中可能喊有少量未聚合的丙烯酰胺。  (12)蛋白酶K:有刺激性。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。  (13)碘化丙锭:吸入,摄入,皮肤吸收可造成伤害。刺激眼睛、皮肤、黏膜和上呼吸道。可诱导突变并可能致癌。戴好手套和护目镜,穿好防护服,在通风橱内小心操作。  (14)碘乙酰胺:能碱基化蛋白质上的氨基,从而影响抗原的氨基酸序列分析。有毒性。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。在通风橱内操作,勿吸入尘埃。  (15)叠dan化钠:有ju毒性,可阻断细胞色素电子转运系统。含此药物的溶液要明确标记。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,并小心使用。此药品为氧化剂,故保存时要远离可燃物品。  (16)多聚甲醛:有ju毒。易通过皮肤吸收,并对皮肤、眼睛、黏膜和上呼吸道有严重破坏性。避免吸入尘埃。戴好手套和护目镜,在通风橱内操作。多聚甲醛是甲醛的未解离形式。  (17)3,3’-二氨基联苯胺四氢氯化物:为一种致癌剂,操作时要非常小心。避免吸入气体。戴好手套和护目镜。在通风橱内操作。  (18)二甲苯:可燃,高浓度有麻醉作用。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜。在通风橱内操作。始终远离热源、火花和明火。  (19)二甲苯蓝:见二甲苯。  (20)二甲次胂酸钠:可能为致癌剂,并含有砷,有ju毒性。戴好手套和护目镜,只在通风橱内操作。  (21)N,N-二甲基酰胺(DMF):刺激眼睛、皮肤和黏膜。可通过吸入,摄入,和皮肤吸收发挥其毒性。慢性吸入可导致肝、肾损害。戴好手套和护目镜,在通风橱内操作。  (22)二甲亚砜(DMSO):吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,在通风橱内操作。DMSO为可燃物保存于密封容器中。远离热源、火花和明火。  (23)二硫苏糖醇(DTT):为一强还原剂,有恶臭味。吸入,摄入,皮肤吸收可造成伤害。当使用固体形式或高浓度溶液时,戴好手套和护目镜并在通风橱内操作。  (24)4ˊ,6-二脒基-2ˊ-苯基吲哚盐酸(DAPI):可能为一种致癌剂。吸入,摄入,皮肤吸收可造成伤害。可引起刺激。避免吸入。戴好手套和护目镜,在通风橱内操作。  (25)放射性物质:当计划的一个实验涉及放射性物质的使用时,应包括以下内容:同位素的理化性质(如半衰期,放射型,辐射能量),辐射物质的化学形式,其辐射度(具体的活性)总量,化学浓度,需要使用多少就预定多少,使用放射性物质时,要始终戴好手套和护目镜,穿实验室工作服。X和γ射线为由仪器产生放射性物质辐射出的短波电磁波,它们会丛放射源辐射出来或聚成光束。它们的潜在危险决定于暴露于其中的时间、强度和它的波长。  (26)放线菌素D:是一种畸胎剂和致癌剂,有ju毒。吸入,摄入,皮肤吸收可造成伤害,甚至是致命的。应避免吸入。戴好手套和护目镜,并始终在化学通风橱内操作,放线菌D见光分解。  (27)高压玻璃器皿时要格外小心。高压锅和金属容器中的玻璃器皿,宜放入金属网中或蒲氏隔板中。在真空状态下使用玻璃器皿,如真空收集器、干燥设备或氩气条件下的反应器等,要谨慎操作。戴好护目镜。  (28)过二硫酸铵:对黏膜组织、上呼吸道、眼睛和皮肤有极大的破坏性。吸入可致命。戴好手套和护目镜,穿好防护服。必须在化学通风橱内操作。操作后要彻底清洗。  (29)过氧化氢:有腐蚀性、毒性,对皮肤有强损害性。吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,只在化学通风橱内操作。  (30)环乙酰亚胺:吸入,摄入,皮肤吸收可造成伤害。戴好手套和护目镜,只在化学通风橱内操作。  (31)磺基蓖麻酸(二水合物);对黏膜和呼吸系统有极大破坏性。不要吸入粉尘,戴好手套和护目镜,在化学通风橱内操作。  (32)甲氨蝶呤(MTX):为一种致癌剂和致畸胎剂。吸入,摄入,皮肤吸收可造成伤害。暴露于其中可导致胃肠反应,骨髓抑制,肝或肾损害。戴好手套和护目镜,在化学通风橱内操作。  (33)甲醇:有毒,可致失明。吸入,摄入,皮肤吸收可造成伤害。要有足够的通风以减少挥发气。不要吸入这些气体。戴好手套和护目镜,在化学通风橱内操作。  (34)甲基磺酸乙酯(EMS):为一种可诱导机体突变和突变和致癌的挥发性有机溶剂。吸入,摄入,皮肤吸收可造成伤害。  (35)甲醛:有ju毒性和挥发性。也是一种致癌剂。可通过皮肤吸收,对皮肤、眼睛、黏膜和上呼吸道有刺激或损伤。避免吸入气体。戴好手套和护目镜。始终在通风橱内操作。远离热源、火花和明火。  (36)甲酸:有ju毒,对黏膜组织、上呼吸道、眼睛、皮肤有极大的损伤。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (37)甲酰胺:可导致畸胎。其挥发的气体刺激眼睛、皮肤、黏膜和上呼吸道。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。操作高浓度甲酰胺时要在通风橱内操作。尽可能将反应的溶液盖住。  (38)焦磷酸钠:有刺激性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘。  (39)焦碳酸二乙酯(DEPC):是一种潜在的蛋白质变质剂,且为可疑的致癌剂。开启时瓶口不要指向操作者或其他人。瓶内压可导致喷溅。戴好手套并穿实验室工作服,在通风橱内操作。  (40)聚丙烯酰胺:无毒性,但仍应谨慎使用,因为其中可能含有少量未聚合的物质。  (41)聚乙二醇(PEG):吸入,摄入,皮肤吸收可造成损伤。避免吸入粉末。戴好手套和护目镜。 (42)菌种(运输):健康教育福利部门根据运输器具将各种细菌划分为不同的类别。大肠杆菌的非病原种(K12)和枯草芽孢杆菌为第一类,正常运输条件下是无危害或危害性很微小的。但是沙门菌、嗜血杆菌、链霉菌和假单孢菌的一些菌种为第二类。第二类细菌为“一般潜在危害剂:能造成不同严重程度的疾病,但在普通实验室技术下可操作。”  (43)抗淬灭剂:见苯二胺。  (44)考马斯亮蓝:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (45)联结剂(DMP):刺激眼睛、皮肤和黏膜。可通过吸入,摄入,皮肤吸收发挥其毒性。不要吸入气体,戴好手套、面罩和护目镜。  (46)链霉素:有毒性,怀疑为致癌剂和突变诱导剂。可导致过敏反应。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (47)亮肽素:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (48)邻苯二甲酸二丁酯:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入气体。  (49)磷酸二氢钠:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (50)磷酸:高腐蚀性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (51)磷酸钾:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘,在通风橱内操作。  (52)磷酸钠:刺激眼睛和皮肤。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘。  (53)磷酸氢钠:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (54)硫氰酸胍:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (55)硫氰酸胍盐:见硫氰酸胍。  (56)硫酸:剧毒性,对黏膜组织、上呼吸道、眼睛和皮肤有极大的损伤。可造成烧伤,与其他物质(如纸)接触可能引发火灾。戴好手套和护目镜,在通风橱内操作。  (57)硫酸镁:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (58)lv仿:刺激眼睛、呼吸道、皮肤和黏膜。为一种致癌剂。有肝、肾毒性。有挥发性。避免吸入蒸汽。戴好手套和护目镜。在通风橱内操作。  (59)氯化铵:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (60)氯化钙:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (61)氯化K:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (62)氯化锂:刺激眼睛、呼吸道、皮肤和黏膜。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (63)氯化镁:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (64)氯化锰:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (65)氯化铁:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (66)氯化锌:有腐蚀性,对胎儿有潜在危险。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (67)3-(N-吗啉)-丙磺酸:吸入,摄入,皮肤吸收可造成损伤。刺激眼睛、呼吸道、皮肤和黏膜。戴好手套和护目镜。在通风橱内操作。  (68)没食子酸丙酯(NPG0):见苯甲酸。  (69)柠檬酸钠:见柠檬酸。  (70)柠檬酸:有刺激性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (71)硼酸:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (72)羟胺:有腐蚀性和毒性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (73)氢氧化铵:为氨的水溶液。具有腐蚀性。操作时要小心。氨气可从氨水中挥发出来,具有腐蚀性、毒性和爆炸性。戴好手套。必须在通风橱内操作。  (74)氢氧化钾:剧毒性。吸入,摄入,皮肤吸收可造成损伤。溶液为强碱性,当心使用。戴好手套。  (75)氢氧化钠:溶液有ju毒,强碱性,当心使用。戴好手套。其他所有高浓度碱溶液都应以类似方式操作。  (76)秋水仙碱:有ju毒,可致命,可导致癌症和可遗传的基因损害。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。不要吸入粉尘。  (77)β-巯基乙醇:吸入或皮肤吸收可致命,摄入有害。高浓度溶液对黏膜、上呼吸道、皮肤和眼睛有极大损害。β-巯基乙醇有难闻气味。戴好手套和护目镜。在通风橱内操作。  (78)去氧胆酸钠:刺激黏膜和呼吸道。吸入,摄入,皮肤吸收可造成损伤。使用粉末时,戴好手套和护目镜。不要吸入粉尘。  (79)溶剂:谨慎操作。  (80)溶菌酶:对黏膜有腐蚀性。戴好手套和护目镜。  (81)三氯yi酸:有很强的腐蚀性。戴好手套和护目镜。  (82)三乙胺:有ju毒,易燃。对皮肤、眼睛、黏膜和上呼吸道有强腐蚀性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。始终在通风橱内操作。远离热源、火花和明火。  (83)三乙醇胺:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。始终在通风橱内操作。 (84)十二烷基磺酸钠(SDS):有毒性和刺激性,有严重损伤眼睛的危险。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘。  (85)双丙烯酰胺:是一种潜在的神经毒素,可通过皮肤吸收,避免吸入,在称量时,戴好手套和护目镜。  (86)四环素:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (87)N,N,N’,N’-四甲基乙二胺:对皮肤、眼睛、黏膜和上呼吸道有极大损伤。吸入可致命,长时间接触可产生严重刺激或烧伤。戴好手套和护目镜。穿防护服,必须在通风橱内操作。使用完毕要彻底清洗。易燃性,其挥发气体可到达一定距离,形成引燃源,瞬间发生火灾。远离热源、火花和明火。  (88)四水合乙酸镁:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (89)四唑氮蓝:有危险性,小心操作。  (90)碳酸钠:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (91)同位素125I:在甲状腺,为一潜在的健康sha手。无论何种形式的同位素都用铅板遮挡。操作同位素时,要戴一到两副手套,着取决于同位素的用量和所进行的操作难度。  (92)胃酶抑素:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (93)胃酶抑素:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (94)硝酸:具有挥发性,操作时要小心。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。远离热源、火花和明火。  (95)硝酸银:强氧化剂,小心操作。皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。与其他物质接触会发生爆炸。  (96)溴酚蓝:皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (97)5-溴-4-氯-3-吲哚-β-D-半乳糖苷:对眼睛和皮肤有毒性。皮肤吸收可造成损伤。戴好手套和护目镜。  (98)5-溴-4-氯-3-吲哚-磷酸酯:有毒性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (99)5-溴-2’-脱氧脲苷:为致畸胎剂。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内操作。  (100)溴乙啡啶:为一种强致突变剂,有毒性。避免吸入粉尘。操作含此染料的溶液时,戴上手套。  (101)血(人类)和血产品和爱普斯坦病毒:其中可能含有隐藏的传染性物质,如乙型肝炎病毒、HIV,可能造成实验上室传染。戴一次性手套,使用吸枪式吸管,在生物安全橱中、操作,防止形成悬浮和污染。污染的塑料器皿在丢弃前要高压处理;污染的液体高压处理或丢弃前用漂白粉处理至少30min。  (102)N,N’-亚甲基丙烯酰胺:为du药,作用于中枢神经系统。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。  (103)亚精胺:有腐蚀性。吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内操作。  (104)亚Fe氰化K:吸入,摄入,皮肤吸收可造成损伤。有刺激性。戴好手套和护目镜。在通风橱内相当谨慎地操作。远离强酸。  (105)盐酸:有挥发性。吸入,摄入,皮肤吸收可致命。对皮肤、眼睛、黏膜和上呼吸道有极大损害。戴好手套和护目镜。在通风橱内操作。  (106)盐酸胍:刺激黏膜、上呼吸道、皮肤和眼睛。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (107)盐酸胍盐:见盐酸胍。  (108)乙醇:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (109)乙基亚硝基脲:见N-乙基-N-亚硝基脲  (110)N-乙基-N-亚硝基脲(ENU):有致癌性,为潜在的突变诱导剂。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。用1ml/LNaOH溶液清洗所有接触过ENU的物品。  (111)乙酸铵:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (112)乙醇胺:有毒性。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。具有高腐蚀性,并可与酸发生强烈反应。  (113)乙酸:使用时要非常小心。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (114)乙酸钠:见乙酸。  (115)乙酸铀酰:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。在通风橱内操作。  (116)异丙基-β-D-硫代半乳糖苷(IPTG):吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。  (117)异丁烯酸酯:有毒。吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入其气体。  (118)异硫氰酸胍盐:见硫氰酸胍盐。  (119)抑肽酶:吸入,摄入,皮肤吸收可造成损伤还可导致过敏反应。暴露其中可引起胃肠反应,肌肉疼痛,血压改变或支气管痉挛。戴好手套和护目镜。不要吸入粉尘,必须在通风橱内操作。  (120)月桂酰基氨酸钠:吸入,摄入,皮肤吸收可造成损伤。戴好手套和护目镜。不要吸入粉尘。

厂商

2018.10.24

拉曼光谱、红外光谱、XPS的工作原理

  拉曼光谱的原理及应用  拉曼光谱由于近几年来以下几项技术的集中发展而有了更广泛的应用。这些技术是:  CCD检测系统在近红外区域的高灵敏性,体积小而功率大的二极管激光器,与激发激光及信号过滤整合的光纤探头。这些产品连同高口径短焦距的分光光度计,提供了低荧光本底而高质量的拉曼光谱以及体积小、容易使用的拉曼光谱仪。  1. 含义  光照射到物质上发生弹性散射和非弹性散射,弹性散射的散射光是与激发光波长相同的成分,非弹性散射的散射光有比激发光波长长的和短的成分,统称为拉曼效应。  当用波长比试样粒径小得多的单色光照射气体、液体或透明试样时,大部分的光会按原来的方向透射,而一小部分则按不同的角度散射开来,产生散射光。在垂直方向观察时,除了与原入射光有相同频率的瑞利散射外,还有一系列对称分布着若干条很弱的与入射光频率发生位移的拉曼谱线,这种现象称为拉曼效应。由于拉曼谱线的数目,位移的大小,谱线的长度直接与试样分子振动或转动能级有关。因此,与红外吸收光谱类似,对拉曼光谱的研究,也可以得到有关分子振动或转动的信息。目前拉曼光谱分析技术已广泛应用于物质的鉴定,分子结构的研究谱线特征  2.拉曼散射光谱具有以下明显的特征:  a.拉曼散射谱线的波数虽然随入射光的波数而不同,但对同一样品,同一拉曼谱线的位移与入射光的波长无关,只和样品的振动转动能级有关;  b.在以波数为变量的拉曼光谱图上,斯托克斯线和反斯托克斯线对称地分布在瑞利散射线两侧, 这是由于在上述两种情况下分别相应于得到或失去了一个振动量子的能量。  c.一般情况下,斯托克斯线比反斯托克斯线的强度大。这是由于Boltzmann分布,处于振动基态上的粒子数远大于处于振动激发态上的粒子数。  3.拉曼光谱技术的优越性  提供快速、简单、可重复、且更重要的是无损伤的定性定量分析,它无需样品准备,样品可直接通过光纤探头或者通过玻璃、石英、和光纤测量,此外。。。  ①由于水的拉曼散射很微弱,拉曼光谱是研究水溶液中的生物样品和化学化合物的理想工具。  ②拉曼一次可以同时覆盖50~4000波数的区间,可对有机物及无机物进行分析。相反,若让红外光谱覆盖相同的区间则必须改变光栅、光束分离器、滤波器和检测器。。。  ③拉曼光谱谱峰清晰尖锐,更适合定量研究、数据库搜索、以及运用差异分析进行定性研究。在化学结构分析中,独立的拉曼区间的强度可以和功能集团的数量相关。  ④因为激光束的直径在它的聚焦部位通常只有0.2~2毫米,常规拉曼光谱只需要少量的样品就可以得到。这是拉曼光谱相对常规红外光谱一个很大的优势,而且拉曼显微镜物镜可将激光束进一步聚焦至20微米甚至更小,可分析更小面积的样品。  ⑤共振拉曼效应可以用来有选择性地增强大生物分子特个发色基团的振动,这些发色基团的拉曼光强能被选择性地增强1000到10000倍。  4.几种重要的拉曼光谱分析技术  ①单道检测的拉曼光谱分析技术;  ②以CCD为代表的多通道探测器用于拉曼光谱的检测仪的分析技术;  ③采用傅立叶变换技术的FT-Raman光谱分析技术;  ④共振拉曼光谱分析技术;  ⑤表面增强拉曼效应分析技术;  5.拉曼频移,拉曼光谱与分子极化率的关系  ①拉曼频移:  散射光频与激发光频之差,取决于分子振动能级的改变,所以它是特征的 ,与入射光的波长无关,适应于分子结构的分析  ②拉曼光谱与分子极化率的关系:  分子在静电场E中,极化感应偶极矩P为静电场E与极化率的乘积;  诱导偶极矩与外电场的强度之比为分子的极化率;  分子中两原子距离最大时,极化率也最大;  拉曼散射强度与极化率成正比例;  6.应用激光光源的拉曼光谱法  应用激光具有单色性好、方向性强、亮度高、相干性好等特性,与表面增强拉曼效应相结合,便产生了表面增强拉曼光谱。其灵敏度比常规拉曼光谱可提高104~107倍,加之活性载体表面选择吸附分子对荧光发射的抑制,使分析的信噪比大大提高。已应用于生物、药物及环境分析中痕量物质的检测。共振拉曼光谱是建立在共振拉曼效应基础上的另一种激光拉曼光谱法。共振拉曼效应产生于激发光频率与待测分子的某个电子吸收峰接近或重合时,这一分子的某个或几个特征拉曼谱带强度可达到正常拉曼谱带的104~106倍,有利于低浓度和微量样品的检测。已用于无机、有机、生物大分子、离子乃至活体组成的测定和研究。激光拉曼光谱与傅里叶变换红外光谱相配合,已成为分子结构研究的主要手段  ①共振拉曼光谱的特点:  (1)基频的强度可以达到瑞利线的强度。  (2)泛频和合频的强度有时大于或等于基频的强度。  (3)通过改变激发频率,使之仅与样品中某一物质发生共振,从而选择性的研究某一物质。  (4)和普通拉曼相比,其散射时间短,一般为10-12~10-5S。  ②共振拉曼光谱的缺点:  需要连续可调的激光器,以满足不同样品在不同区域的吸收。  7.电化学原位拉曼光谱法  电化学原位拉曼光谱法,是利用物质分子对入射光所产生的频率发生较大变化的散射现象, 将单色入射光(包括:圆偏振光和线偏振光)激发受电极电位调制的电极表面,通过测定散射回来的拉曼光谱信号(频率、强度和偏振性能的变化)与电极电位或电流强度等的变化关系。一般物质分子的拉曼光谱很微弱,为了获得增强的信号,可采用电极表面粗化的办法,可以得到强度高104~107倍的表面增强拉曼散射(Surface Enahanced Raman Scattering,SERS)光谱, 当具有共振拉曼效应的分子吸附在粗化的电极表面时, 得到的是表面增强共振拉曼散射(SERRS)光谱, 其强度又能增强102~103。  电化学原位拉曼光谱法的测量装置主要包括:拉曼光谱仪和原位电化学拉曼池两个部分。拉曼光谱仪由激光源、收集系统、分光系统和检测系统构成,光源一般采用能量集中、功率密度高的激光,收集系统由透镜组构成,分光系统采用光栅或陷波滤光片结合光栅以滤除瑞利散射和杂散光以及分光检测系统采用光电倍增管检测器、半导体阵检测器或多通道的电荷藕合器件。原位电化学拉曼池一般具有工作电极、辅助电极和参比电极以及通气装置。为了避免腐蚀性溶液和气体侵蚀仪器,拉曼池必须配备光学窗口的密封体系。在实验条件允许的情况下,为了尽量避免溶液信号的干扰,应采用薄层溶液(电极与窗口间距为0.1~1mm),这对于显微拉曼系统很重要,光学窗片或溶液层太厚会导致显微系统的光路改变,使表面拉曼信号的收集效率降低。电极表面粗化的最常用方法是电化学氧化—还原循环(Oxidation-Reduction Cycle,ORC)法, 一般可进行原位或非原位ORC处理。  目前,采用电化学原位拉曼光谱法测定的研究进展主要有:  一是通过表面增强处理把测检体系拓宽到过渡金属和半导体电极。虽然,电化学原位拉曼光谱是现场检测较灵敏的方法,但仅能有银、铜、金三种电极在可见光区能给出较强的SERS。许多学者试图在具有重要应用背景的过渡金属电极和半导体电极上实现表面增强拉曼散射。  二是通过分析研究电极表面吸附物种的结构、取向及对象的SERS光谱与电化学参数的关系,对电化学吸附现象作分子水平上的描述。三是通过改变调制电位的频率, 可以得到在两个电位下变化的“时间分辨谱”, 以分析体系的SERS谱峰与电位的关系, 解决了由于电极表面的SERS 活性位随电位而变化而带来的问题。  8.拉曼信号的选择  入射激光的功率,样品池厚度和光学系统的参数也对拉曼信号强度有很大的影响,故多选用能产生较强拉曼信号并且其拉曼峰不与待测拉曼峰重叠的基质或外加物质的分子作内标加以校正。其内标的选择原则和定量分析方法与其他光谱分析方法基本相同。  斯托克斯线能量减少,波长变长  反斯托克斯线能量增加,波长变短  9.拉曼光谱的应用方向  拉曼光谱分析技术是以拉曼效应为基础建立起来的分子结构表征技术,其信号来源与分子的振动和转动。拉曼光谱的分析方向有:  定性分析:不同的物质具有不同的特征光谱,因此,可以通过光谱进行定性分析。  结构分析:对光谱谱带的分析,又是进行物质结构分析的基础。  定量分析:根据物质对光谱的吸光度的特点,可以对物质的量有很好的分析能力。  10.拉曼光谱用于分析的优点和缺点  ①拉曼光谱用于分析的优点  拉曼光谱的分析方法不需要对样品进行前处理,也没有样品的制备过程,避免了一些误差的产生,并且在分析过程中操作简便,测定时间短,灵敏度高等优点  ②拉曼光谱用于分析的不足  (1)拉曼散射面积;  (2)不同振动峰重叠和拉曼散射强度容易受光学系统参数等因素的影响;  (3)荧光现象对傅立叶变换拉曼光谱分析的干扰;  (4)在进行傅立叶变换光谱分析时,常出现曲线的非线性的问题;  (5)任何一物质的引入都会对被测体体系带来某种程度的污染,这等于引入了一些误差的可能性,会对分析的结果产生一定的影响;  11.新进展及发展前景  十多年来,虽然已经有一些关于在高真空体系、大气下、以及固/液体系(电化学体系)中研究单晶金属体系表面拉曼光谱的报道,但直至近年光滑单晶电极体系的SERS研究才取得了重要进展Bryant等记录了以单分子层吸附在光滑Pt电极表面的噻吩拉曼谱,Furtak等使用具有Kretchmann光学构型的ATR电解池并利用表面等离子体增强效应,获得了吸附物种在平滑的Ag(111)单晶面上的弱SERS信号,由于拉曼光谱系统的检测灵敏度的限制,所获得的表面信号极弱,无法进行较为详细的研究.Otto小组和Futamata小组分别成功地采用Otto光学构造的ATR电解池,利用表面等离子激元增强方法获得了光滑单晶电极上相对较强的表面Raman信号,前者发现不同的Cu单晶电极表面的增强因子有所不同,有较高指数或台阶的晶面的信号明显增强。Futamata等甚至可在Pt和Ni金属的单晶表面上观察到SERS信号, 计算表明其表面增强因子为1~2个数量级。目前,可用于单晶表面电极体系的SERS研究还局限于Raman散射截面很大的极少数分子,尚需进一步改进和寻找实验方法,以拓宽可研究的分子体系.若能成功地将各种单晶表面电极的SERS信号与经过不同粗糙方式处理的电极表面信号进行系统地比较和研究, 不但对定量研究SERS机理和区分不同增强机制的贡献大有益处, 而且将有利于提出正确和可靠的拉曼光谱的表面选择定律.  随着纳米科学技术的迅速发展, 各类制备不同纳米颗粒以及二维有序纳米图案的技术和方法将日益成熟, 人们可以比较方便地在理论的指导下,寻找在过渡金属上产生强SERS效应的最佳实验条件.这些突破无疑将为拉曼光谱技术广泛应用于各种过渡金属电极和单晶电极体系的研究开创新局面。总之,通过摸索合适的表面处理方法并采用新一代高灵敏度的拉曼谱仪,可将拉曼光谱研究拓展至一系列重要的过渡金属和半导体体系,进而将该技术发展成为一个适用性广、研究能力强的表面(界面)谱学工具,同时,推动有关表面(界面)谱学理论的发展.  各种相关的检测和研究方法也很可能得到较迅速的发展和提高,在提高检测灵敏度的基础上,人们已不满足于仅仅检测电极表面物种, 而是注重通过提高其检测分辨率(包括:谱带分辨、时间分辨和空间分辨)来研究电化学界面结构和表面分子的细节和动态过程。今后的主要研究内容可能从稳态的界面结构和表面吸附逐渐扩展至其反应的动态过程并深入至分子内部的各基团,揭示分子水平上的化学反应(吸附)动力学规律,研究表面物种间以及同电解质离子或溶剂分子间的弱相互作用等,例如,将电化学暂态技术(时间-电流法、超高速循环伏安法)同时间分辨光谱技术结合, 开展时间分辨为ms或μs级的研究。采用SERS同电化学暂态技术结合进行的时间分辨实验可检测鉴别电化学反应的产物及中间物,新一代的增强型电荷耦合列阵检测器(ICCD)和新一代的拉曼谱仪(如:傅立叶变换拉曼仪和哈德玛变换仪)的推出,都将为时间分辨拉曼光谱在电化学的研究提供新手段。最近,我们利用电化学本身的优势,提出的电位平均表面增强拉曼散射he(Potential Averaged SERS,PASERS)新方法,通过在Ag和Pt微电极上采集在不同调制电位频率下的PASERS谱并进行解谱,可在不具备从事时间分辨研究条件的仪器上进行时间分辨为μs级的电化学时间分辨拉曼光谱研究。拉曼光谱研究的另一发展方向是采用激光拉曼光谱微区显微技术,开展空间分辨研究并进而开展电极表面微区结构与行为的研究。Fujishima等人利用共焦显微拉曼系统和SERS技术发展了表面增强拉曼成像技术并研究了SERS活性银表面吸附物以及自组装膜的SERI图象,该技术和具有三维空间分辨的共焦显微Raman光谱方法在研究导电高聚物、L-B膜和自组装膜电极以及电极钝化膜和微区腐蚀等方面将发挥其重要作用。突破光学衍射极限的、空间分辨值达数十纳米的近场光学Raman显微技术则很可能异军突起。为多方位获得详细信息,达到取长补短的目的,开展Raman光谱与其他先进技术联用的研究势在必行。光导纤维技术可在联用耦合方面发挥关键作用,如,将表面Raman光谱技术与扫描探针显微技术进行实时联用,针对性的联用技术可望较全面地研究复杂体系并准确地解释疑难的实验现象,为各种理论模型和表面选则定律提供实验数据,促进谱学电化学的有关理论和表面量子化学理论的发展。可以预见,在不久的将来,随着表面检测技术的快速发展,SERS及其应用于电化学的研究将进入一个新的阶段。  红外光谱的原理及应用  (一)红外吸收光谱的定义及产生  分子的振动能量比转动能量大,当发生振动能级跃迁时,不可避免地伴随有转动能级的跃迁,所以无法测量纯粹的振动光谱,而只能得到分子的振动-转动光谱,这种光谱称为红外吸收光谱  红外吸收光谱也是一种分子吸收光谱。当样品受到频率连续变化的红外光照射时,分子吸收了某些频率的辐射并由其振动或转动运动引起偶极矩的净变化,产生分子振动和转动能级从基态到激发态的跃迁,使相应于这些吸收区域的透射光强度减弱。记录红外光的百分透射比与波数或波长关系曲线,就得到红外光谱。  (二)基本原理  1.产生红外吸收的条件  (1)分子振动时,必须伴随有瞬时偶极矩的变化。  对称分子:  没有偶极矩,辐射不能引起共振,无红外活性,如,N2、O2、Cl2等。  非对称分子:  有偶极矩,红外活性。  (2)只有当照射分子的红外辐射的频率与分子某种振动方式的频率相同时,分子吸收能量后,从基态振动能级跃迁到较高能量的振动能级,从而在图谱上出现相应的吸收带。  2.分子的振动类型  伸缩振动:  键长变动,包括:对称与非对称伸缩振动;  弯曲振动:  键角变动,包括剪式振动、平面摇摆、非平面摇摆、扭曲振动;  3.几个术语  基频峰:  由基态跃迁到第一激发态,产生一个强的吸收峰,基频峰;  倍频峰:  由基态直接跃迁到第二激发态,产生一个弱的吸收峰,倍频峰;  组频:  如果分子吸收一个红外光子,同时,激发了基频分别为v1和v2的两种跃迁,此时所产生的吸收频率应该等于上述两种跃迁的吸收频率之和,故称组频;  特征峰:  凡是能用于鉴定官能团存在的吸收峰,相应频率成为特征频率;  相关峰:  相互可以依存而又相互可以佐证的吸收峰称为相关峰;  4.影响基团吸收频率的因素  (1)外部条件对吸收峰位置的影响:  物态效应、溶剂效应;  (2)分子结构对基团吸收谱带的影响:  诱导效应:  通常吸电子基团使邻近基团吸收波数升高,给电子基团使波数降低。  共轭效应:  基团与吸电子基团共轭,使基团键力常数增加,因此,基团吸收频率升高,基团与给电子基团共轭,使基团键力常数减小,因此,基团吸收频率降低。  当同时存在诱导效应和共轭效应,若两者作用一致,则两个作用互相加强,不一致,取决于作用强的作用。  (3)偶极场效应:  互相靠近的基团之间通过空间起作用。  (4)张力效应:  环外双键的伸缩振动波数随环减小其波数越高。  (5)氢键效应:  氢键的形成使伸缩振动波数移向低波数,吸收强度增强  (6)位阻效应:  共轭因位阻效应受限,基团吸收接近正常值。  (7)振动耦合;  (8)互变异构的影响;  (三)红外吸收光谱法的解析  红外光谱一般解析步骤  1. 检查光谱图是否符合要求;  2.了解样品来源、样品的理化性质、其他分析的数据、样品重结晶溶剂及纯度;  3.排除可能的“假谱带”;  4. 若可以根据其他分析数据写出分子式,则应先算出分子的不饱和度U  ∪=(2+ 2n4+n3–n1)/2  n4,n3,n1分别为分子中四价,三价,一价元素数目;  5.确定分子所含基团及化学键的类型(官能团区4000-1330和指纹区1330-650cm-1)  6.结合其他分析数据,确定化合物的结构单元,推出可能的结构式;  7.已知化合物分子结构的验证;  8.标准图谱对照;  9. 计算机谱图库检索。  (四)红外吸收光谱法的应用  红外光谱法广泛用于有机化合物的定性鉴定和结构分析。  定性分析  1.已知物的鉴定  将试样的谱图与标准的谱图进行对照或者与文献上的谱图进行对照。如果两张谱图各吸收峰的位置和形状完全相同,峰的相对强度一样,就可以认为样品是该种标准物。如果两张谱图不一样,或峰位不一致,则说明两者不为同一化合物,或样品有杂质。如用计算机谱图检索,则采用相似度来判别。使用文献上的谱图应当注意试样的物态、结晶状态、溶剂、测定条件以及所用仪器类型均应与标准谱图相同。  2.未知物结构的测定  测定未知物的结构,是红外光谱法定性分析的一个重要用途。如果未知物不是新化合物,可以通过两种方式利用标准谱图进行查对:  (1)查阅标准谱图的谱带索引,与寻找试样光谱吸收带相同的标准谱图;  (2)进行光谱解析,判断试样的可能结构,然后在由化学分类索引查找标准谱图对照核实。  准备工作  在进行未知物光谱解析之前,必须对样品有透彻的了解,例如,样品的来源、外观,根据样品存在的形态,选择适当的制样方法;注意视察样品的颜色、气味等,它们住往是判断未知物结构的佐证。还应注意样品的纯度以及样品的元素分析及其它物理常数的测定结果。元素分析是推断未知样品结构的另一依据。样品的相对分子质量、沸点、熔点、折光率、旋光率等物理常数,可作光谱解释的旁证,并有助于缩小化合物的范围。  3.确定未知物的不饱和度  由元素分析的结果可求出化合 物的经验式,由相对分子质量可求出其化学式并求出不饱和度。 从不饱和度可推出化合物可能的范围。不饱和度是表示有机分子中碳原子的不饱和程度。计算不饱和度W的经验公式为:  W=1+n4+(n3-n1)/2  式中n4、n3、n1分别为分子中所含的四价、三价和一价元素原子的数目。二价原子如S、O等不参加计算。  当计算得:  当W=0时,表示分子是饱和的,为 链状烃及其不含双键的衍生物。  当W=1时,可能有一个双键或脂环;  当W=2时,可能有 两个双键和脂环,也可能有一个 叁键;  当W=4时,可能有一个苯环等。  官能团分析:  根据官能团的初步分析可以排除一部分结构的可能性,肯定某些可能存在的结构,并初步可以推测化合物的类别。  图谱分析:  图谱的解析主要是靠长期的实践、经验的积累,至今仍没有一一个特定的办法。一般程序是先官能团区,后指纹区;先强峰后弱峰;先否定后肯定。  首先,在官能团区(4000~1300cm-1)搜寻官能团的特征伸缩振动,再根据指纹区的吸收情况,进一步确认该基团的存在以及与其它基团的结合方式。如果是芳香族化合物,应定出苯环取代位置。最后再结合样品的其它分析资料,综合判断分析结果,提出最可能的结构式,然后用已知样品或标准图谱对照,核对判断的结果是否正确。如果样品为新化合物,则需要结合紫外、质谱、核磁等数据,才能决定所提的结构是否正确。  4.几种标准谱图  (1)萨特勒(Sadtler)标准红外光谱图;  (2)Aldrich红外谱图库;  (3)Sigma Fourier红外光谱图库;  定量分析  红外光谱定量分析是通过对特征吸收谱带强度的测量来求出组份含量。其理论依据是朗伯-比耳定律。  由于红外光谱的谱带较多,选择的余地大,所以能方便的对单一组分和多组分进行定量分析  此外,该法不受样品状态的限制,能定量测定气体、液体和固体样品。因此,红外光谱定量分析应用广泛。但红外光谱法定量灵敏度较低,尚不适用于微量组份的测定。  定量分析方法  可用标准曲线法、求解联立方程法等方法进行定量分析。  X射线光电子能谱的原理和应用  (一)X光电子能谱分析的基本原理  X光电子能谱分析的基本原理:  一定能量的X光照射到样品表面,和待测物质发生作用,可以使待测物质原子中的电子脱离原子成为自由电子。该过程可用下式表示:hn=Ek+Eb+Er;其中:hn:X光子的能量;Ek:光电子的能量;Eb:电子的结合能;Er:原子的反冲能量。其中Er很小,可以忽略。  对于固体样品,计算结合能的参考点不是选真空中的静止电子,而是选用费米能级,由内层电子跃迁到费米能级消耗的能量为结合能 Eb,由费米能级进入真空成为自由电子所需的能量为功函数Φ,剩余的能量成为自由电子的动能Ek,  式(103)又可表示为:  hn=Ek+Eb+Φ(10.4)Eb= hn-Ek-Φ(10.5)  仪器材料的功函数Φ是一个定值,约为4eV,入射X光子能量已知,这样,如果测出电子的动能Ek,便可得到固体样品电子的结合能。各种原子,分子的轨道电子结合能是一定的。因此,通过对样品产生的光子能量的测定,就可以了解样品中元素的组成。元素所处的化学环境不同,其结合能会有微小的差别,这种由化学环境不同引起的结合能的微小差别叫化学位移,由化学位移的大小可以确定元素所处的状态。例如某元素失去电子成为离子后,其结合能会增加,如果得到电子成为负离子,则结合能会降低。因此,利用化学位移值可以分析元素的化合价和存在形式。  (二)电子能谱法的特点  (1)可以分析除H和He以外的所有元素;可以直接测定来自样品单个能级光电发射电子的能量分布,且直接得到电子能级结构的信息。  (2)从能量范围看,如果把红外光谱提供的信息称之为“分子指纹”,那么电子能谱提供的信息可称作“原子指纹”。它提供有关化学键方面的信息,即直接测量价层电子及内层电子轨道能级。而相邻元素的同种能级的谱线相隔较远,相互干扰少,元素定性的标识性强。  (3)是一种无损分析。  (4)是一种高灵敏超微量表面分析技术。分析所需试样约10-8g即可,绝对灵敏度高达10-18g ,样品分析深度约2nm。  (三)X射线光电子能谱法的应用  (1)元素定性分析  各种元素都有它的特征的电子结合能,因此,在能谱图中就出现特征谱线,可以根据这些谱线在能谱图中的位置来鉴定周期表中除H和He以外的所有元素。通过对样品进行全扫描,在一次测定中就可以检出全部或大部分元素。  (2)元素定量分折  X射线光电子能谱定量分析的依据是光电子谱线的强度(光电子蜂的面积)反映了原于的含量或相对浓度。在实际分析中,采用与标准样品相比较的方法来对元素进行定量分析,其分析精度达1%~2%。  (3)固体表面分析  固体表面是指最外层的1~10个原子层,其厚度大概是(0.1~1)nnm。人们早已认识到在固体表面存在有一个与团体内部的组成和性质不同的相。表面研究包括分析表面的元素组成和化学组成,原子价态,表面能态分布。测定表面原子的电子云分布和能级结构等。  X射线  光电子能谱是最常用的工具。在表面吸附、催化、金属的氧化和腐蚀、半导体、电极钝化、薄膜材料等方面都有应用。  (4)化合物结构签定  X射线光电子能谱法对于内壳层电子结合能化学位移的精确测量,能提供化学键和电荷分布方面的信息。  (四)下面重点介绍一下X射线在表面分析中的原理及应用  X射线光电子能谱法(X-ray Photoelectron Spectrom——XPS)在表面分析领域中是一种崭新的方法。虽然,用X射线照射固体材料并测量由此引起的电子动能的分布早在本世纪初就有报道,但当时可达到的分辩率还不足以观测到光电子能谱上的实际光峰。直到1958年,以Siegbahn为首的一个瑞典研究小组首次观测到光峰现象,并发现此方法可以用来研究元素的种类及其化学状态,故而取名“化学分析光电子能谱(Eletron Spectroscopy for Chemical Analysis-ESCA)。目前,XPS和ESCA已公认为是同义词而不再加以区别。  XPS的主要特点是它能在不太高的真空度下进行表面分析研究,这是其它方法都做不到的。当用电子束激发时,如,用AES法,必须使用超高真空,以防止样品上形成碳的沉积物而掩盖被测表面。X射线比较柔和的特性使我们有可能在中等真空程度下对表面观察若干小时而不会影响测试结果。此外,化学位移效应也是XPS法不同于其它方法的另一特点,即采用直观的化学认识即可解释XPS中的化学位移,相比之下,在AES中解释起来就困难的多。  1.基本原理  用X射线照射固体时,由于光电效应,原子的某一能级的电子被击出物体之外,此电子称为光电子。如果X射线光子的能量为hν,电子在该能级上的结合能为Eb,射出固体后的动能为Ec,则它们之间的关系为: hν=Eb+Ec+Ws 式中Ws为功函数,它表示固体中的束缚电子除克服各别原子核对它的吸引外,还必须克服整个晶体对它的吸引才能逸出样品表面,即电子逸出表面所做的功。上式可另表示为: Eb=hν-Ec-Ws 可见,当入射X射线能量一定后,若测出功函数和电子的动能,即可求出电子的结合能。由于只有表面处的光电子才能从固体中逸出,因而测得的电子结合能必然反应了表面化学成份的情况。这正是光电子能谱仪的基本测试原理。  2.仪器组成  XPS是精确测量物质受X射线激发产生光电子能量分布的仪器。具有真空系统、离子枪、进样系统、能量分析器以及探测器等部件。XPS中的射线源通常采用AlKα(1486.6eV )和MgKα(1253.8eV),它们具有强度高,自然宽度小(分别为830meV和680meV)。CrKα和CuKα辐射虽然能量更高,但由于其自然宽度大于2eV,不能用于高分辩率的观测。为了获得更高的观测精度,还使用了晶体单色器(利用其对固定波长的色散效果),但这将使X射线的强度由此降低。  由X射线从样品中激发出的光电子,经电子能量分析器,按电子的能量展谱,再进入电子探测器,最后用X Y记录仪记录光电子能谱。在光电子能谱仪上测得的是电子的动能,为了求得电子在原子内的结合能,还必须知道功函数Ws。它不仅与物质的性质有关,还与仪器有关,可以用标准样品对仪器进行标定,求出功函数。  3.应用简介  XPS电子能谱曲线的横坐标是电子结合能,纵坐标是光电子的测量强度(如下图所示)。可以根据XPS电子结合能标准手册对被分析元素进行鉴定。  XPS是当代谱学领域中最活跃的分支之一,虽然,只有十几年的历史,但其发展速度很快,在电子工业、化学化工、能源、冶金、生物医学和环境中得到了广泛应用。除了可以根据测得的电子结合能确定样品的化学成份外,XPS最重要的应用在于确定元素的化合状态。  当元素处于化合物状态时,与纯元素相比,电子的结合能有一些小的变化,称为化学位移,表现在电子能谱曲线上就是谱峰发生少量平移。测量化学位移,可以了解原子的状态和化学键的情况。  例如,Al2O3中的3价铝与纯铝(0价)的电子结合能存在大约3电子伏特的化学位移,而氧化铜(CuO)与氧化亚铜(Cu2O)存在大约1.6电子伏特的化学位移。这样就可以通过化学位移的测量确定元素的化合状态,从而更好地研究表面成份的变化情况。  X光电子能谱法是一种表面分析方法,提供的是样品表面的元素含量与形态,而不是样品整体的成分。其信息深度约为3-5nm。如果利用离子作为剥离手段,利用XPS作为分析方法,则可以实现对样品的深度分析。固体样品中除氢、氦之外的所有元素都可以进行XPS分析。  (1)通过测定物质的表层(约10nm),可以获得物质表层的构成元素和化学结合状态等方面的信息。解析基板表层附着物,解析金属薄膜等的氧化状态,计算自然氧化膜厚度,解析CF系醋酸膜,评价金属材料的腐蚀,测定磁盘润滑膜厚度,解析各种反应生成物宽幅扫描测定。  (2)应用角度分解法进行的分析  通过改变光电子的取出角度,可以采用非破坏性的方法得到深度方向的信息。另外,浅化光电子的取出角度,可以提高超表层的灵敏度。  (五)对羊毛纤维分别进行氧化处理和氯化处理  用X射线光电能谱仪对改性前后的毛纤维进行表面元素分析和基团分析,研究羊毛表面化学结构的变化情况,从微观上分析羊毛的改性机理。测试结果表明:经过氧化改性的毛纤维表面增加了锰元素,氯化改性后的毛纤维表面增加了钠、氯和硫元素。毛纤维原有的接氨基基团经过改性后都被打断而接入了含其它元素的基团。

厂商

2018.10.24

气相色谱仪进样系统的选择与使用

  气相色谱仪分析中,人们总希望有一种进样系统既能适应填充柱和毛细管柱,又能满足不同进样量和进样技术的需要,实践证明这是不现实的,因此,对于一项新的分析任务,面临选择进样系统的问题。进样系统主要是根据样品性质、分析目的和色谱柱类型等来选择,一般原则是在满足分析要求的前提下,尽量选用结构简单、操作和维修方便的进样系统。如填充柱和毛细管柱进样系统首选前者,毛细管柱常规分析时分流进样系统为首选等。  一、进样系统  1、首选填充柱进样系统的原因:  (1)结构简单,操作和维修方便。  (2)无隔垫吹扫功能对分析结果影响不大。  (3)填充柱容量大,进样量高达10μL且样品全部进入色谱柱,分析重复性和定量准确度高,有利于微量和痕量分析。  (4)对于极性和易吸附分解的样品,很容易用玻璃衬管或玻璃柱解决。  (5)只要分离度允许,填充柱进样适用于各种挥发性样品的分析,而毛细管柱分析时必须仔细选择进样系统。  (6)对于液体样品,由于柱效有限,进样速度对分析结果影响不大,手动进样和自动进样区别不大。为提高定量精度,只要注意进样量和进样速度尽量重现即可。  2、毛细管柱进样系统:  无论采用什么色谱分析方法,毛细管柱容量和载气流量与填充柱相比都较低,虽然根据毛细管柱分析特点,设计了多种进样系统,改进了进样技术,但进样引起的定量误差总体来说比填充柱进样大。因此,毛细管柱进样系统的选择比填充柱考虑的因素多。从理论上讲某一个样品可能有多种进样系统可供选择,但实际上在性价比、操作简便性和维修保养要求等方面可能存在很大不同。选择进样系统时,应首先列出不同进样系统的优缺点,经比较后再最终确定。如:  (1)对于热稳定样品,分流-不分流进样是首选。  (2)对于热不稳定或易分解的样品,应选用惰性小的进样系统。  (3)在某一样品操作参数的选择中,采用大分流比和低气化温度,样品仍可能分解,应选用冷柱上进样等。  实际工作中,无论哪种进样系统,完全避免样品歧视是不可能的。色谱分析是相对定量,只要操作参数和条件能稳定重现,即使有一定程度的样品歧视,分析结果也会重复,可通过标准样品的校准来消除样品歧视对定量准确度的影响。  二、进样量:  进样量主要由样品性质、色谱柱容量、检测灵敏度和进样系统等决定。进样量过大,保留时间会变化,峰展宽或畸变,分离度变差;若组分含量低,溶剂拖尾峰可能掩盖组分峰或难以定量。进样量小,可以克服上述问题,使峰分离良好,分析准确度提高,但保留时间会拖后;若样品组分含量相差较大,微量组分可能难以检出。  进样量还和检测器的响应线性范围和动态范围有关。若进样量响应在线性范围内,定量简单,精度高。若进样量响应在动态范围内(非线性段),虽然可以定量,但定量麻烦,误差明显增大。若进样量响应超出动态范围,无法定量。对于非线性响应的FPD分析硫化物时,为了提高信噪比,适当增加进样量有利于提高灵敏度。  色谱分析中,为了减少样品的预处理,实现直接进样,提高工作效率,设计了多种大体积进样系统。  三、气化温度:  气化温度对组分分离和峰形影响很大。温度过低,会产生前延峰。温度过高,会出现分解产物或峰前沿直立。气化温度一般根据样品组成、样品量、色谱柱类型和柱温选择。如冷柱上进样,由于色谱柱插入气化室,温度过高会使柱前沿部分固定相剥落或分解,造成基线不稳和引起鬼峰。  四、隔垫:  隔垫的作用是保证进样口处于密封状态,防止漏气,避免外部气体渗入。  1、隔垫选择:  隔垫的主要性能指标是耐温和耐穿刺次数。优良的隔垫最高使用温度可达400℃,耐穿刺次数近400次。质劣的隔垫耐温不到100℃,耐穿刺次数仅几次。实际工作中,应根据分析要求选用能满足要求的隔垫,没有必要非选用高级隔垫,关键是了解隔垫是否会对分析产生不利影响和正确使用。  2、使用注意事项:  (1)气化温度应尽可能低,温度越高隔垫寿命越短。当气化温度过高,可能由于隔垫降解而流失,产生等距鬼峰。此时气化温度可每次降低25℃直到无峰出现来判断和解决。  (2)为了减小痕量分析时隔垫中挥发物对分析的干扰,常在高温下对隔垫进行老化。  (3)隔垫螺母不要拧得太紧。优良注样器的隔垫螺母不用拧得很紧,好穿刺并延长了隔垫寿命。实验表明,隔垫螺母拧得太紧更易漏气。  (4)注射针尖要锋利,无倒刺。针尖质量对隔垫的穿刺次数影响最大,质量不高的注射针每次进样可能割下一个约100μg硅橡胶微粒,而积存在衬管内或柱内,每个微粒能吸收高达10ˉ9g溶剂或样品,一旦被脱吸,在痕量分析中会引起鬼峰。  (5)尽量使用隔垫吹扫功能。  (6)应及时定期更换。  (7)自动进样有利于延长隔垫寿命,可大大减少隔垫的不利影响。  3、隔垫引起的故障:  (1)漏气:  样品经过隔垫流失,载气和分流流量下降,分析重复性变差。  检漏,必要时更换新隔垫。  (2)大峰后基线上移或下移:  注射进样时隔垫可能有短时间的严重漏气。  更换新隔垫或选用较细的注射针。  (3)保留时间变化:  隔垫密封不良,有间断漏气。  检漏,必要时更换新隔垫。  (4)引起鬼峰:  隔垫表面吸附样品,当程序升温时脱附而产生鬼峰。样品注射过程中把隔垫碎片带入气化室,当温度高于250℃时发生分解而产生鬼峰。  选用耐高温隔垫或适当降低进样口温度。  五、衬管:  1、衬管作用:  (1)防止隔垫碎片和不挥发性样品组分进入色谱柱,保护色谱柱不被污染。  (2)玻璃衬管比不锈钢衬管活性小,可减少对样品的催化分解,基本消除活性对定性和定量分析的影响。  (3)不同的进样方法选择不同结构、形状和规格的衬管,可提高气化效率,大大减小样品气化过程中的样品歧视。  2、衬管设计要求:  (1)尽量减小进样时样品与金属表面的接触。  (2)有不同结构和容积的衬管供选用,以适应不同进样技术的要求。  (3)衬管内壁要进行去活处理。  (4)不会对载气流动造成不良影响。  (5)更换清洗方便。  3、衬管材质:  目前有石英玻璃和硬质(高温)玻璃两种。  4、衬管形状:  (1)毛细管柱分流进样的衬管一般不用直通式,衬管内有缩径结构、烧结玻璃粉、玻璃棉或石英玻璃棉等。这主要是为了增大与样品接触的表面积,加快气化速度,减小分流歧视。同时能防止不挥发性组分和机械杂质进入色谱柱,保护色谱柱不被污染。  (2)毛细管柱不分流进样的衬管最好采用直通式。这主要是为了使样品在气化室中尽可能少稀释,减小初始谱带宽度。衬管容积小些有利,一般为0.25~1mL。  (3)冷柱上进样不用衬管,采用保留间隙管。  (4)采用自动进样时,因进样速度快,样品挥发快,一般采用容积大的直通式衬管。  5、衬管容积:  衬管容积是影响定性和定量分析结果的重要参数之一,基本要求是衬管容积至少等于样品和溶剂气化后的体积。如果衬管容积太小,进样时柱前压会突然升高,引起样品倒灌。如果衬管容积太大,会使样品初始谱带展宽,产生柱外效应。  常用样品溶剂气化膨胀后的体积:  条件:进样体积1μL,气化温度250℃,柱前压0.14 MPa  (1)异辛烷:110μL  (2)正己烷:140μL  (3)甲苯:170μL  (4)乙酸乙脂:185μL  (5)丙酮:245μL  (6)二氯甲烷:285μL  (7)二硫化碳:300μL  (8)乙氰:350μL  (9)甲醇:450μL  (10)水:1010μL  6、衬管填充物:  玻璃衬管中填充石英玻璃棉的目的是使样品混合物均匀,充分气化,防止不挥发性组分和机械杂质进入色谱柱。  (1)石英玻璃棉填充量:  1)分流进样衬管填充量较大,不分流进样和大口径毛细管柱直接进样约为分流进样的1/5,直接进样一般不用填充。  2)高吸附性样品如农药,少填会得到更好的分析效果。  3)样品中含有非挥发性化合物或某些特殊样品,减少或改变填充量可能分析效果更佳。  4)对于高气化热的溶剂如水,适当增加填充量会得到更好的分析效果。  5)石英玻璃棉填充应均匀,不宜太紧,也不宜太松。  (2)石英玻璃棉填充位置:  一般位于注射针尖下方1~2mm左右,太远太近都会使分析结果重复性差。  (3)衬管和石英玻璃棉的硅烷化:  虽然玻璃衬管的金属活性小,但其内表面仍有活性点,石英玻璃棉也存在活性点,对于某些样品特别是农药,为了减少吸附性和分解,需进行硅烷化处理。进样器在高温操作时,硅烷化处理的有效作用只有几天,应及时更换硅烷化衬管和石英玻璃棉,否则要重新硅烷化。  常用硅烷化方法是二甲基氯硅烷化。  1)衬管或石英玻璃棉用丙酮等清洗,凉干后在5%正己烷溶液中浸泡12h左右。  2)取出浸泡后的衬管或石英玻璃棉,立即用甲醇清洗2~3次,然后在甲醇中浸泡1h左右。  3)从甲醇中取出凉干后,与二甲基氯硅烷一起在干燥条件下保存。  7、衬管密封:  玻璃衬管常用密封材料是耐温硅橡胶和石墨。衬管上端的“O”形硅胶密封圈用一段时间后,会形成载气旁路(分流、柱流量),使峰忽大忽小,造成无法定量。因此,硅胶密封圈也需要经常更换。

厂商

2018.10.24

实验室常用标准94个,值得收藏!

  实验室常见的仪器与耗材标准  1.GB21549-2008实验室玻璃仪器玻璃烧器的安全要求;  2.GB/T21784.2-2008实验室玻璃器皿通用型密度计第2部分:试验方法和使用;  3.GB/T21298-2007实验室玻璃仪器试管;  4.GB/T21297-2007实验室玻璃仪器互换锥形磨砂接头;  5.GB/T11414-2007实验室玻璃仪器瓶;  6.GB/T12804-2011实验室玻璃仪器量筒;  7.GB/T12805-2011实验室玻璃仪器滴定管;  8.GB/T12806-2011实验室玻璃仪器单标线容量瓶;  9.GB/T28211-2011实验室玻璃仪器过滤漏斗;  10.GB/T28212-2011实验室玻璃仪器冷凝管;  11.GB/T28213-2011实验室玻璃仪器培养皿;  12.GB/T22362-2008实验室玻璃仪器烧瓶;  13.GB/T22067-2008实验室玻璃仪器广口烧瓶;  14.GB/T11165-2005实验室pH计;  15.GB/T30431-2013实验室气相色谱仪;  16.GB4793.7-2008测量、控制和实验室用电气设备的安全要求第7部分:实验室用离心机的特殊要求;  17.GB12803-1991实验室玻璃仪器:量杯;  18.GB12807-1991实验室玻璃仪器:分度吸量管;  19.GB12808-1991实验室玻璃仪器:单标线吸量管;  20.GB21549-2008实验室玻璃仪器:玻璃烧器的安全要求;  21.GBT11414-2007实验室玻璃仪器瓶;  22.GBT12804-2011实验室玻璃仪器:量筒;  23.GBT12805-2011实验室玻璃仪器:滴定管;  24.GBT12806-2011实验室玻璃仪器:单标线容量瓶;  25.GB/T 12807-1991实验室玻璃仪器:分度吸量管;  26GB/T 12808-1991 实验室玻璃仪器:单标线吸量管;  27.GBT12809-1991实验室玻璃仪器:玻璃量器的设计和结构原则;  28.GBT12810-1991实验室玻璃仪器:玻璃量器的容量校准和使用方法;  29.GBT14149-1993实验室玻璃仪器:互换球形磨砂接头;  30.GBT15723-1995实验室玻璃仪器:干燥器;  31.GBT15724-2008实验室玻璃仪器:烧杯;  32.GBT15725.4-1995实验室玻璃仪器:双口、三口球形圆底烧瓶;  33.GBT15725.6-1995实验室玻璃仪器:磨口烧瓶;  34.GBT21297-2007实验室玻璃仪器:互换锥形磨砂接头;  35.GBT21298-2007实验室玻璃仪器:试管;  理化仪器类  1.GBT1914-2007化学分析滤纸;  2.GB24789-2009用水单位水计量器具配备和管理通则;  3.GBT11007-2008电导率仪试验方法;  4.GBT11165-2005实验室pH计;  5.GBT12519-2010分析仪器通用技术条件;  6.GBT13743-1992直流磁电系检流计;  7.GBT13979-2008质谱检漏仪;  8.GBT16631-2008高效液相色谱法通则;  9.GBT17764-2008密度计的结构和校准原则;  10.GBT18809-2002空气离子测量仪通用规范;  11.GBT21186-2007傅立叶变换红外光谱仪;  12.GBT21187-2007原子吸收分光光度计;  13.GBT21191-2007原子荧光光谱仪;  14.GBT21388-2008游标、带表和数显深度卡尺;  15.GBT26792-2011高效液相色谱仪;  16.GBT27500-2011pH值测定用复合玻璃电极;  17.GBT30099-2013实验室离心机通用技术条件;  18.GBT30430-2013气相色谱仪测试用标准色谱柱;  19.GBT30431-2013实验室气相色谱仪;  20.GBT4946-2008气相色谱法术语;  21.GBT6040-2002红外光谱分析方法通则;  22.GBT6041-2002质谱分析方法通则;  23.GBT6315-2008游标、带表和数显wan能角度尺;  24.GBT8322-2008分子吸收光谱法:术语;  25.GBT9008-2007液相色谱法术语:柱色谱法和平面色谱法;  26.QBT1676-1992手动脂肪测定仪;  微生物类  1.GBT22056-2008显微镜,物镜和目镜的标志;  2.GBT22058-2008显微镜,体视显微镜的标志;  3.GBT22059-2008显微镜,放大率;  4.GBT2609-2006显微镜,物镜;  5.GBT2985-2008生物显微镜;  6.GBT9246-2008显微镜,目镜;  7.GBT9247-2008显微镜,聚光镜;  8.QBT2296-1997培养皿;  天平  1.GBT25106-2010扭力天平;  2.GBT4167-2011砝码;  3.GBT4168-1992非自动天平杠杆式天平;  4.QBT2087-1995架盘天平;  实验室安全篇  GB/T27476.1-2014 检测实验室安全   第 1 部分:总则  GB/T27476的本部分规定了检测实验室(以下简称实验室) 安全的通用要求。本部分适用于检测实验室,校准和科研实验室可参照使用。本部分适用于固定场所内的实验室,其他场所的实验室可参照使用,但是,可能需要附加要求。  GB/T27476.2-2014 检测实验室安全   第 2 部分:电气因素  GB/T27476的本部分规定了检测实验室(以下简称实验室) 与电气因素有关的安全要求,以提高实验室的电气安全,将人员伤害降到zui低并防止财产损失。本部分适用于检测实验室,校准和科研实验室可参照使用,本部分适用于固定场所。  GB/T27476.3-2014 检测实验室安全  第 3 部分:机械因素  GB/T27476的本部分规定了检测实验室(以下简称实验室) 与机械因素有关的安全要求。本部分适用于检测实验室,校准和科研实验室可参照使用。本部分适用于固定场所内的实验室,其他场所的实验室可参照使用,但是,可能需要附加要求。  GB/T27476.4-2014 检测实验室安全   第 4 部分:非电离辐射因素  GB/T27476的本部分规定了检测实验室(以下简称实验室) 与非电离辐射因素相关的安全要求。本部分给出了非电离辐射的限值要求并提出了详细的建议,以防止这些辐射引起的伤害或者由于使用这些辐射引起的其他伤害。  GB/T27476.5-2014 检测实验室安全   第 5 部分:化学因素  GB/T27476的本部分规定了检测实验室(以下简称实验室) 中与化学因素有关的安全要求。本部分适用于检测实验室,校准和科研实验室可参照使用。本部分适用于固定场所内的实验室,其他场所的实验室可参照使用,但可能需要附加。  实验室良好管理规范篇:  GB/T32146.3-2015检验检测实验室设计与建设技术要求。  食品实验室  GB/T32146的本部分规定了食品实验室设计与建设的总体规划、功能设计、建筑设计、环境设施、安全防护等方面的技术要求。本部分适用于新建、改建和扩建的食品实验室的设计和建设。  GB15193.2-2014 食品安全国家标准食品毒理学实验室操作规范  本标准代替GB15193.2-2003《食品毒理学实验室操作规范》。  本标准与 GB15193.2-2003 相比,主要变化如下:  ——标准名称修改为“食品安全国家标准食品毒理学实验室操作规范”;  GB/T31190-2014 实验室废弃化学品收集技术规范  本标准规定了实验室废弃化学品的术语和定义、实验室废弃化学品分类要求、一般要求、对实验室废弃化学品产生者的要求、实验室废弃化学品收集、贮存要求和安全。  GB/T 29471-2012食品安全检测移动实验室通用技术规范  本标准规定了食品安全检测移动实验室的分类与代号、要求、试验方法、检验规则、标志、包装、运输及贮存等。本标准适用于陆地使用的可进行食品安全检测的移动实验室。  GB/T27411-2012检测实验室中常用不确定度评定方法与表示  本标准规定了测量结果不确定度的四种评定方法,本标准适用于检测实验室的测量不确定度评定。  GB/T27407-2010实验室质量控制利用统计质量保证和控制图技术评价分析测量系统的性能  本标准规定了统计质量控制(SQC)程序的设计和操作方案,用于持续监控被测分析测量系统的稳定性、精密度和偏倚性能。  GB/T27410-2010消费类产品中有毒有害物质检测实验室技术规范  本标准规定了消费类产品中有毒有害物质检测实验室应满足的技术要求,包括:人员、设施和环境、样品管理、样品拆分和制备、仪器设备、检测方法及方法确认等关键环节。  GB/T24777-2009化学品理化及其危险性检测实验室安全要求  本标准规定了化学品理化及其危险性检测实验室的安全要求。本标准适用于化学品理化及其危险性检测实验室。  GB/T23621-2009农业植物检疫实验室基础条件  本标准规定了各级农业植物检疫实验室在人员配备、检验用房、设施、环境条件及仪器设备等方面的基础条件要求,本标准适用于各级农业植物检疫实验室建设。  GB19489-2008实验室生物安全通用要求  本标准代替GB19489-2004《实验室生物安全通用要求》。本标准规定了对不同生物安全防护级别实验室的设施、设备和安全管理的基本要求。  GB/T 13868-2009感官分析建立感官分析实验室的一般导则  本标准规定了建立感官分析实验室的一般条件,实验室区域(检验区、准备区和办公室等) 的布局,以及不同区域的建设要求和应达到的效果。本标准的规定不专门针对某种产品检验类型。  GB/T22272-2008良好实验室规范建议性文件建立和管理符合良好实验室规范原则的档案  本标准旨在帮助试验机构,使其档案管理符合良好实验室规范原则的要求。本标准不取代国家法规和/或法律中的相关要求,如,档案保存期限的要求。  GB/T22274.1-2008良好实验室规范监督部门指南第1部分:良好实验室规范符合性监督程序指南  GB/T22274《良好实验室规范监督部门指南》分为3个部分,本部分为GB/T22274的第1部分。GB/T22274的本部分规定了良好实验室规范中监督部门的行政管理、保密性、人员和培训、GLP符合性计划、试验机构检查和研究审核的后续工作、申诉程序,本部分适用于在我国境内设立的GLP监督部门。  GB/T22274.2-2008良好实验室规范监督部门指南第2部分:执行实验室检查和研究审核的指南  GB/T22274《良好实验室规范监督部门指南》分为3个部分,GB/T22274的本部分规定了的监督部门的试验机构检查、检查程序、研究审核、检查或研究审核的完成。本部分适用于在我国境内设立的GLP监督部门。  GB/T22274.3-2008良好实验室规范监督部门指南第3部分:良好实验室规范检查报告的编制指南  GB/T 22274《良好实验室规范监督部门指南》分为3个部分,本部分为GB/T22274的第3部分。本部分等同采用经济合作与发展组织(OECD)良好实验室规范(GLP)原则和符合性监督系列文件No.9:《良好实验室规范检查报告的编制指南》[OCDE/GD(95)114]。GB/T22274的本部分规定了良好实验室规范下检查报告的要求、其他信息和批准,本部分适用于我国在境内设立的GLP监督部门。  GB/T22275.1-2008良好实验室规范实施要求第1部分:质量保证与良好实验室规范  GB/T22275《良好实验室规范实施要求》分为7个部分,GB/T22275的本部分规定了GLP原则下质量保证活动的具体内容和要求,包括:质量保证人员的责任、质量保证人员与管理者的联系、质量保证人员资质及参与标准操作程序和研究计划的制定过程的情况、质量保证检查、质量保证活动的计划和对质量保证活动及方法的论证、质量保证检查的报告、数据和最终报告的审核、质量保证声明、质量保证与非监管研究和小型试验机构中的质量保证,本部分适用于GLP原则下的质量保证活动。  GB/T22275.2-2008良好实验室规范实施要求第2部分:良好实验室规范研究中项目负责人的任务和职责  GB/T22275《良好实验室规范实施要求》分为7个部分,GB/T22275的本部分规定了项目负责人的任务、任命、培训、职责、资质、法律地位。除了国家立法的明确豁免,本部分所规定的GLP原则适用于法规所要求的所有非临床健康和环境安全研究,包括:医药、农药、食品添加剂与饲料添加剂、化妆品、兽药和类似产品的注册或申请许可证,以及工业化学品管理。  GB/T22275.3-2008良好实验室规范实施要求第3部分:实验室供应商对良好实验室规范原则的符合情况  GB/T22275《良好实验室规范实施要求》分为7个部分,本部分为GB/T22275的第3部分。GB/T22275的本部分规定了GLP原则下的实验室供应商的要求,包括以下方面:标准和合格评定计划、试验系统、动物的饲料、垫料和水、带有放射性标记的化学品、计算机系统,应用软件、参照物质、仪器、无菌材料、常规试剂、清洁剂和消毒剂、微生物学检验需要的产品。本部分适用于GLP原则下对实验室供应商的要求。  GB/T22275.4-2008良好实验室规范实施要求第4部分:良好实验室规范原则在现场研究中的应用  GB/T22275《良好实验室规范实施要求》分为7个部分,本部分为GB/T22275的第4部分。GB/T22275的本部分规定了现场研究的试验机构的组织和人员、质量保证计划、试验设施、仪器、原料、试剂、试验系统、试验样品和参照物、标准操作程序、研究结果的报告、记录和材料的存储和保留。除了国家立法的明确豁免,本部分所规定的良好实验室规范原则(以下简称GLP原则) 适用于法规所要求的所有非临床健康和环境安全研究,包括:医药、农药、食品添加剂与饲料添加剂、化妆品、兽药和类似产品的注册或申请许可证,以及工业化学品管理。  GB/T22275.5-2008良好实验室规范实施要求第5部分:良好实验室规范原则在短期研究中的应用  GB/T22275《良好实验室规范实施要求》分为7个部分,本部分为GB/T22275的第5部分。GB/T22275的本部分规定了短期研究的试验机构的组织和人员、质量保证计划、设施、试验系统、试验样品和参照物、标准操作程序、研究的实施和研究结果的报告。除了国家立法的明确豁免,本部分所规定的良好实验室规范原则(以下简称GLP原则) 适用于法规所要求的所有非临床健康和环境安全研究,包括:医药、农药、食品添加剂与饲料添加剂、化妆品、兽药和类似产品的注册或申请许可证,以及工业化学品管理。  GB/T22275.6-2008良好实验室规范实施要求第6部分:良好实验室规范原则在计算机化的系统中的应用  GB/T22275的本部分规定了GLP原则下计算机化的系统的应用与管理,包括: 各部门的责任、相关的培训、设备和仪器的要求、计算机化的系统的维护与灾难恢复、数据的记录与处理、计算机化的系统的安全、计算机化的系统的确认程序、关于其开发、确认、操作和维护的文档要求。本部分适用于GLP原则下计算机化的系统的应用。  GB/T22275.7-2008良好实验室规范实施要求第7部分:良好实验室规范原则在多场所研究的组织和管理中的应用  本标准规定了多场所研究的管理和控制、质量保证、主进度表、研究计划、研究的实施、研究结果的报告、标准操作程序、记录和材料的存储和保管。除了国家立法的明确豁免,本标准所规定的良好实验室规范原则(以下简称GLP原则) 适用于法规所要求的所有非临床健康和环境安全研究,包括:医药、杀虫剂、食品添加剂与饲料添加剂、化妆品、兽药和类似产品的注册或申请许可证,以及工业化学品管理。  GB/T22278-2008良好实验室规范原则  本标准等同采用经济合作与发展组织(OECD)良好实验室规范(GLP)原则和符合性监督系列文件1:《OECD GLP原则》[ENV/MC/CHEM(98)17]。  GB/T6682-2008分析实验室用水规格和试验方法  本标准规定了分析实验室用水的级别、规格、取样及贮存、试验方法和试验报告。本标准适用于化学分析和无机痕量分析等试验用水。可根据实际工作需要选用不同级别的水。  GB/T19495转基因产品检测实验室技术要求  本标准规定了转基因产品检测实验室总体技术要求和检验质量控制的基本要求。本部分适用于以核酸扩增技术和免疫学方法检测转基因产品的实验室,也适用于基因工程等其他相关领域的实验室。

厂商

2018.10.23

不同规格真空泵的工作原理大全

  CG-17玻璃三级高真空油扩散泵  CG-17玻璃膨胀系数低,能更好地耐受很高的温度差变,故该泵比同型泵能受得起高温而且使用寿命也更长。该泵适用于电子工业,如电子管、显象管、X光管,以及半导体单晶硅的冶炼提纯,高沸点的油脂蒸馏提纯分离,日光灯、保温瓶高真空排气的仪器。  工作原理  先由转动真空泵把系统抽到10-2帕扩散泵油被加热沸腾,以高速从喷出的油蒸汽流不断将系统内气体分子带到泵的侧臂弯管球泡处集结,待气体密度达到机械真空泵的工作范围而被抽出,从而逐渐获得高真空。  水环式真空泵/液环真空泵工作原理  水环式真空泵(简称水环泵)是一种粗真空泵,它所能获得的极限真空为2000-4000帕,串联大气喷射器可达270-670帕。水环泵也可用作压缩机,称为水环式压缩机,是属于低压的压缩机,其压力范围为1-2X105帕表压力。  水环真空泵最初用作自吸水泵,而后逐渐用于石油、化工、机械、矿山、轻工、医药及食品等许多工业部门。在工业生产的许多工艺过程中,如真空过滤、真空引水、真空送料、真空蒸发、真空浓缩、真空回潮和真空脱气等,水环泵得到广泛的应用。由于真空应用技术的飞跃发展,水环泵在粗真空获得方面一直被人们所重视。由于水环泵中气体压缩是等温的,故可抽除易燃、易爆的气体,此外还可抽除含尘、含水的气体,因此,水环泵应用日益增多。  泵体中装有适量的水作为工作液。当叶轮按图中顺时针方向旋转时,水被叶轮抛向四周,由于离心力的作用,水形成了一个决定于泵腔形状的近似于等厚度的封闭圆环。水环的下部分内表面恰好与叶轮轮毂相切,水环的上部内表面刚好与叶片顶端(实际上叶片在水环内有定的插入深度)。此时叶轮轮毂与水环之间形成一个月牙空间,而这一空间又被叶轮分成和叶片数目相等的若干个小腔。如果以叶轮的下部零为起点,那么叶轮在旋转前180度时,小腔面积由小变大,且与端面上的吸气口相通,此时气体被吸入,当吸气终了时小腔则与吸气口隔绝;当叶轮继续旋转时,小腔由大变小,使气体被压缩;当小腔与排气口相通时,气体便被排出泵外。  综上所述,水环泵是靠泵腔容积的变化来实现吸气、压缩和排气的,因此它属于变容式真空泵。  罗茨泵的工作原理:  罗茨泵泵腔内,有二个“8”字形的转子相互垂直地安装在一对平行轴上,由传动比为1的一对齿轮带动作彼此反向的同步旋转运动。在转子之间,转子与泵壳内壁之间,保持有一家的间隙,可以实现高转速运行。由于罗茨泵串联使用。  罗茨泵的工作原理与罗茨鼓风机相似。由于转子的不断旋转,被抽气体从进气口吸入到转子与泵壳之间的空间内,再经排气口排出。由于吸气后的VO空间是全封闭状态,所以,在泵腔内气体没有压缩和膨胀。  但当转子顶部转过排气口边缘,VO空间与排气侧相通时,由于排气侧气体压强较高,则有一部分气体返冲到空间VO中去,使气体压强突然增高。当转子继续转动时,气体排出泵外。  旋片式真空泵工作原理  旋片式真空泵(简称旋片泵)是一种油封式机械真空泵。其工作压强范围为101325-1.33X10-2(帕)属于低于真空泵。它可以单独使用,也可以作为其它高真空泵或超高真空泵的前级泵。它已广泛地应用于冶金、机械、军工、电子、化工、轻工、石油及医药等生产和科研部门。  旋片泵可以抽除密封容器中的干燥气体,若附有气镇装置,还可以抽除一定量的可凝性气体。但它不适于抽除含氧过高的,对金属有腐蚀性的、对泵油会起化学反应以及含有颗粒尘埃的气体。  旋片泵是真空技术中最基本的真空获得设备之一。旋片泵多为中小型泵。旋片泵有单级和双吸两种。所谓双级,就是在结构上将两个单级泵串联起来。一般多做成双级的,以获得较高的真空度。  旋片泵抽速与入口压强的关系规定如下:在入口压强为1333帕、1.33帕和1.33X10-1 (帕)下,其抽速值分别不得低于泵的名义抽速的95%、50%和20%。

厂商

2018.10.23

电镜图像质量的影响因素汇总!

本文介绍影响扫描电镜图像质量的因素及其对图像质量的影响,分别从加速电压、扫描速度和信噪比、束斑直径、探针电流、消像散校正、工作距离以及反差对比等分析图像质量的变化原因,提出提高图像质量的方法。    扫描电子显微镜是(Scanning Electron Microscope,SEM)是20 世纪30 年代中期发展起来的一种多功能的电子显微分析仪器。SEM以其样品制备简单、图像视野大、景深长、图像立体感强,且能接收和分析电子与样品相互作用后产生的大部分信息,因而在科研和工业等各个领域得到广泛应用    但是扫描电镜是非常精密的仪器,结构复杂,要想得到能充分反映物质形貌、层次清晰、立体感强和分辨率高的高质量图像仍然是一件非常艰难的事情,本文针对工作中出现的问题,分析影响图像质量的因素,讨论如何根据样品选择zui佳观察条件。  1.加速电压       扫描电镜的电子束是由灯丝通电发热温度升高,当钨丝达到白热化,电子的动能增加到大于阳离子对它的吸引力(逸出功)时,电子就逃逸出去。在紧靠灯丝处装上有孔的栅极(也叫韦氏盖),灯丝尖处于栅孔中心。栅极上100~1000V 的负电场,使灯丝的电子发射达到一定程度时,不再能继续随温度增加而增加,即达到空间电荷的饱和(这种提法是错误的)。离开栅极一定距离有一个中心有孔的阳极,在阳极和阴极间加有一个很高的正电压称为加速电压[1],它使电子束加速而获得能量。加速电压的范围在1~30kV,其值越大电子束能量越大,反之亦然。        加速电压的选用视样品的性质(含导电性) 和倍率等来选定。当样品导电性好且不易受电子束损伤时可选用高加速电压,这时电子束能量大对样品穿透深(尤其是低原子序数的材料)使材料衬度减小图像分辨率高。但加速电压过高会产生不利因素,电子束对样品的穿透能力增大,在样品中的扩散区也加大,会发射二次电子和散射电子甚至二次电子也被散射,多的散射电子存在信号里会出现叠加的虚影从而降低分辨率。 图1 分别加速电压为1kV,10kV,30kV 的SEM 像 当样品导电性差时,又不便喷碳喷金, 还需保存样品原貌的这类样品容易产生充放电效应,样品充电区的微小电位差会造成电子束散开使束斑扩大从而损害分辨率。同时表面负电场对入射电子产生排斥作用,改变电子的入射角,从而使图像不稳定产生移动错位,甚至使表面细节根本无法呈现,加速电压越高这种现象越严重,此时选用低加速电压以减少充、放电现象,提高图像的分辨率。 2.扫描速度和信噪比 在显像管的屏幕上电子束每行扫描约2000 点,每帧画面约2000行,每秒钟扫描25 帧。这就意味着每个点上只停留0.01μs[2]。电子束对样品的相互作用以及检测器对这种作用的响应很慢,即在0.01us期间每个点上获得的信号很弱,需经过放大才能看清,这会带来很多的噪音降低信噪比。扫描速度的选择会影响所拍摄图像的质量,如果拍图的速度太快信号强度很弱。另外由于无规则信号的噪音干扰使分辨率下降。如果延长扫描时间会使噪音相互平均而抵消,因此提高信噪比增加画面的清晰程度。但扫描时间过长,电子束滞留在样品上的时间就会延长,电子束会使材料变形,降低分辨率甚至出现假象,特别对生物和高分子样品,观察时扫描速度不能太慢。 3.束斑直径和工作距离 在SEM 中束斑直径决定图像的分辨率。束斑的直径越小图像的分辨率越高。一般来讲束斑直径的大小是由电子光学系统来控制,并同末级透镜的质量有关。如果考虑末级透镜所产生的各种相差,则实际照射到试样上的束斑直径d为[3]d2=d02+ds2+dc2+df2 (1)式中,d0高斯斑直径;ds由于透镜球象差引起的电子探针的散漫圆直径;dc由于透镜色差所引起电子探针的散漫圆直径;df由于衍射效应所造成电子探针的散漫圆直径。在扫描电子显微镜的工作条件下:ds>>dc,df。因此公式(1) 可以近似为:d2=d02+ds2。因为d0与同末级透镜的励磁电流有关,而后者又与工作距离WD有关。WD越小,要求末级透镜的励磁电流愈大,相应的d0 愈小。此外对于一定质量的透镜来讲,球象差系数也是同工作距离WD有关,WD愈小相应的Cs(透镜的球象差系数)也愈小。因此为获得高的图像分辨率则束斑直径要小,同时需要采用小的工作距离。如果探针电流过高,电子束斑缩小过度,图像中就容出现噪声。如果要观察高低不平的样品表面,要求很高的焦深,则需要采用大的工作距离,同时需要注意,图像的分辨率会明显降低。 4.探针电流        探针电流直接影响到束斑直径、图像信号强度、分辨率以及图像清晰及失真程度等参数,而这些参数间又存在矛盾。电流越大电子束的束斑直径越小,使分辨率增大,景深也增大。但是信号弱时,亮度有时会显得不足、信噪比降低。对于一些高分子材料、生物样品或一些不导电的样品采用较大的探针电流,产生的电荷不能及时扩散迁移而形成积累,因而产生放电现象,难以得到高质量的形貌图片;但是如果探针电流过小,会由于二次电子的信号较弱,本底杂散信号影响比较大,分辨率会下降,在高倍率下影响严重。因此探针电流选择的原则是在反差和亮度满足正常的情况下,加大探针电流,以便得到zui高的分辨率和较大的景深范围。但是对于低倍率观察图像时要求丰富的层次结构为主,需要采用小一点的探针电流。 5.象散校正       消象散器实际上是针对各种因素而造成的电子束束斑弥散圆,对于非对称造成的轴上象散都可以用消象散器来校正。

厂商

2018.10.22

流式细胞仪结构及原理

  流式细胞仪是进行流式细胞分析的仪器,集电子、计算机、激光、流体理论于一体,被誉为试验室的“CT”。  流式细胞术(Flow CytoMeter, FCM)是一种在功能水平上对单细胞或其他生物粒子进行定量分析和分选的检测手段,它可高速分析上万个细胞,并能同时从一个细胞中测得多个参数,与传统荧光镜检查相比,具有速度快、精度高、准确性好等优点,成为当代先进的细胞定量分析技术。  工作原理  将待测细胞染色后制成单细胞悬液。用一定压力将待测样品压入流动室,不含细胞的磷酸缓冲液在高压下从鞘液管喷出,鞘液管入口方向与待测样品流成一定角度,这样,鞘液就能够包绕着样品高速流动,组成一个圆形的流束,待测细胞在鞘液的包被下单行排列,依次通过检测区域。  流式细胞仪通常以激光作为发光源。经过聚焦整形后的光束,垂直照射在样品流上,被荧光染色的细胞在激光束的照射下,产生散射光和激发荧光。这两种信号同时被前向光电二极管和90°方向的光电倍增管接收。光散射信号在前向小角度进行检测,这种信号基本上反映了细胞体积的大小;荧光信号的接受方向与激光束垂直,经过一系列双色性反射镜和带通滤光片的分离,形成多个不同波长的荧光信号。  这些荧光信号的强度代表了所测细胞膜表面抗原的强度或其核内物质的浓度,经光电倍增管接收后可转换为电信号,再通过A/D转换器,将连续的电信号转换为可被计算机识别的数字信号。计算机把所测量到的各种信号进行计算机处理,将分析结果显示在计算机屏幕上,液可以打印出来,还可以数据文件的形式存储在硬盘上以备日后的查询或进一步分析。  检测数据的显示视测量参数的不同由多种形式可供选择。单参数数据以直方图的形式表达,其X轴为测量强度,Y轴为细胞数目。一般来说,流式细胞仪坐标轴的分辨率有512或1024通道数,这视其模数转换器的分辨率而定。对于双参数或多参数数据,既可以单独显示每个参数的直方图,也可以选择二维的三点图、等高线图、灰度图或三维立体视图。  细胞的分选是通过分离含有单细胞的液滴而实现的。在流动室的喷口上配有一个超高频电晶体,充电后振动,使喷出的液流断裂为均匀的液滴,待测定细胞就分散在这些液滴之中。将这些液滴充以正负不同的电荷,当液滴流经带有几千伏特的偏转板时,在高压电场的作用下偏转,落入各自的收集容器中,不予充电的液滴落入中间的废液容器,从而实现细胞的分离。  应用范围  用于白血病的分型、肿瘤细胞染色体的异倍性测定,以及免疫学研究,并已开始用于细菌鉴定,病毒感染细胞的识别和爱滋病感染者T4、T8细胞的记数。  70年代以来,随着流式细胞技术水平的不断提高,其应用范围也日益广泛。流式细胞术已普遍应用于免疫学、血液学、肿瘤学、细胞生物学、细胞遗传学、生物化学等临床医学和基础医学研究领域。  技术特点  流式细胞仪作为一种先进的细胞定量分析检测仪器,设计上采用了许多独特的技术,其中涉及到液流系统、光路系统、信号测量和细胞分选等4个方面。  展望  流式细胞仪从细胞技术开始发展到今天,60至70年代是其飞速发展时期,激光技术、喷射技术以及计算机的应用使流式细胞仪在原理和结构上形成了固定的模式。  80年代则是流式细胞仪的商品化时期,这期间不断有新型号的仪器推出,在多参数检测技术上不断提高。  进入90年代,随着微电子技术特别是计算机技术的发展,流式细胞仪的功能也越来越强大。在数据管理、数据分析方面有了长足进步。但是,在技术原理和设计方面并没有突破性的进展。人们的注意力开始转向流式细胞仪的应用,新的荧光探针、新的荧光染料、新的染色方法不断推出,使流式细胞技术在新的细胞参数分析方面日益发展。  从新推出的仪器看,流式细胞仪会在硬件上不断更新,采用更新的器件(如半导体激光、大规模集成电路),以实现小型化;用数字电路取代模拟电路,充分发挥微处理器的功能以实现简单化;在软件上提高数据自动分析能力,充分发挥图形界面的优点,使操作更加简便。

厂商

2018.10.22

高效毛细管电泳(HPCE)的工作原理

  高效毛细管电泳(high performance capillaryelectrophoresis,HPCE)是近年来发展起来的一种分离、分析技术,它是凝胶电泳技术的发展,是高效液相色谱分析的补充。该技术可分析的成分小至有机离子、大至生物大分子如蛋白质、核酸等。可用于分析多种体液样本如血清或血浆、尿、脑脊液及唾液等,HPLC分析高效、快速、微量。  电泳迁移  不同分子所带电荷性质、多少不同,形状、大小各异。一定电解质及PH的缓冲液或其它溶液内,受电场作用,样本中各组分按一定速度迁移,从而形成电泳。  电泳迁移速度(v)可用下式表示:  v=uE  其中E为电场强度(E=V/L,V为电压,L为毛细管总长度)。u为电泳淌度。  电渗迁移  电渗迁移指在电场作用下溶液相对于带电管壁移动的现象。特殊结构的熔合硅毛细管管壁通常在水溶液中带负电荷,在电压作用下溶液整体向负极移动,形成电渗流。带电微粒在毛细管内实际移动的速度为电泳流和电渗流的矢量和。  分离分析类型  根据其分离样本的原理设计不同主要分为以下几种类型:  ①毛细管区带电泳(capillary zoneelectrophoresis,CZE);  ②毛细管等速电泳(capillarychromatography,CITP);  ③毛细管胶速电动色谱(miceller electrokineticcapillary chromatography,MECC);  ④毛细管凝胶电泳(capillarygelelectrophoresis,CGE);  ⑤毛细管等电聚焦(capillary isoelectricfocusing ,CIEF)。  毛细管区带电泳(CZE)为HPCE的基本操作模式,一般采用磷酸盐或硼酸盐缓冲液,实验条件包括缓冲液浓度、pH值、电压、温度、改性剂(乙腈、甲醇等),用于对带电物质(药物、蛋白质、肽类等)分离分析,对于中性物质无法实现分离。毛细管胶束电动色谱(MECC)为一种基于胶束增溶和电动迁移的新型液体色谱,在缓冲液中加入离子型表面活性剂作为胶束剂,利用溶质分子在水相和胶束相分配的差异进行分离,拓宽了CZE的应用范围,适合于中性物质的分离,亦可区别手性化合物,可用于氨基酸、肽类、小分子物质、手性物质、药物样品及体液样品的分析。毛细管等速电泳(CITP)采用先导电解质和后继电解质,构成不连续缓冲体系,基于溶质的电泳淌度差异进行分离,常用于离子型物质(如有机酸),并因适用较大内径的毛细管而可用于微制备,但本法空间分辨率较差。毛细管等电聚焦电泳(CIEF)用于具兼性离子的样品(蛋白质、肽类),等电点仅差0.001可分离的物质。毛细管凝胶电泳(CGE)依据大分子物质的分子量大小进行分离,主要用于蛋白质、核苷酸片段的分离。此外,还有毛细管电色谱(CEC)及非水毛细管电泳(CNACE),用于水溶性差的物质和水中难进行反应的分析研究。目前CZE和MECC用得较多,本文以这两种方法为例来说明HPLC的原理。  CZE的基本原理  HPLC选用的毛细管一般内径约为50μm(20~200μm),外径为375μm,有效长度为50cm(7~100cm)。毛细管两端分别浸入两分开的缓冲液中,同时两缓冲液中分别插入连有高压电源的电极,该电压使得分析样品沿毛细管迁移,当分离样品通过检测器时,可对样品进行分析处理。HPLC进样一般采用电动力学进样(低电压)或流体力学进样(压力或抽吸)两种方式。在毛细管电泳系统中,带电溶质在电场作用下发生定向迁移,其表观迁移速度是溶质迁移速度与溶液电渗流速度的矢量和。所谓电渗是指在高电压作用下,双电层中的水合阴离子引起流体整体地朝负极方向移动的现象;电泳是指在电解质溶液中,带电粒子在电场作用下,以不同的速度向其所带电荷相反方向迁移的现象。溶质的迁移速度由其所带电荷数和分子量大小决定,另外还受缓冲液的组成、性质、pH值等多种因素影响。带正电荷的组份沿毛细管壁形成有机双层向负极移动,带负电荷的组分被分配至毛细管近中区域,在电场作用下向正极移动。与此同时,缓冲液的电渗流向负极移动,其作用超过电泳,最终导致带正电荷、中性电荷、负电荷的组份依次通过检测器。  MECC的基本原理  MECC是在CZE基础上使用表面活性剂来充当胶束相,以胶束增溶作为分配原理,溶质在水相、胶束相中的分配系数不同,在电场作用下,毛细管中溶液的电渗流和胶束的电泳,使胶束和水相有不同的迁移速度,同时待分离物质在水相和胶束相中被多次分配,在电渗流和这种分配过程的双重作用下得以分离。MECC是电泳技术与色谱法的结合,适合同时分离分析中性和带电的样品分子。

厂商

2018.10.22

室内装修后的甲醛,你了解么

  随着我们生活水平的日新月异,甲醛气体渐渐为我们所熟听,但是甲醛气体究竟是一种什么样的气体,为什么会遍布在我们生活的每一个角落呢,面对市面上海量的甲醛检测仪要何从选择呢?甲醛检测仪有哪些种类的,面对的不同的需要该如何选择甲醛检测仪?   甲醛有强烈的刺激性,浓度较低时,使人的眼睛有辣感,流泪,红肿。浓度稍高时,就会感到呛,恶心甚至呼吸困难、窒息。这些“生化反应”,来自于甲醛的毒性。甲醛多做成35%-40%浓度的水溶液(俗称福尔马林),用于保存尸体标本、杀菌消毒和制作木材、纸张等的粘合剂。甲醛的价格低廉,可以和廉价的尿素制成脲醛树脂,把纸屑、木屑、刨花碎屑等下脚料甚至是垃圾碎末粘合起来制成刨花板、密度板、细木工板、纤维板、复合木地板等人造板(胶合板)。这种胶成本低,粘合强度高,所以使用非常广泛,可以说目前市面上90%以上的各种木质人造板材是由这种胶粘合而成的,所以,当您不加甄别地选用普通胶合板作原材料时,就把甲醛引进了家门。   而且在这些原材料中甲醛气体很难挥发出来,一般都要十来年时间,就此而言,只要您选用胶合板作装修材料,无论它是通过了部级还是国家级认证,说是“绿色”的,那就是个弥天大谎。终生有甲醛释放的材料能是绿色环保的吗?   所以甲醛检测仪就相当重要,一款便携的,操作简单的,而且测量精准的甲醛检测仪就更加重要了,甲醛检测仪根据其检测原理可以分为电化学式甲醛检测仪,药剂型甲醛检测仪,如果你要检测空间中甲醛的浓度,我建议你选择电化学式的甲醛检测仪,但如果你要对原材料进行分析,我建议你选用试剂型的甲醛检测仪。

厂商

2018.10.19

实验室里常用的乙腈和甲醇在色谱分析中的区别

  HPLC溶剂乙腈和甲醇的关键区别和性能  乙腈(ACN)和甲醇(MeOH)是在反向色谱柱方法开发中广泛使用的两种常见溶剂。所以,除了知道乙腈比甲醇有更高的洗脱能力这一事实外,还有一些其他特性。  首先,对流动相溶液的准备提出几点意见。  只有纯水溶液部分才能正确调整pH值。不要尝试测量或调整有机或有机混合物的pH值。  制备二元混合物的方法有两种,即V/V流动相溶液。  方法#1是用特定体积的“A”溶液填充一个量瓶,然后用“B”溶液将量瓶填满。  方法#2是用指定数量的“A”溶液填充量筒(或容量瓶);用指定数量的“B”溶液填充第二个量筒(或容量瓶),然后将两者的内容混合在一起。  无论您使用哪种方法,请在您的高效液相色谱法中完整地记录它,以便任何阅读它的人都能准确地复制它。上面描述的两种方法在设计上都是正确的,但是会产生不同性质的结果。  紫外线吸光度  对于HPLC级溶剂(*我们在HPLC分析中应始终使用HPLC级溶液),乙腈的吸光度(~ 190nm)在这两种溶剂中最低,非常适合低紫外光分析。甲醇在205-210nm左右有较高的紫外光截止值,在非常低的紫外光范围内略有限制。  溶剂溶解性  乙腈和甲醇在溶解多种缓冲盐和样品的能力上存在显著差异。这些差异在方法开发中至关重要。  流动相溶解度  梯度运行显示低重现性或失败的一个常见原因可能与运行高浓度缓冲液和高浓度有机溶液有关。而含有浓度小于10mM盐溶液的水溶液/有机溶液在大多数梯度条件下不太可能沉淀(最多98%是有机溶剂,而不是100%),大多数与高效液相色谱应用一起使用的缓冲溶液会有更高的盐浓度,当分析条件中有机溶剂含量较高时可能会从溶液中析出(导致堵塞,泄漏,插头和不准确的结果)。在反向色谱法中选择有机组成时要谨慎。确保使用的溶液在所有浓度下都是稳定的。还要验证缓冲能力是否仍然存在,当使用高有机浓度时(当缓冲液被稀释时)。  不确定盐是否会溶解?只要把同样浓度的溶剂混合起来做测试就行了。观察它,有任何浑浊或可见颗粒吗?你就可以得到你需要的答案。  甲醇总体上具有更好的溶解度特性(优于乙腈),这意味着它在较高浓度下能更好地溶解大多数盐(尤其是NH4, K和Na),从而获得更好的性能和更少的沉淀。  样品的溶解度(对峰形和保留的影响)  液相色谱的一个基本要求是样品完全溶解在流动相(初始流动相)中。在分析前,将样品溶解在流动相或强度稍弱的溶液(不是更强的溶液)。这确保它将作为一个集中的段塞加载到柱的顶部,以改善峰形和RSD。如果样品没有完全溶解在流动相,那么你实际上并没有分析整个样品。甲醇优于乙腈的另一个方面是它能完全溶解更多类型的样品。这一改进的溶解度可能导致更好的整体峰形。甲醇的选择性也不同于乙腈(不仅仅是洗脱强度),这可能导致峰洗脱时间与预期的保留时间不同。这也是为什么在开发反向方法时,我们总是尝试使用含有乙腈或甲醇的不同流动相混合物的另一个原因。  永远不要假设一种溶剂会比另一种溶剂更好。太多的色谱新手只使用乙腈作为他们方法开发的主要有机溶剂。请不要犯他们的错误,这样的策略表明缺乏实践经验和知识。您必须首先分别尝试它们(乙腈&甲醇)用你的样品来评估结果(在适用的情况下zui好从不同pH值的全面梯度开始)。如果您在最初的时间内测试了这两种类型的溶剂,那么您将获得回报,因为还没有开发出能够使用您自己的样品来预测真正准确的结果的模拟器。您可能会惊讶地发现,有多少样品使用甲醇溶液显示出更好的峰形和性能。如果没有看到任何改善,至少你现在知道了,因为你已经尝试过了,并且可以满怀信心地前进。  背压  乙腈的粘性比甲醇小,因此通常会导致整体柱压和系统背压降低。乙腈和水的混合物也会发生吸热反应(冷却溶液),从而在溶液中捕获气体。如果你预先混合你的流动相,让它静置几分钟后在制备。  甲醇比乙腈更粘稠。它还有一个不寻常的特性,就是甲醇和水的50/50混合物会产生一个比甲醇或水更高的系统和柱背压。其效果是非常高斯的,它的峰值压力是由50/50的混合物所观察到的。两种溶液在开始混合释放出一些气体也会产生放热反应。在制备溶液时,zui好是让溶液静置几分钟,然后在高压液相色谱系统中使用。  希望这篇关于这两种常用高效液相色谱溶剂的差异的简短讨论将有助于您开发出更好的高效液相色谱和LC-MS方法。

厂商

2018.10.19

水质分析常规指标42项

  生活饮用水质检测共106个指标,其中常规检测指标有42个。常规指标是反映生活饮用水水质基本状况的指标,检出率高,为各地水质监测的必检项目。瑞秋将为你详细解读42项常规指标的检测意义及超标危害。  一微生物指标  1. 总大肠菌群  概述: 大肠菌群是一个粪便污染的指标菌,从大肠菌群的检出情况可以表示水中有否粪便污染及其污染程度。在水的净化过程中,通过消毒处理后,总大肠菌群指数如能达到饮用水标准的要求,说明其它病原菌也基本被杀灭。  限值: 规定总大肠菌群100mL水样中不得检出。  2. 耐热大肠菌群  概述: 来源于人和温血动物粪便,是水质粪便污染的重要指示菌,指示有可能存在肠道致病菌和寄生虫等病原体的危险水样。未检出总大肠菌群,不必检验耐热大肠菌群。  限值: 规定耐热大肠菌群100mL水样中不得检出。  3. 大肠埃希氏菌  概述: 水样未检出总大肠菌群,不必检验大肠埃希氏菌。  限值: 规定大肠埃希氏菌100mL水样中不得检出。  4. 菌落总数  概述: 水中菌落总数可作为评价水质清洁程序和考核给水净化效果的指标之一。介水传播的疾病有:痢疾、伤寒、霍乱、肝炎和急性肠胃炎等。被污染了的水源水菌落总数每毫升可达几十万个甚至更多。原水经过净化消毒后,病原菌被杀灭,普通细菌也大大减少了。  限值: 规定饮用水中菌落总数不得超过100个/mL。  二毒理指标  5. 砷  概述: 天然水中含有微量的砷。水中含砷量高,除地质因素外,主要来自工业废水和农药的污染。砷的化合物有三价和五价,其毒性三价砷(pi霜即是As2O3)有机砷的毒性更大,砷的硫化物毒性较小。一些国家报道,长期用含砷浓度较高的水将引起皮肤癌发病率增多。  限值: 定为饮用水中砷的含量不超过0.01mg/L。  6. 镉  概述: 镉是有毒元素,是积累性毒物,使人生病的潜伏期可达10-40年,病程也长,含有镉污染的食物可能造成慢性中毒。天然水中的镉主要是受采矿、冶炼、电镀及化学工业的含镉废水污染所致。  限值: 根据动物的毒理学实验和我国天然水含镉实际情况定为饮用水镉含量不得超过0.005mg/L。  7. 铬  概述: 铬是人体必需的微量元素。六价铬化合物比三价铬化合物的毒性大100倍,三价铬和金属铬毒性最小,在氯化或曝气的水体中六价铬为主要形式。天然水中铬含量极少,主要是工业废水的污染,使天然水中的铬含量增高。  限值: 定为饮用水中铬含量不得超过0.05mg/L。  8. 铅  概述: 铅并非肌体所必需的元素。常随饮水和食物进入人体,摄入量过高可引起积蓄性中毒,主要毒性为贫血,神经机能失调和肾损伤。  限值: 考虑到饮用水中铅含量为0.1mg/L时,能引起儿童血铅含量增高,以及我国饮用水中现有浓度的水平,定为饮用水铅浓度不得超过0.01mg/L。  9. 汞  概述: 汞为剧毒物,可致急、慢性中毒,汞及其化合物为原浆毒,脂溶性。主要作用于神经系统、心脏、肾脏和胃肠道,汞可在体内蓄积,长期摄入可引起慢性中毒。无机汞中以lv化汞和硝suan汞的毒性较高,有机汞的毒性比无机汞大。水中汞主要来自工业废水和废渣的污染。人食用体内富集有机汞的鱼、贝类后,可引起慢性中毒,如日本所著称的“水俣病”。据报道,长期每天摄入约0.25mg甲基汞导致神经损伤。但是,饮用水中的汞主要为难以吸收的无机汞形式,即使在重污染的水中,汞浓度一般也不超过0.03mg/L。  限值: 基于汞的毒性,定为饮用水中汞的含量不得超过0.001mg/L。  10. 硒  概述: 硒是人体所必需的微量元素之一,硒缺乏时人可患克山病大骨节病,使人体的免疫力降低,癌症的患病升高,过量的硒又能引起人体的硒中毒,患脱发、脱甲、偏瘫等病症。水中含硒除地质因素外,主要是来自于工业废水的污染。  限值: 根据硒的毒性,并考虑到从食物中可能摄入的硒量,定为饮用水中硒的含量不得超过0.01mg/L。  11. qing化物  概述: qing化物是一种有毒的致命物质。qing化物在水中呈杏仁气味,口服0.06g即可致死。qing化物进入人胃内解离成氰氢酸。它与细胞色素氧化酶结合,人体因缺氧而迅速死亡。  限值: 由于qing化物毒性很强,定为饮用水中qing化物含量不得超过0.05mg/L(以CN-计)。  12. 氟化物  概述: 氟是人体必需的元素之一,人体摄入氟量不足,易发生龋齿病,特别是对发育中的儿童影响甚大,而人体摄入过多的氟也会导致急性或慢性氟中毒,主要表现为牙斑釉和氟骨症。  限值: 综合考虑定为饮用水中氟含量不得超过1.0mg/L。  13. 硝酸盐 (以N计)  概述: 硝酸盐氮在饮用水中常被检出,含量过高时对人身健康有影响,婴儿长期饮用高浓度的硝酸盐水,可使其患变性血红蛋白症,所以对饮用水硝酸盐含量应加以限定。  限值: 不得超过10mg/L,地下水源限制时为20mg/L。  14. 三氯甲烷  概述: 又称lv仿,有麻醉作用,对皮肤有刺激性,麻痹呼吸系统,损害肝肾,并认为对人身具有潜在的致癌危险性。受有机物污染的原水在净化处理时,加氯后便可产生三氯甲烷。降低饮用水中三氯甲烷的方法,一是在净化处理时,将加氯点后移,即先将受污染的原水通过混凝沉淀及活性碳吸附,去除水中大部分有机物质,而后再加氯消毒,二是改变消毒剂的品种,用二氧化氯或臭氧进行饮用水消毒。  限值: 饮用水中规定三氯甲烷的含量不得超过60μg/L。  15. 四氯化碳  概述: 四氯化碳为透明油状液体,广泛用作工业溶剂,也是常用的灭火剂。与人慢性接触一般会使肠胃道不适,呕吐,神经系统会觉得头痛,倦睡。研究表明,四氯化碳具有多种毒理学效应,危险性中毒可发生肝癌。  限值: 规定四氯化碳含量不得超过2μg/L。  16. 溴酸盐(使用臭氧时)  概述: 溴酸盐,受热后易分解。溴酸盐在国际上被定为2B级的潜在致癌物,它是矿泉水以及山泉水等多种天然水源在经过臭氧消毒后所生成的副产物。正常情况下,水中不含溴酸盐,但普遍含有溴化物。当用臭氧对水消毒时,溴化物与臭氧反应,氧化后会生成溴酸盐。国际癌症研究中心(IARC)认为,溴酸钾对实验动物有致癌作用,但溴酸盐对人的致癌作用还不能肯定,为此将溴酸盐列为对人可能致癌的物质。  限值: 规定溴酸盐含量不得超过0.01 mg/L。  17. 甲醛(使用臭氧时)  概述: 饮用水中甲醛的来源主要是工业废水的排放和水中天然有机物(腐殖质)在臭氧化,氯化过程中氧化的产物。水中有机物通过热解可产生一定量的甲醛。近年来,人们对甲醛的污染及其对人体的伤害越来越重视;研究发现,人体皮肤接触甲醛气体会导致皮肤受刺激和过敏性皮炎;长期摄入过量的甲醛会导致人体中枢神经系统功能丧失,严重的会致癌。  限值: 规定甲醛含量不得超过0.9 mg/L。  18. 亚氯酸盐(使用二氯化氯消毒时)  概述: 亚氯酸盐是一种二氧化氯消毒饮用水的副产物。亚氯酸钠也是产生二氧化氯的原料,当反应不完全时,亚氯酸钠会进入饮用水中。当二氧化氯加人饮用水中时,二氧化氯迅速分解成为亚氯酸盐、氯酸盐和氯化物,亚氯酸盐是主要副产物。人体暴露亚氯酸盐,最主要是通过饮用水。  限值: 规定亚氯酸盐含量不得超过0.7 mg/L。  19. 氯酸盐(使用复合二氧化氯消毒时)  概述: 氯酸盐具有较强的氧化性,易对饮用水中对人体有用的矿物质造成流逝,进入人体对体内环境造成不良影响。  限值: 规定氯酸盐含量不得超过0.7mg/L。  三感官性状和一般化学指标  20. 色度  概述: 天然水中的色度分假色和真色,水中悬浮物所造成的颜色称之为假色。溶解状态的物质所产生的颜色为真色。通常是由带色有机物、金属和工业废水污染造成的。因此色度是衡量水质污染程度的重要指标之一。  限值: 饮用水的色度如大于15度时多数人即可察觉,大于30度时人感到厌恶。标准中规定饮用水的色度不应超过15度。  21. 浑浊度  概述: 是反映天然水和饮用水物理性状的指标,天然水的浑浊度是由水中含有的泥砂、粘土、有机物、微生物等微粒悬浮物质所致。浑浊度用以表示水的清澈和浑浊的程度,是衡量水质良好程度的最重要指标之一。  限值: 标准中规定浑浊度不超过1.0NTU,特殊情况不超过3.0NTU。  22. 臭和味  概述: 水臭的产生主要是有机物的存在,可能是生物活性增加的表现或工业污染所致。  限值: 规定饮用水不得有异臭和异味,是指绝大多数人在饮用时不应感到水有异臭或异味。  23. 肉眼可见物  概述: 饮用水不得含有沉淀物,肉眼可见的水生生物及令人嫌恶的物质。  限值: 不得含有肉眼可见物。  24. pH  概述: 水在净化处理过程中,由于投加混凝剂和石灰等,可使水的pH值下降或升高,过低可腐蚀管道,过高又可析出溶解性盐类并降低氯消毒的效果。  限值: 6.5~8.5  25. 铝  概述: 铝是一种低毒金属元素,不会导致急性中毒,但人体摄入后仅有10%-15%能排泄到体外,大部分会在体内蓄积,与多种蛋白质、酶等人体重要成分结合,影响体内多种生化反应,长期摄入会损伤大脑,导致痴呆,还可能出现贫血、骨质疏松等疾病,可导致儿童发育迟缓、老年人出现痴呆,孕妇摄入则会影响胎儿发育。  限值: 规定饮用水中铝含量不应超过0.2 mg/L。  26. 铁  概述: 铁在天然水中普遍存在,是人类必须营养元素,但饮用水并不是铁的主要来源。水中含铁量在0.3-0.5mg/L时无任何异味,达1mg/L时便有明显的金属味,在0.5mg/L时色度可大于30度。  限值: 为防止衣服,器皿的染色和形成令人反感的沉淀或异味,规定饮用水中铁含量不应超过0.3mg/L。  27. 锰  概述: 水中锰可来自自然环境或工业废水污染。水中有微量锰时,呈现黄褐色。锰的氧化物能在水管内壁上逐步沉积,在水压波动时可造成“黑水现象”。锰和铁对水感官性状的影响类似,二者经常共存于天然水中。当水中锰浓度超过0.15mg/L时,能使衣服和固定设备染色,在较高浓度时使水产生不良味道,锰的毒性较小。  限值: 为防止对衣服、食具及白瓷器等产生色斑和满足水质感官性状方面的要求,定为饮用水中锰含量不应超过0.1mg/L。  28. 铜  概述: 天然水中铜的含量甚少。铜是人体必须的元素,在新陈代谢中参与细胞的生长、增殖和某些酶系统的活化过程。铜的毒性小,但过多则对人体有害,长期摄入可引起肝硬化。根据资料,水中含铜量达1.5mg/L时即有明显的金属味,含铜量超过1.0mg/L时可使衣服及白瓷器染成绿色。  限值: 按感官性状的要求,定为饮用水中铜含量不应超过1.0mg/L。  29. 锌  概述: 天然水中锌的含量很少。主要来源于工矿废水和镀锌金属管道。锌是人体必需的元素,是酶的组成部分,参与新陈代谢。锌的毒性很低,但摄入过多则能刺激胃肠道和产生恶心,口服1g的硫酸锌可引起严重中毒。水中含锌10mg/L时呈现浑浊,5mg/L有金属涩味。我国各地水中含锌量一般都很低。  限值: 饮用水中含锌量不应超过1.0mg/L。  30. 氯化物  概述: 饮用水和天然水中均含有氯化物,它以钾、钠、钙、镁盐的形式存在于水体中,水源流经含氯化物的地层或受生活污水、工业废水、海水、海风的污染均会使其氯化物含量增高。饮用水中氯化物浓度过高,可使水产生令人嫌恶的咸味,并对配水系统有腐蚀。  限值: 根据味觉,定为饮用水中氯化物含量不应超过250mg/L。  31. 硫酸盐  概述: 硫酸盐在自然界中广泛存在,一般地下水和地面水均含有硫酸盐。水中硫酸盐浓度过高,易使锅炉和热水器具内结垢。饮用时有不良味道和轻泻反应,特别是初次和偶然饮用,易出现轻泻情况。一般而言,当水中硫酸盐浓度大于750mg/L时有轻泻作用,而低于600mg/L则无此反应。对多数饮用者来说,当饮用水中硫酸盐浓度为300-400mg/L时,开始察觉水有味,200-300mg/L无明显味作用。  限值: 基于硫酸盐对水味的影响和具有轻泻作用,定为饮用水中硫酸盐含量不应超过250mg/L。  32. 溶解性总固体  概述: 水体经过滤后,在一定温度烘干后得到的不易挥发物质的总和称为溶解性总固体,主要成分为溶解性盐类和以胶体形态存在于水中的有机物质。当其浓度高时可使水产生不良的味道,并能损坏配水管道和设备,它是评价水质矿化程度的重要依据。有报道指出,浓度低于600mg/L时,一般认为水味尚好,而高于1200mg/L会影响水味。还有报道指出,水中溶解性总固体大于200mg/L时,浓度每增加200mg/L,家庭热水器使用寿命缩短一年。  限值: 基于对水味的影响,定为饮用水中溶解性总固体不应超过1000mg/L。  33. 总硬度(以CaCO 3 计)  概述: 水总硬度是否符合标准是自来水的一个重要参考数据,它主要是描述钙离子和镁离子的含量。硬度是水质的一个重要监测指标,通过监测可以知道其是否可以用于工业生产及日常生活,如硬度高的水可使肥皂沉淀使洗涤剂的效用大大降低,纺织工业上硬度过大的水使纺织物粗糙且难以染色;烧锅炉易堵塞管道,引起锅炉爆炸事故;高硬度的水,难喝、有苦涩味,饮用后甚至影响胃肠功能等;喂牲畜可引起孕畜流产等。  限值: 定为饮用水中总硬度含量不应超过450mg/L。  34. 耗氧量(COD Mn 法,以O 2 计)  概述: 耗氧量也称化学需氧量(锰法),以COD表示,又称高锰酸钾指数。它指以高锰酸钾为氧化剂,在一定条件下氧化水中还原性物质,将消耗高锰酸钾的量折算为氧表示(O2,mg/L)。水中还原性物质包括无机物和有机物,主要是有机物,因此耗氧量能间接反映水受有机污染的程度,是评价水体受有机物污染总量的一项综合指标。  限值: 定为饮用水中耗氧量不应超过3.0mg/L;水源限制,原水耗氧量>6mg/L时为5mg/L。  35. 挥发酚类  概述: 天然水中酚含量极微,水中含酚主要是来自工业废水的污染。挥发酚类是指除了对硝基酚外,沸点在230℃以下可随水蒸气一起挥发的一元酚,其中苯酚为主要成分。酚类化合物毒性低,酚具有恶臭,对饮水进行加氯消毒时,能形成臭味更强烈的氯酚,往往引起饮用者的反感。  限值: 定为饮用水中挥发酚类含量不应超过0.002mg/L。  36. 阴离子合成洗涤剂 (A BS )  概述: 目前国产合成洗涤剂以阴离子型的烷基苯磺酸盐为主,其化学性质一般较稳定,不易降解和消除。毒性实验表明,毒性极低,一般不表现毒作用。人体摄入少量未见有害影响。但是,当水中浓度超过0.5mg/L时即能使水起泡沫和具有异味。  限值: 根据味觉阈及形成泡沫的阈浓度,定为饮用水中阴离子合成洗涤剂含量不应超过0.3mg/L。  四放射性指标  概述: 放射性射线能使人及生物组织电离而受到损伤,引起放射病,易患白血病,再生障碍性贫血、恶性肿瘤和白内障。水中的放射性元素主要来自岩石、土壤、空气中的放射性物质。天然和人工合成放射性核素的水溶物均可被带入饮用水水源、核工业、核wu器试验裂变产物及其废液、废气、废渣也会使饮用水源造成放射性污染。放射性指标超过指导值,应进行核素分析和评价,判定能否饮用。  37. 总α放射性  限值:0.5 Bq/L 。  38. 总β放射性  限值:1 Bq/L 。  五消毒剂指标  39. 氯qi及游离氯制剂(游离氯)  概述: 余氯是指水经过加氯消毒,接触一定时间后,余留在水中的氯量。余氯又分游离余氯(HClO、ClO-)和化合余氯(NH2Cl、NHCl2、NC3)。由于余氯的测定方法简单快速,不仅可以间接掌握水的消毒效果,又能及时调整加氯量,保证消毒效果。  限值: 水质标准规定,出厂水的游离性余氯在接触30min后应不低于0.3mg/L且不高于4mg/L;管网末梢水应不低于0.05mg/L。  40. 一氯胺(总氯)  概述: 加氯后,氯与水中的氨结合生成氯胺称化合性氯,包括一氯胺(NH2Cl)、二氯胺(NHCl2),氯胺同样能起消毒作用。氯胺也能和水作用生成次氯酸HClO,但反应速度比氯慢得多,所以氯胺的消毒作用较慢。  限值: 与水接触时间≥120min,出厂水限值0.5-3mg/L;管网末梢水中余量不低于0.05 mg/L。  41. 臭氧(O 3 )  概述: 臭氧是以氧气或空气为原料,在发生器内通过高电压产生的静电场,靠电子冲击O2而制得。臭氧的氧化能力极强,它不但能杀灭一般细菌,而且对病毒、芽孢等也有很大的杀灭效果。采用臭氧消毒,不受水中pH值和氨氮的影响,并对氧化水中有机物质、铁、锰、嗅、味及色度也有良好去除效果。但在管网中不能保持剩余量继续杀菌,因此在出厂水中还应补加氯qi。  限值: 与水接触时间≥12min,出厂水限值0.3mg/L;管网末梢水中余量不低于0.02 mg/L。  42. 二氧化氯(ClO 2 )  概述: 二氧化氯是一种广谱、高效的灭菌剂,杀菌能力强,在水处理时,消毒效果不受pH值的影响,不与氨反应,适用于含氨和氮的化合物的原水,同时能破坏酚类并可排除因苯酚氯化后所引起的氯酚臭和味。二氧化氯不能贮存,也不能压缩装运,一般是现场制备使用,价格较贵。  限值: 与水接触时间≥30min,出厂水限值0.1-0.8mg/L;管网末梢水中余量不低于0.02 mg/L。

厂商

2018.10.19

傅里叶变换红外光谱法分析样品常见问题

  傅里叶变换红外光谱(Fourier Transform infrared spectroscopy)简写为FTIR。傅里叶红外光谱法是通过测量干涉图和对干涉图进行傅里叶变化的方法来测定红外光谱。红外光谱的强度h(δ)与形成该光的两束相干光的光程差δ之间有傅里叶变换的函数关系。傅立叶变换测定红外光谱用于精确控制两相干光光程差的干涉仪测量得到下式表示的光强随光程差变化的干涉图其中v为波数,将包含各种光谱信息的干涉图进行傅立叶变换得实际的吸收光,傅立叶变换红光谱具有高检测灵敏度、高测量精度、高分辨率、测量速度快、散光低以及波段宽等特点。随着计算机技术的不断进步,FTIR也在不断发展。该方法现已广泛地应用于有机化学、金属有机,无机化学、催化、石油化工、材料科学、生物、医药和环境等领域。  1. 压片法 KBr 的处理和保存  压片使用的KBr不一定要光谱纯的,国外也常常使用分析纯的,但是,必须注意以下几点:  ①选择正规的产品,有水份是没有关系的,关键是没有无杂质,尤其是有机物峰,还有SO42-,NO3-等...可以先做个红外看看纯度。  ②如果符合要求的话,可以处理一大批KBr。首先,用干净的玛瑙研钵仔细研磨细,然后在120℃烘干24h,或马弗炉中400℃烧30分钟,置于专用的干燥器中冷却。  ③再做个KBr红外,看看吸收。如果没有特殊吸收,就放干燥器中,可以统一保存。  ④另外使用个小称量瓶和专用药勺,取出一小部分KBr供平常使用,与统一保存的KBr要分开。保存的KBr要尽量减少开启次数。  ⑤做红外的KBr一定要专用,不要和其它实验合成的混用。药品遵循只许出,不许进的原则。处理过的KBr也是这样,以免污染。  ⑥使用光谱纯的也可,但也要进行上述处理。  ⑦打破的,做液体的溴化钾单晶片纯度很高,不要扔掉破碎的溴化钾片,可以用来压片。  2. 液膜 KBr 晶片的处理  溴化钾单晶片盐片用时间久了,不太透明或不平整,有几个办法可以彻底处理 :  ①可以用附带的抛光附件抛光。  ②可以先用最细的金相(颜色最淡的那种,物理系常常有)砂纸抛光,然后再用平绒布面上蹭。  ③国外有用一份蒸馏水+5份异丙醇混和,先滴加在绒布面抛光,然后迅速转移在干燥的绒布面上蹭。效果也很好。处理时一定要带好手套,避免手上湿气的侵蚀。  3. 操作注意事项  a.理论上,研磨的粒度要小于其红外光的波长,这样才能避免产生色散谱,注意 : 研磨过程尽量不要吸收水分,不要对着样品呼气。  b.做红外放样品时候,注意轻开轻关样品室,同时,不要面对样品室呼气,可以使背景的吸收扣的很好。  c.擦洗盐片要由里向外,有机溶剂,比如,丙酮不要沾的很多。  d.液体样品要控制好厚度。  e.手洗干净和干燥是很重要的。  4. 一些特殊样品的处理方法a.有些在溶液中生成的样品,如,配合物一类等,不易提取出来。可以把溶液滴加在的KBr中干燥,研磨。如果样品不怕加温,可以加温干燥后测试。如果样品不能加温,可以待溶剂挥发后,再放入干燥器中自然干燥后再测红外。  b.有些含水的样品,如果,没有氟化钙的盐片,可以用KBr粉末压片,把样品滴加在上面,测完后抛弃。  c.平时用坏了的KBr片,比如,摔裂的半个片都行,专门用来测含水样品。如果光面不好了,可以用异丙醇5份加水1份,滴加在绒布上抛光后使用。  d.根据样品的特点来处理样品。  举个例子,轮胎橡胶制品无法研磨,一般压片法很难制样:  ①普通制样方法得到的谱图透过率差,看不到特征吸收;  ②使用全反射方法测全反射红外谱,不仅需要附件,而且由于橡胶制品是黑色的,得到的谱图效果也差,即使,放大以后的谱图,吸收峰透过率仍然在98%~100,而且样品的平坦度不够,不成形,不平整就无法做;  ③采用普通的压片方法,利用溶剂溶解加研磨混合制样的方法,对比了不同几种溶剂,达到了较为满意的效果。  5. 一些异常谱带的介绍  波数         化合物或结构            来源  668 CO2 大气中CO2 吸收,正或负  697 聚苯乙烯 磨损的聚苯乙烯瓶子或其他机械处理样品过程中  719 聚乙烯 实验室中常使用聚乙烯产品,有时候作为污染物出现  730 聚乙烯 同上  787 CCl4 使用CCl4后没有处理干净  794 CCl4 CCl4气体,同上  823 KNO3 无机硝酸盐与溴化钾反应物  837 NaNO3 氧化氮与窗片上的水汽生成,光源点燃有时候出现  980 K2SO4 无机硫酸盐与溴化钾离子交换的反应物  1110-1053 Si-O 使用玻璃研钵,由玻璃粉末引起的谱带,宽峰  1110 Me-O 研钵或其它物品的灰尘造成的污染,宽  1265 Si-CH3 使用硅树脂有此污染  1365 NaNO3 同837  1380,1450  2800~2900 (CH2)n 烃类物质  1378 NO3- 溴化钾的杂质,与CH3位置相近  1428 CO32- 溴化钾的碳酸盐,及其它杂质  1613-1515 ﹥COO- 碱金属卤代盐,溴化钾与羧酸反应生成的羧酸阴离子引起,压片时能产生  1639 H2O 少量夹带水的吸收  1764-1696 >C=O 药品的瓶盖,涂层,增塑剂等等的污染  1810 COCl2 lv仿暴露在空气中或日光氧化生成少量光qi的谱带  1996 BO3- 碱金属卤代盐,NaCl中的偏硼酸离子引起  2326 CO2 CO2吸收  2347 CO2 正或负的大气中CO2吸收  3450 H2O 压片中KBr含的微量水的谱带,宽,常见  3650 H2O 石英管出现附着水引起的锐谱带  3704 H2O 近红外区厚吸收池使用四氯化碳或烃类溶剂中非缔合水的-OH吸收,谱带锐  6. 一些红外透光材料介绍  选择红外透光材料要根据测定波长,机械强度,稳定性和经济性来考虑,文献报导的透光材料很多,但是实际应用的并不太多 :  (1) 溴化钾 KBr : 易潮解,透过波长7800~400cm-1,(25μm以下)透过率大于92%,不易低温;  (2) 氯化钠 NaCl : 易潮解,透过波长500~625cm-1,(2~16μm) 不易低温;  (3) 氟化钙 CaF 2 : 不易潮解,透过波长7800~1100cm-1 (1~9μm),透过率大于90%,不耐机械冲击;  (4) 氟化镁 MgF 2 : 不易潮解,透过波长0.11~8.5μm,透过率大于90%;  (5) 氟化钡 BaF 2 :不易潮解,透过波长7800~800cm(1~12μm)透过率大于90%;  (6) 金刚石 : 碳的一种,有Ⅰ型和Ⅱ型两种,透光波长10cm-1,(1000μm)。它们在4~6μm(2300~1660cm-1)有吸收,Ⅰ型还在19~22μm和7~11μm有两个吸收带,据此可以鉴别金刚石的类型;  (7) 锗 Ge : 纯度越高透光越好,透光性受纯度和厚度的影响,23μm和40μm以外可以使用,在120℃时不透明;  (8) 硅 Si : 耐机械和热冲击,可达15μm,但是,在9μm(1110cm-1)时有一吸收带;  (9) 热压块 : 用红外晶体的粉末加压成型,有MgF2,ZnS,CaF2,ZnSe,MgO等,混合热压块的机械性能超过晶体;  (10) 塑料 : 高密度聚乙烯在20~1000μm的远红外区可以使用,还有聚乙烯,聚四氟乙烯等薄片也可以使用;  (11) 氯化银 AgCl : 软,不易破裂,435cm-1(23μm以下),易变黑,贵;  (12) 溴化银 AgBr : 软,不易破裂,285cm-1(35μm以下),作为全反射材料;  (13) 硫化锌 ZnS : 不易潮解,透过波长7800~700cm-1,(1~14μm)透过率大于85%;  (14) 溴(碘)化鉈 KRS -5 : TiI 58%和TiBr 42%混晶,不易裂,透过波长7800~200cm-1,(1~50μm),透过率大于92%,折射率高,全反射材料,贵,有毒;  (15) 硒化锌 ZnSe : 不易潮解,透过波长7800~440cm-1,(1~23μm),透过率大于68%;  (16) 石英 SiO 2 : 不易潮解,透过波长190nm~4.5μm,透过率大于92%;  (17) 氟化锂 LiF : 120~7000cm-1,易潮解变形;  (18) 砷化镓 GaAs : 2~14μm,耐擦拭,可代替硒化锌。

厂商

2018.10.18

实验室常用酸、碱、盐溶液配制方法

  几种常用溶液浓度的表示法  (1)质量百分比浓度:用溶质的质量占全部溶液质量的百分比来表示的浓度。简称百分浓度。  (2)体积百分比浓度:用溶质的质量占溶剂体积的百分比来表示的浓度。在工农业生产中常用这种浓度。  (3)体积比浓度:液体试剂相互混和或液体试剂用水稀释时常用此法。例如,1∶3酒精溶液指的是1体积的酒精和3体积的蒸馏水混和而成的酒精水溶液,1∶3中的前一个数字指的是溶质的体积数,后一个数字指的是溶剂的体积数。  (4)物质的量浓度:用1升溶液里含有溶质的量来表示的溶液浓度。目前习惯称摩尔浓度,用M表示。  (5)当量浓度:用每升溶液里所含溶质的克当量数表示的浓度。通常用N表示。  常用酸、碱、盐溶液的配制  1.酸溶液  2.碱溶液  3.盐溶液  常用溶液配制方法  1.30%丙烯酰胺溶液  【配制方法】将29g丙烯酰胺和1g N,N’-亚甲双丙烯酰胺溶于总体积为60ml的水中。加热至37℃溶解之,补加水至终体积为100ml。用Nalgene滤器(0.45μm孔径)过滤除菌,查证该溶液的pH值应不大于7.0,置棕色瓶中保存于室温。  【注意】丙烯酰胺具有很强的神经毒性并可以通过皮肤吸收,其作用具累积性。称量丙烯酰胺和亚甲双丙烯酰胺时应戴手套和面具。可认为聚丙烯酰胺无毒,但也应谨慎操作,因为它还可能会含有少量未聚合材料。一些价格较低的丙烯酰胺和双丙烯酰胺通常含有一些金属离子,在丙烯酰胺贮存液中加入大约0.2体积的单床混合树脂(MB-1Mallinckrodt),搅拌过夜,然后用Whatman 1号滤纸过滤以纯化之。在贮存期间,丙烯酰胺和双丙烯酰胺会缓慢转化成丙烯酰和双丙烯酸。  2.40%丙烯酰胺  【配制方法】把380g丙烯酰胺(DNA测序级)和20g N,N’-亚甲双丙烯酰胺溶于总体积为600ml的蒸馏水中。继续按上述配制30%丙烯酰胺溶液的方法处理,但加热溶解后应以蒸馏水补足至终体积为1L。  【注意】见上述配制30%丙烯酰胺的说明,40%丙烯酰胺溶液用于DNA序列测定。  3.放线菌素D溶液  【配制方法】把20mg放线菌素D溶解于4ml 100%乙醇中,1:10稀释贮存液,用100%乙醇作空白对照读取OD440值。放线菌素D(分子量为1255)纯品在水溶液中的摩尔消化系数为21,900,故而1mg/ml的放线菌素D溶液在440nm处的吸光值为0.182,放线菌素D的贮存液应放在包有箔片的试管中,保存于-20℃。  【注意】放线菌素D是致畸剂和致癌剂,配制该溶液时必须戴手套并在通风橱内操作,而不能在开放在实验桌面上进行,谨防吸入药粉或让其接触到眼睛或皮肤。  药厂提供的作治疗用途的放线菌素D制品常含有糖或盐等添加剂。只要通过测量贮存液在440nm波长处的光吸收确定放线菌素D的浓度,这类制品便可用于抑制自身引导作用。  4.0.1mol/L腺苷三磷酸(ATP)溶液  【配制方法】在0.8ml水中溶解60mg ATP,用0.1mol/L NaOH调至pH值至7.0,用蒸馏水定容1ml,分装成小份保存于-70℃  5.10mol/L乙酸酰溶液  【配制方法】把770g乙酸酰溶解于800ml水中,加水定容至1L后过滤除菌。  6.10%过硫酸铵溶液  【配制方法】把1g过硫酸铵溶解于终量为10ml的水溶液中,该溶液可在4℃保存数周。  7.BCIP溶液  【配制方法】把0.5g的5-溴-4-氯-3-吲哚磷酸二钠盐(BCIP)溶解于10ml 100%的二甲基甲酰胺中,保存于4℃  8.2×BES缓冲盐溶液  【配制方法】用总体积90ml的蒸馏水溶解1.07g盐溶液BES、1.6g NaCl和0.027g Na2HPO4,室温下用HCl调节 该溶液的pH值至6.96、然后加入蒸馏水定容至100ml,用0.22μm滤器过滤除菌,分装成小份,保存于-20℃。  9.1mol/L CaCl2溶液  【配制方法】在200ml蒸馏水中溶解54g CaCl2?6H2O,用0.22μm滤器过滤除菌,分装成10ml小份贮存于-20℃。  【注意】制备感受态细胞时,取出一小份解冻并用蒸馏水稀释至100ml,用Nalgene滤器(0.45μm孔径)过滤除菌,然后骤冷至0℃。  10.2.5mol/L CaCl2溶液  【配制方法】在20ml蒸馏水中溶解13.5g CaCl2?6H2O,用0.22μm滤器过滤除菌,分装成1ml小份贮存于-20℃。  11.1mol/L二硫苏糖醇(DTT)溶液  【配制方法】用20ml 0.01mol/L乙酸钠溶液(pH5.2)溶解3.09g DTT,过滤除菌后分装成1ml小份贮存于-20℃。  【注意】DTT或含有DTT的溶液不能进行高压处理。  12.脱氧核苷三磷酸(dNTP)溶液  【配制方法】把每一种dNTP溶解于水至浓度各为100mmol/L左右,用微量移液器吸取0.05mol/l Tris碱分别调节 每一dNTP溶液的pH值7.0(用pH试纸检测),把中和后的每种dNTP溶液各取一份作适当稀释,在给出的波长下读取光密度计算出每种dNTP的实际浓度,然后用水稀释成终浓度为50mmol/L的dNTP,分装成小份贮存于-70℃。  13.0.5mol/l EDTA(pH8.0)溶液  【配制方法】在800ml水中加入186.1g二水乙二胺四乙酸二钠(EDTA-Na?2H2O),在磁力搅拌器上剧烈搅拌,用NaOH调节 溶液的pH值至8.0(约需20g NaOH颗粒)然后定容至1L,分装后高压灭菌备用。  【注意】EDTA二钠盐需加入NaOH将溶液的pH值调至接近8.0,才能完全溶解。  14.溴化乙锭(10mg/ml溶液)  【配制方法】在100ml水中加入1g溴化乙锭,磁力搅拌数小时以确保其完全溶解,然后用铝箔包裹容器或转移至棕色瓶中,保存于室温。  【注意】小心:溴化乙锭是强诱变剂并有中度毒性,使用含有这种染料的溶液时务必戴上手套,称量染料时要戴面罩。  15.2×HEPES缓冲盐溶液  【配制方法】用总量为90ml的蒸馏水溶解1.6g NaCl、0.074g KCl、0.027g Na2PO4?2H2O、0.2g葡聚糖和1gHEPES,用0.5mol/l NaOH调节 pH值至7.05,再用蒸馏水定容至100ml。用0.22μm滤器过滤除菌,分装成5ml小份,贮存于-20℃。  16.IPTG溶液  【配制方法】IPTG为异丙基硫代-β-D-半乳糖苷(分子量为238.3),在8ml蒸馏水中溶解2g IPTG后,用蒸馏水定容至10ml,用0.22μm滤器过滤除菌,分装成1ml小份贮存于-20℃。  17.1mol/L乙酸镁溶液  【配制方法】在800ml水中溶解214.46g四水乙酸镁,用水定容至1L过滤除菌。  18.1mol/L MgCl2溶液  【配制方法】在800ml水中溶解203.4g MgCl2?6H2O,用水定容至1L,分装成小份并高压灭菌备用。  【注意】MgCl2极易潮解,应选购小瓶(如100g)试剂,启用新瓶后勿长期存放。  19.β-巯基乙醇(BME)溶液  【配制方法】一般得到的是14.4mol/L溶液,应装在棕色瓶中保存于4℃。  【注意】BME或含有BME的溶液不能高压处理。  20.NBT溶液  【配制方法】把0.5g氯化氮蓝四唑溶解于10ml 70%的二甲基甲酰胺中,保存于4℃。  21.酚/lv仿溶液  【配制方法】把酚和lv仿等体积混合后用0.1mol/L Tris?HCl(pH7.6)抽提几次以平衡这一混合物,置棕色玻璃瓶中,上面覆盖等体积的0.01mol/l Tris?HCl(pH7.6)液层,保存于4℃。  【注意】酚腐蚀性很强,并可引起严重灼伤,操作时应戴手套及防护镜,穿防护服。所有操作均应在化学通风橱中进行。与酚接触过的部位皮肤应用大量的水清洗,并用肥皂和水洗涤,忌用乙醇。  22.10mmol/L(PMSF)溶液  【配制方法】用异丙醇溶解PMSF成1.74mg/ml(10mmol/L),分装成小份贮存于-20℃。如有必要可配成浓度高达17.4mg/ml的贮存液(100mmol/L)。  【注意】PMSF严重损害呼吸道粘膜、眼睛及皮肤,吸入、吞进或通过皮肤吸收后有致命危险。一旦眼睛或皮肤接触了PMSF,应立即用大量水冲洗之。凡被PMSF污染的衣物应予丢弃。PMSF在水溶液中不稳定。应在使用前从贮存液中现用现加于裂解缓冲液中。PMSF在水溶液中的活性丧失速率随pH值的升高而加快,且25℃的失活速率高于4℃。pH值为8.0时,20μmmol/l PMSF水溶液的半寿期大约为85min,这表明将PMSF溶液调节 为碱性(pH>8.6)并在室温放置数小时后,可安全地予以丢弃。  23.磷酸盐缓冲溶液(PBS)溶液  【配制方法】在800ml蒸馏水中溶解8g NaCl、0.2g KCl、1.44g Na2HPO4和0.24g KH2PO4,用HCl调节 溶液的pH值至7.4加水定容至1L,在15lbf/in2(1034×105Pa)高压下蒸气灭菌20min。保存于室温。  24.1mol/L乙酸钾(pH7.5)溶液  【配制方法】将9.82g乙酸钾溶解于90ml纯水中,用2mol/L乙酸调节 pH值至7.5后加入纯水定容到1L,保存于-20℃。  25.乙酸钾溶液(用于碱裂解)  【配制方法】在60ml 5mol/L乙酸钾溶液中加入11.5ml冰乙酸和28.5ml水,即成钾浓度为3mol/L而乙酸根浓度为5mol/L的溶液。  26.3mol/L乙酸钠(pH5.2和pH7.0)溶液  【配制方法】在80ml水中溶解408.1g三水乙酸钠,用冰乙酸调节 pH值至5.2或用稀乙酸调节 pH值至7.0,加水定容到1L,分装后高压灭菌。  27.5mol/L NaCl溶液  【配制方法】在800ml水中溶解292.2g NaCl加水定容至1L,分装后高压灭菌。  28.10%十二烷基硫酸钠(SDS)溶液  【配制方法】在900ml水中溶解100g电泳级SDS,加热至68℃助溶,加入几滴浓盐酸调节 溶液的pH值至7.2,加水定容至1L,分装备用。  【注意】SDS的微细晶粒易扩散,因此称量时要戴面罩,称量完毕后要清除残留在称量工作区和天平上的SDS,10%SDS溶液无须灭菌。  29.20×SSC溶液  【配制方法】在800ml水中溶解175.3g NaCl和88.2g柠檬酸钠,加入数滴10mol/l NaOH溶液调节 pH值至7.0,加水定容至1L,分装后高压灭菌。  30.20×SSPE溶液  【配制方法】在800ml水中溶解17.5g NaCl、27.6g NaH2PO4?H2O和7.4g EDTA,用NaOH溶液调节 pH值至7.4(约需6.5ml 10ml/L NaOH),加水定容至1L,分装后高压灭菌。  31.100%三lv乙酸溶液  【配制方法】在装有500g TCA的瓶中加入227ml水,形成的溶液含有100%(M/V)TCA。  32.1mol/L Tris溶液  【配制方法】在800ml水中溶解121.91g Tris碱,加入浓HCl调节 pH值至所需值。应使溶液冷至室温后方可最后调定pH值,加水定容至1L,分装后高压灭菌。  【注意】如1mol/L溶液呈现黄色,应予丢弃并置备质量更好的Tris。  尽管多种类型的电极均不能准确测量Tris溶液的pH值,但仍可向大多数厂商购得合适的电极。Tris溶液的pH值因温度而异,温度每升高1℃,pH值大约降低0.03个单位。例如:0.05mol/L的溶液在5℃、25℃、和37℃时的pH值分别为9.5、8.9和8.6。  33.Tris缓冲盐溶液(TBS)(25mmol/l Tris)  【配制方法】在800ml蒸馏水中溶解8g NaCl、0.2g KCl和3g Tris碱,加入0.015g酚并用HCl调至pH值至7.4,用蒸馏水定容至1L,分装后在151bf/in2(1.034×105Pa)高压下蒸汽灭菌20min,于室温保存。  34.配制:  乙二胺四乙酸二钠盐滴定液(0.1mol/L)  称取乙二胺四乙酸二钠盐40g,加热溶于1000ml水中,冷却,摇匀。  乙二胺四乙酸二钠盐滴定液(0.05mol/L)  称取乙二胺四乙酸二钠盐20g,加热溶于1000ml水中,冷却,摇匀。  乙二胺四乙酸二钠盐滴定液(0.02mol/L)  称取乙二胺四乙酸二钠盐8g,加热溶于1000ml水中,冷却,摇匀。标定:  标定:  0.1mol/L乙二胺四乙酸二钠盐溶液,取于约800℃灼烧至恒重的基准氧化锌0.25g±0.0001g,用少量水湿润,加2ml稀盐酸20%使其溶解,加水100ml,用10%氨水调至PH=7~8,加10ml氨—氯化铵(pH=10)及铬黑T指示剂,用配制好的乙二胺四乙酸二钠滴定液(0.1mol/L)滴定至溶液由紫色变为纯蓝色。同时做空白。  C(EDTA)——乙二胺四乙酸二钠盐标准溶液量浓度 mol/L  V1——乙二胺四乙酸二钠盐标准溶液用量 ml  V2——乙二胺四乙酸二钠盐标准溶液用量 ml  0.08138——与1.00ml乙二胺四乙酸二钠盐标准溶液1.000mol/L相当的以克表示的氧化锌的质量  附:其他常用溶液的配制  1.0.5mol/l EDTA(pH8.0)溶液  【配制方法】在800ml水中加入186.1g二水乙二胺四乙酸二钠(EDTA-Na?2H2O),在磁力搅拌器上剧烈搅拌,用NaOH调节 溶液的pH值至8.0(约需20g NaOH颗粒)然后定容至1L,分装后高压灭菌备用。  【注意】EDTA二钠盐需加入NaOH将溶液的pH值调至接近8.0,才能完全溶解。  0. 1mol/l EDTA(pH8.0)溶液  【配制方法】在800ml水中加入37.224g二水乙二胺四乙酸二钠(EDTA-Na?2H2O),在磁力搅拌器上剧烈搅拌,用2当量NaOH调节 溶液的pH值至8.0然后定容至1L。  使用时稀释一百倍变成1mMol/l EDTA工作液。PH值调至8  2.磷酸盐缓冲溶液(PBS)溶液  【配制方法】在800ml蒸馏水中溶解8g NaCl、0.2g KCl、1.44g Na2HPO4和0.24g KH2PO4,用HCl调节 溶液的pH值至7.4加水定容至1L,在15lbf/in2(1034×105Pa)高压下蒸气灭菌20min。保存于室温。  3.Tris缓冲盐溶液(TBS)(25mmol/l Tris)  【配制方法】在800ml蒸馏水中溶解8g NaCl、0.2g KCl和3g Tris碱,加入0.015g酚并用HCl调至pH值至7.4,用蒸馏水定容至1L,分装后在151bf/in2(1.034×105Pa)高压下蒸汽灭菌20min,于室温保存。  Tris缓冲盐溶液(TBS)(50mmol/l Tris PH7.6)  Tris缓冲盐溶液(TBS)(50mmol/l Tris)  【配制方法】称取Tris(三羟甲基氨基甲烷)6.057g,加少许双蒸水溶解后加1HCL42ml,Nacl 8.5g,最后加双蒸水至1000ml,用1N HCL或NAOH调至7.6,充分摇匀,4℃保存。

厂商

2018.10.18

仪器分析|气相色谱定性

  气相色谱的定性分析就是要确定色谱图中每个色谱峰究竟代表什么组分,因此必须了解每个色谱峰位置的表示方法及定性分析的方法。  常用的保留值简介  在气相色谱分析中,常用的保留值为保留时间tR、调整保留时间t'R、保留体积VR、调整保留体积V'R、相对保留值ris、比保留体积从和保留指数Ix。  各种保留值的计算公式如下:  1.保留时间tR  2.调整保留时间t'R  t'R=tR-tM  死时间tM与被测组分的性质无关。因此以保留时间与死时间的差值,即调整保留时间t'R,作为被测组分的定性指标,具有更本质的含义。t'R反映了被测组分和固定相的热力学性质,所以用调整保留时间t'R比用保留时间tR作为定性指标要更好一些。  3.保留体积VR  VR=tRFc  4.调整保留体积V'R  V'R=(tR-tM)Fc=t'RFc=VR-VM  5.相对保留值ris  为了抵消色谱操作条件的变化对保留值的影响,可将某一物质的调整保留时间:t'R(i)与一标准物(如正壬烷)的调整保留时间:t'R(s)相比,即为相对保留值(如相对壬烷值)  相对保留值ris仅与固定相的性质和柱温有关,与色谱分析的其它操作因素无关,因此具有通用性。  6.比保留体积Vg  比保留体积是气相色谱分析中的另一个重要保留值,其可按下式计算:  式中t'R(i)—i组分的调整保留时间,min;  m—固定液的质量,g; —在柱温、柱压下,柱内载气的平均体积流速;  F'0—室温下由皂膜流量计测得的载气流速,ML/min;  Tc—柱温,K;  T0—室温,K;  p0—室温下的大气压力,Pa;  pw—室温下的饱和水蒸气压,pa;  j—压力校正因子。  7.科瓦茨(Kovats)保留指数Ix  科瓦茨保留指数是气相色谱领域现已被广泛采用的一定性指标,其规定为:在任一色谱分析操作条件下,对碳数为n的任何正构烷烃,其保留指数为100n。如对正丁烷、正己烷、正庚烷,其保留指数分别为400、600、700。在同样色谱分析条件下,任一被测组分的保留指数Ix,可按下式计算:  式中,t'R(x)、t'R(n)、t'R(n+z)代表待测物质x和具有n及n+z个碳原子数的正构烷烃的调整保留时间(也可以用调整保留体积、比保留体积或距离mm)。z可以等于1,2,3?,但数值不宜过大。  由上式可以看出,要测定被测组分的保留指数,必须同时选择两个相邻的正构烷烃,使这两个正构烷烃的调整保留时间,一个在被测组分的调整保留时间之前,一个在其后。这样用两个相邻的正构烷烃作基准,就可求出被测组分的保留指数。保留指数用I表示,其右上角符号表示固定液的类型,右下角用数字表示柱温,如1sq120,就表示某物质在角鲨烷柱上的保留指数。因正构烷烃的保留指数与固定液和柱温无关,而对其它物质,保留指数就与固定液和柱温有关,所以用上述方法表示。  如要测某一物质的保留指数,只要与相邻两正构烷烃混合在一起(或分别进行),在相同色谱条件下进行分析,测出保留值,按上式进行保留指数I的计算,将I与文献值对照定性。I值只与固定相及柱温有关。例如60℃角鲨烷柱上苯保留指数的计算,如图1所示,苯在正己烷和正庚烷之间流出,z=6, n=1。所以  从文献中查得60℃角鲨烷柱上I值644时为苯,再用纯苯对照实验确证是苯。  图1 保留指数示意图  1-空气;2-正己烷;3-苯;4-正庚烷  常用的定性方法  1.纯物质对照法  对组成不太复杂的样品,若欲确定色谱图中某一未知色谱峰所代表的组分,可选择一系列与未知物组分相接近的标准纯物质,依次进样,当某一纯物质的保留值(可为tR、ris、Vg、I)与未知色谱峰的保留值相同时,即可初步确定此未知色谱峰所代表的组分。  但是当样品组分较复杂而又不易推测的时候,相邻流出峰之间的距离往往很接近,由于测量保留值有一定误差,为防止可能发生错误,可把纯物质加入样品中,观察在色谱图上待定性的峰是否增高,若增高即可能与纯物质为同一化合物。  严格地讲,仅在一根色谱柱上利用纯物质和未知组分的保留值相同,作为定性的依据是不完善的,因为在一根色谱柱上,可能有几种物质具有相同的保留值。如果可能,应在两根极性不同的色谱柱上进行验证,如在两根极性不同的柱上纯物质和未知组分的保留值皆相同,就可确证未知物与纯物质相同,此即为双柱定性。  2.利用保留值的经验规律定性  大量实验结果已证明,在一定柱温下,同系物的保留值对数与分子中的碳数呈线性关系,此即为碳数规律,可表示为  Igt'R=an+b  式中,n为碳数;a为直线斜率;b为直线在Igt'R轴上的截距。  另外同一族的具有相同碳数的异构体的保留值对数与其沸点呈线性关系,此即为沸点规律,可表示为  IgVg=a1Tb+b1  式中, Tb为沸点;a1为直线斜率;b1为直线在IgVg轴上的截距。  当已知样品为某一同系列,但没有纯样品对照时,可利用上述两个经验规律定性。  3.利用选择性检测器(ECD和TID)进行定性分析  将色谱柱后流出物经等比分流器分成两部分,分别输入两种检测器,其中一种为选择性检测器,另一种为非选择性检测器,或两者皆为选择性检测器,它们平行安装在两个不同的检测器中,得到两组不相同的色谱图,从而进行对照鉴定,它有助于对未知组分进行分类并使定性工作简化。  4.利用气相色谱-质谱联用进行定性分析  气相色谱-质谱联用(GC-MS)是解决复杂混合物定性的有效工具。首先将复杂的被测混合物注射进色谱仪,通过色谱柱分离成单个组分,然后通过分子分离器,将载气分子分离后,样品组分再进入质谱仪进行鉴定。  气相色谱是比较高效的分离分析工具,但对复杂的混合物单靠色谱定性鉴定存在很大的困难,而红外光谱、质谱、核磁共振等仪器分析方法对纯化合物的定性鉴定是很有特征的,但对复杂混合物的分析有困难,因此如果用气相色谱法将复杂混合物分成单个或简单的组成,然后用质谱、光谱鉴定则有助于解决许多复杂的分析问题。  由于色谱仪是用载气将被测样品引入仪器,而质谱仪的离子源是在10-5~10-7mmHg (1mmHg=133.32Pa)压力下操作,因此如何使压力相差悬殊的气相色谱柱和离子源连接起来,就是实现色谱一质谱联用的关键问题。

厂商

2018.10.18

实验室ICP-AES分析使用注意事项

  ICP-AES法是以等离子体原子发射光谱仪为手段的分析方法,由于其具有检出限低、准确度高、线性范围宽且多种元素同时测定等优点,因此,与其它分析技术如原子吸收光谱、X-射线荧光光谱等方法相比,显示了较强的竞争力。在国外,ICP-AES法已迅速发展为一种极为普遍、适用范围广的常规分析方法,并已广泛应用于各行业,进行多种样品、70多种元素的测定,目前也已在我国高端分析测试领域广泛应用。  实验室使用ICP-AES,需要知道哪些注意事项呢?  1、良好的实验室环境  等离子体光谱仪与其它大型精密仪器一样,需要在一定的环境下运行,失去这些条件,不仅仪器的使用效果不好,而且改变仪器的检测性能,甚至造成损坏,缩短寿命。  ①室温  等离子体光谱仪属于精密光学仪器,对环境的温度有一定的要求,如果温度变化太大,光学元件受温度变化的影响就会产生谱线漂移,仪器寻峰不准,尤其是单道扫描型的仪器,甚至有时候会找不到峰。测量标准和样品时的温差大的话会造成测定数据不稳定,一般室温要求维持在20~25摄氏度间的一个固定温度,温度变化应小于±3/小时即可。一般空调就能达到,这也要求放置仪器的房间要适中。  ②湿度  湿度过大,光学元件,特别是光栅容易受潮损坏或性能降低。曾经有厂家去用户哪打开仪器发现光栅都长毛发霉的事情,厂家要求用户付高达1万多美金改换光栅(进口离子刻蚀光栅相当的贵,好象没有国产的代替)。电子系统,尤其是印刷电路板及高压电源上的元件容易受潮烧坏。湿度对高频发生器的影响也十分重要,湿度过大,轻则等离子体不容易点燃,重则高压电源及高压电路放电击毁元件,如功率管隔直陶瓷电容击穿,输出电路阻抗匹配、网络中的可变电容放电等,以至损坏高频发生器。广东一用户两个月没有开机使用,一开机直接造成包括计算机主板在内的几块电路板烧毁,虽在保修期,但厂家拒绝免费更换。可谓损失惨重。一般要求室内湿度应小于百分之70,最好控制在百分之45~60之间,南方的用户一定要有抽湿机,不然在夏季,仪器很难正常工作,有人说,他们的仪器总是在夏季发生故障,仪器损坏是季节性的,和湿度应该有一定的关系。  ③排风  仪器上放,要有良好的抽风系统,这个厂家一般是要求的,平时要注意排风系统的正常运转,每个分析人员都不愿意在有大量重金属环境下工作吧。  ④防尘  国内一般实验室都不具备防尘、过滤尘埃的设施,当实验室内需要采用排风机,排除仪器的热量及工作时产生的有毒气体时,实验室与外部就形成压力差,实验室产生负压,室外含有大量灰尘的空气从门窗的缝隙中流入室内,大量积聚在仪器的各个部位上,容易造成高压元件或接头打火,电路板及接线、插座等短路、漏电等各种各样的故障,因此,需要经常进行除尘。特别是计算机、电子控制电路、高频发生器、显示器、打印机、磁盘驱动器等,定期拆卸或打开,用小毛刷清扫,并同时使用吸尘器将各个部分的积尘吸除。对光电倍增管负高压电源线、及计算机显示器的高压线及接头,还要用纱布沾上少许无水酒精小心的抹除积炭和灰尘。磁盘驱动器及打印机清出灰尘之后,要在机械活动部件滴加少许仪表油。打印机的打印头还要拆下,用软毛刷刷扫,并用绒布抹净,防止针孔被纸屑堵塞,然后按照说明书调整一定的打印压力。对于仪器除尘,一般由电子,仪修或计算机的专业人员帮助,仪器使用或管理人员如不懂电子知识,不了解仪器结构,不要轻易去动,以免发生意外,除尘应事先停机并关掉供电电源下进行。  2、仪器的供电线路要符合仪器的要求  ①足够大的容量  为了保证ICP仪的安全运行,供电线路必须要有足够大的容量,ICP点火的瞬间,功率能达到6KW以上,正常运行时,输入功率也有3KW,频繁的跳闸会损坏仪器,否则仪器运行时线路的电压降过大,影响仪器寿命。  ②稳定的电网  作为一台精密测量仪器,它还需要有相对稳定的电源,供电电压的变化一般不超过+百分之5,如超过这个范围,需要使用自动调压器或磁饱和稳压器,不能使用电子稳压器,由于电子稳压器在电压高时产生削波,造成电脉冲,影响电子计算机、微处理器及相敏放大器的工作,引起误动作。一般厂家会提供专用的稳压电源或提供型号。  等子体光源是高频电源,工作中还要保证供电电路频率的稳定,连续正弦波电源才能保证这些电子电路的正常工作,仪器供电线路最好单独从供电变压器的配电盘上得到,尽量不与大电机,大的通风机,空调机,马弗炉等大的用电设备共用一条供电线路,以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。尤其是金属冶练企业,不要和大型的可控硅共用电源,曾经有一铅厂,从示波器上显示的全是方波和脉冲,这是不能保证仪器正常工作的。以免在这些用电设备起动时,供电线路的电压大幅度的波动,造成仪器工作不稳定。允许电流大于30安培的仪器要单独接地。一般光谱仪地线电阻要小于5欧姆,计算机地线电阻要小于0.25欧姆(ASTM)标准,以防相互干扰。最好要有专门的地线。  在仪器的使用中,应经常注意电源的变化,不能长期在过压或欠压下工作,根据资料介绍,当仪器在过压下工作会造成高颇发生器功率大管灯丝过度的蒸发和老化,电子管的寿命将会大大的缩短(是正常寿命的五分之~一六分之一)。如果在欠压下工作,电子管灯丝温度过低,电子发射不好,也容易造成电子发射材料过早老化,同样也缩短电子管的寿命;仪器运行中供电电压的较大波动同样也会造成高频发生器输出功率的不稳定,对测定结果的好坏影响极大,因此,应当注意供电电源的质量。  3、对气体控制系统的维护保养  ①氩气的纯度  等离子光谱仪所用氩气的纯度要使用使用高纯氩气,一般要4个9以上,氩气不纯会造成点不着火或ICP熄火。  ②气流稳定  ICP的气体控制系统是否稳定正常地运行,直接影响到仪器测定数据的好坏,如果气路中有水珠、机械杂物杂屑等都会造成气流不稳定,因此,对气体控制系统要经常进行检查和维护。首先要做气体试验,打开气体控制系统的电源开关,使电磁阀处于工作状态,然后开启气瓶及减压阀,使气体压力指示在额定值上,然后关闭气瓶,观察减压阀上的压力表指针,应在几个小时内没有下降或下降很少,否则气路中有漏气现象,需要检查和排除。第二,由于氩气中常夹杂有水分和其它杂质,管道和接头中也会有一些机械碎屑脱落,造成气路不畅通。因此,需要定期进行清理,拔下某些区段管道,然后打开气瓶,短促地放一段时间的气体,将管道中的水珠,尘粒等吹出。在安装气体管道,特别是将载气管路接在雾化器上时,要注意不要让管子弯曲太厉害,否则载气流量不稳而造成脉动,影响测定。  4、对进样系统及炬管的维护  ①雾化器  是进样系统中最精密,最关键的部份,需要很好的维护和使用。要定期的清理,特别是测定高盐溶液之后,如果不及时清洗,会造成雾化器堵塞,每次测定完以后,关机之前要把吸管放进稀酸溶液清洗一会。雾化器堵塞以后,要用手堵住喷嘴反吹,千成不要用铁丝等硬物去捅。  ②炬管  每次安装炬管,位置一定要装好,防止炬管烧掉,作样时尤其是高盐份样品,炬管喷嘴会积有盐份,造成气溶胶通道不畅,常常反映出来的是测定强度下降,仪器反射功率升高等。炬管上积尘或积炭都会影响点燃等离子体焰炬和保持稳定,也影响反射功率,甚至会造成熄火。因此,要定期用酸洗,水洗,最后,用无水乙醇洗并吹干,经常保持进样系统及炬管的清洁。长时间不清洗炬管,会造成很难清洗干净的现象。  ③氢氟酸介质  由于雾化器和炬管以及雾室都是玻璃或石英,所以在进氢氟酸介质的样品时一定要赶氢氟酸,或者更换耐氢氟酸系统,不然,你的进样系统的寿命会大大的缩短,尤其是雾化器和雾室,最强的一个实验室,就用普通进样系统进氢氟酸介质的样品,一年买了30个雾化器,10个雾室,还好他用的是国产仪器,配件比较便宜。  5、使用中其它注意事项  ①开机测定前,必须做好安排,事先标好各项准备工作,切忌在同一段时间里开开停停,仪器频繁开启容易造成损坏,这是因为仪器在每次开启的时候,瞬时电流大大高于运行正常时的电流,瞬时的脉冲冲击,容易造成功率管灯丝断丝,碰极短路及过早老化等,因此使用中需要倍加注意,一旦开机就一气呵成,把要做的事做完,不要中途关停机。  ②就是平时没有样品可测时,最好保证每周开一次机,运行半个小时到一个小时,如果一年甚至更长时间从来不开机,基本上仪器就得大修。长时间没开机时,开机前一定要检查气、电等是否符合相关条件。  ③每次作完实验,一定要把样品、标准等溶液远离仪器,减少挥发对仪器的腐蚀。  ④使用循环水冷的仪器,一定要用蒸馏水,防止结垢。  在日常工作中,从自动化来讲,ICP-AES是最成熟的,可由技术不熟练的人员来应用ICP-AES专家制定的方法进行工作。分析速度取决于是采用全谱直读型还是单道扫描型,每个样品所需的时间为2或6分钟,全谱直读型较快,一般为2分钟测定一个样品。所以,对于实验室来说,选择ICP-AES有利于提高实验室效率,在对其的维护保养上,希望本文能给你带来一些帮助和参考!

厂商

2018.10.17

亚沸蒸馏酸纯化器在ICP-MS实验分析中的应用

  酸蒸馏器广泛应用于金属痕量分析领域美国SavillexDST-1000酸纯化器通过亚沸蒸馏过程提取高纯酸,并广泛应用于金属痕量分析领域。    DST-1000.外观设计精巧,占地面积小,可置于通风厨中工作并实现无人看管,这使操作更加简单,安全。    DST-1000可以一次纯化1L原酸,并可将1ppb级金属元素原酸转换成10ppt级高纯酸,由此为金属痕属元素分析实验室节约了巨大成本。    DST-1000可蒸馏硝酸,盐酸和氢氟酸,并能在约12小时内蒸馏出500mL高纯酸。对于高纯酸需求量多的实验室,可以选用DST-4000。    酸蒸馏器操作要点:    高纯酸的产酸速率与蒸酸温度有关。高档位温度的产酸速率约为40ml/hr。蒸酸温度只影响产酸速率,不影响产酸纯度。加热元件加热酸的温度远低于酸的沸点,因此不会产生酸蒸气夹带杂质污染高纯酸的现象。较低的zui高温限制值及内置的保险丝,确保蒸馏过程的安全。在无人值守时使用酸蒸馏器长期蒸酸时,可使用低档位温度设置。在需要取用高纯酸时,可随时停止蒸馏。当置酸室内剩余酸的体积约为50-100ml时,可手动关掉加热单元。冷却后,将剩余的酸排到废液桶内。    酸蒸馏器是制备高纯试剂和高纯水的仪器,它具有技术先进,结构合理,安装简单,操作方便,维修简便。酸蒸馏器是利用加热套热辐射原理,保持液体温度低于沸点温度蒸发冷凝从而制备高纯水和高纯试剂,在进行测定(原子吸收光谱、气相色谱、电感耦合等离子发射光谱ICP-MS等)痕量元素及微量有机物时,是不可或缺的配套仪器设备。

厂商

2018.10.17

诚驿科技携LabAnalyzer254亮相汞污染及监测技术研讨会!

2018年10月15日第四届汞污染防治及监测技术研讨会在北京圆山大酒店成功召开,作为国内专注于重金属汞污染防治、监测技术行业的品牌展会,每年都会吸引众多业内专家学者前来,本次与会人数100有余,业内专家带来精彩报告,会议上掌声不断。 北京诚驿恒仪科技有限公司携LabAnalyzer254亮相展会,Lab254自上市以来凭其过硬的产品质量、高稳定性、维护方便等特点,广受业内人士青睐,现已拥有国内多家用户。 LabAnalyzer254自动液体汞含量分析仪专为有大量汞金属分析需求的行业和实验室而设计,可满足液体或者消解后样品中汞含量检测。实验室使用,检测后排放样品带硫化去汞装置,不污染实验室环境,为工作人员安全提供保障。得益于其高水平的检测系统和数据精确可靠性,广泛应用于地质、食品、石油化工、工厂烟囱排放监测等领域。Mercury Instruments Analytical Technologies成立于1997年,总部位于德国慕尼黑的卡尔菲尔德,致力于制造全球领先的汞分析仪,现已在全球分析市场上占有重要的地位。MI的设备,如烟囱监测仪、环境空气监测仪、实验室汞分析仪等均适用于国际、欧盟以及美国的产品标准和相关法规。 诚驿科技一直专注于仪器监测与分析、智能科技产品的推广及应用,公司一向秉承认真严谨,服务至上的原则,以优质专业的快捷服务,享誉高校科研以及环保、地质地矿、化工等行业。旨在为国内用户提供高质量的技术和解决方案。

厂商

2018.10.17

国家标准委征求《啤酒》等13项食品国标 涵高效液相等方法

    近日,国家标准化管理委员会公开征求《啤酒》、《葡萄酒、果酒通用分析方法》、《结晶果糖、固体果葡糖》、《酶制剂分类导则》、等13项食品及相关产品领域国家标准(报批稿)意见,涵盖高效液相色谱等检测方法,原文如下:关于征求《啤酒》等13项食品及相关产品领域国家标准(报批稿)意见的通知  各有关单位及个人:  我委拟批准发布《啤酒》等13项食品及相关产品领域国家标准(标准文本见附件),现公开征求意见。请各有关单位或个人于11月20日前将《意见反馈表》反馈我单位,逾期视为无意见。   附件:  《啤酒》(报批稿).pdf  《葡萄酒、果酒通用分析方法》(报批稿).pdf  《低聚果糖》(报批稿).pdf  《结晶果糖、固体果葡糖》(报批稿).pdf  《菊粉》(报批稿).pdf  《酶制剂分类导则》(报批稿).pdf  《干紫菜》(报批稿).pdf  《蜜饯通则》(报批稿).pdf  《厨用刀具》(报批稿).pdf  《纸杯(碗)成型机》(报批稿).pdf  《无菌纸基复合材料灌装成型包装机通用技术条件》(报批稿).pdf  《玲珑日用瓷器》(报批稿).pdf  《铁质不粘锅》(报批稿).pdf

厂商

2018.10.16

测汞仪常见故障解决小妙招

  不管是什么机器、仪器之类的产品,有时候会在无意间出现一些小故障,阻碍到我们的正常工作,而问题是不能避免的,但是可以从以下的小妙招中学到一点小技能,会更方便一点工作中的操作问题。   l、开机后无显示:没有装保险丝。   2、汞灯指示灯不亮,可重新开机。   3、灵敏度偏低:①流量不对或汞标样失效。   ②管道漏气。   ③显示调节逆时针旋到底。   4、灵敏度偏高:①流量不对。   ②管道污染。   ③显示调节顺时针旋到底。   5、重现性差:操作不当,管道污染,干燥剂问题,管道漏气。   6、仪器所接电源的地线应接地良好。   7、仪器测试场所不应有强电磁干扰或烟雾存在。   8、仪器存放环境应干燥,并定期通电。

厂商

2018.10.16

电子天平的选择及使用手册

  随着科学技术的发展,电子衡器越来越趋于自动化和智能化。由于许多用户没有恰当选择和使用电子天平,使得电子天平与实际要求不符合,影响正常检测工作,并造成浪费。本文结合电子天平的技术特点,对电子天平的选择及使用要求做简单介绍。  准确度要求  选择电子天平,首先应从相应天平的分度值是否符合称量的准确度要求考虑。  在选择电子天平的分度值时,应参考厂家给出的检定分度值e ,而不是实际分度值d 。  目前国家计量检定规程规定,判断天平是否合格,是以检定分度值来衡量,允许误差范围是(0.5~1.5)e。有刻度、有辅助装置的天平(如电子天平),检定分度值由生产厂家根据准确度级别表和以下规则选定:d < e ≤ 10d 。  尤其注意的是,目前市场上许多电子秤依据电子天平标准进行生产e=2d 或e=5d 甚至e=10d,并不符合国家计量检定规程电子秤e = d的要求,购买时更应了解清楚。  秤量要求  选择电子天平还要看天平的量程是否满足秤量要求,一般取常用最大载荷加上20%左右保险系数即可。量程并不是越大越好,因为同样精度的天平,量程越大,对天平传感器和辅助设备的要求越高,且价格也越贵。  准确度级别的选择  电子天平的准确度级别是按照天平检定分度值e 和检定标尺分度数 n ,划分成四个准确度级别(n=Max/e)。表格如下:  电子天平使用环境要求  电子天平使用方便,多数电子天平都有校准功能,所以对环境要求不是非常荷刻,满足以下条件即可:  1.工作室内温度应恒定,以20℃左右为佳,并尽量避免阳光直射到天平。  2.工作室内湿度应在(45~75)%内为佳。  3.天平周围无影响天平性能的振动和气流存在。  4.天平应当远离热源和磁场。  5.工作台要牢固水平。  6.工作室内应清洁干净,无腐蚀气体影响。  电子天平使用注意事项  1.电子天平外接电源选择应与当地电压一致,如放在220V档或者110V档。  2.初次安装天平或搬运天平应注意把天平运输保护部件拆下或安装上。(有些天平无此装置)。  3.天平主机及各配件安装完毕后,注意观察各部件是否到位。尤其是防尘板、防风环不能和天平有靠擦。否则会影响天平示值准确。  4.调节天平水平调整脚,将天平调到水平状态。(可观察天平上的水平装置)  5.根据说明书要求接通电源预热天平至少半个小时或更长时间。  6.根据说明书方法启动天平校准程序(自校或外校),定期对天平进行校准。(电子天平会因温度等条件改变而失去原有准确度,故需要经常进行校准,尤其在新安装或一段时间不用后)  7.操作天平时不可过载使用,以免损坏天平。  电子天平常见故障及处理方法  分享一下电子天平的常见故障故障处理方法,希望可以帮助到大家。  01 称重物移除后无法回到零点  检查传感器输出信号值是否于标准内(A/D的总放大码/使用内码范围/底码范围),如果信号值未在标准内,调节传感器可调电阻,将信号值调到标准内,如无法补偿请检查传感器是否有问题,在保证传感器输出正常(秤体稳定)情况下,锁定仪表故障,一般是放大电路及A/D转换电路发生问题,再依据电路原理逐一判断测试分析,以最终解决问题。  02 显示乱码  将原来的显示电路拆下,换一个正常的显示电路看是否正常。如果显示正常说明显示电路出现问题,如果不正常,应检查驱动电路是否有故障,最后检查处理器显示输出的引脚是否在合理的输出范围。  03 称量不准确的故障分析  观测内码值是否稳定,传感器各部位是否有摩擦现象,稳压电源是否稳定,运放电路是否正常,使用砝码测试秤盘四脚秤量是否平均。依照说明书指示,进一步做仪表局部分析或重量校正。  04 无法开机的故障  先确定非保险丝、电源开关、电源线及电压切换开关的问题所造成,检查变压器有无交流电压输入及交流电输出。如果仪表带有电池将电池取下再以AC电源开机,以了解是否为电池电压不足所造成。其次再检测整流电路、稳压电路以及显示驱动电路是否出现异常,如果这些都没问题检查处理器及附属电路是否烧坏。  05 按键不好用  先更换新按键进行测试,如新按键功能正常时,则可判定为按键接触不良,测量按键与CPU之间线路有无断路、虚焊。检查按键支座是否有接触不良现象。测量按键与CPU回路上的二极管、电阻等是否有短路、断路的情况。  06 指针跳动  当横梁被托起时,如支点刀的刀口与刀垫间前后距离不等,则开启天平时,会产生指针跳动,可把横托架左臂前的螺丝放松,然后用手捻调节小支柱的高度,直至指针不再跳动。  07 无法称到满载  和无法回零的情况差不多,多数可能由于小信号输入范围发生了改变。按照无法回零的方法检测,如果找不出问题,就先检测供电电源、A/D电路是否正常,再检测传感器输出。

厂商

2018.10.16

室内挥发性有机物VOCs的危害

  室内挥发性有机物VOCs的危害有以下几点:   1. VOCs引起的一般毒性效应   VOCs的毒性主要表现在可能引起机体免疫水平失调,影响中枢神经系统功能,出现头晕、头痛、嗜睡、无力、胸闷等症状,还影响消化系统,出现食欲不振,恶心等,严重时可损伤肝脏和造血系统,出现变态反应。VOCs是造成不良建筑物综合症的主要原因之一。   VOCs还可能具有胚胎毒性。据调查网在怀孕期问接触VOCs的职业妇女。其胎儿畸形的发生率是非暴露组的8~13倍;胎儿流产率增加25%;低出生体重儿的发生率是控制人群的5倍还多。更严重的是目前经过专家研究论证确认,室内VOCs中有20多种为致癌物或致突变物质嘲。   2. 单一化合物的毒性效应   VOCs是许多气体的混合物,其中每种化合物对人体的影响都具有其特征性效应。现就危害重的5种化合物加以论述。   (1).苯和苯系物   苯是一种无色、具有特殊芳香气味的液体,具有易挥发、易燃的特点。经常接触苯,皮肤可因脱脂而变干燥。脱屑,有的出现过敏性湿疹。长期吸人苯能导致再生障碍性贫血。   苯主要来自建筑装饰中大量使用的化工原料,如涂料。在涂料的成膜和固化过程中,其中所含有的甲醛、苯类等可挥发成分会从涂料中释放,造成污染。苯和苯系物主要来自于室内装修和家具中的涂料、油漆和黏合剂,由于材料选择不当或者施工工艺不合理。使新房内的苯和苯系物严重超标。   室内空气里的苯和苯系物污染,对人体的造血机能危害极大,是诱发新生儿再生障碍性贫血和白血病的主要原因。   (2).甲醛   目前,甲醛是制造合成树脂、油漆、塑料以及人造纤维的原料,是人造板工业中制造脲醛树脂胶、三聚氰氨树脂胶、聚缩醛树脂、戊四醇醛树脂和酚醛树脂胶的重要原料。室内装修或家具中使用的材料.诸如胶合板、细木工板、中密度纤维板、刨花板、贴墙布、壁纸、化纤地毯、油漆、涂料、粘合剂等等均不同程度地含有甲醛或可水解为甲醛的化学物质。这些残留的或分解出来的甲醛会逐渐向周围环境中释放,zui长释放期可达十几年。甲醛是无色刺激性气体,对眼、鼻、喉、上呼吸道和皮肤均可产生明显的刺激作用。   空气中的甲醛低于1.3rIlg·m{时,刺激作用较微,随着浓度增加,刺激作用增强,高于65 mg·m-3,引起肺炎、肺水肿等损害,甚至造成死亡。动物实验已经证实甲醛的致癌性,流行病学也发现长期接触高浓度甲醛的人,可引起鼻腔、口、咽、喉部癌、消化系统癌、肺癌、皮肤癌和白血病。国际癌症研究中心已建议将甲醛作为人类可疑致癌物对待。   人们通常接触的是低浓度甲醛,因此更关心低浓度甲醛引起的健康效应。长期接触低浓度甲醛(0.0017~O.068 mg·m),虽然引起的症状强度较弱,但症状与甲醛产生的急性效应是一致的。   (3).苯乙烯   苯乙烯主要来源于溶剂,油漆,污渍,清漆,传真机,电脑终端,打印机,混合物,防漏橡胶,防水胶,木嵌板,地毯,地板黏合剂,污溃鲂织洗涤剂,泡沫塑料,塑料,去污剂。苯乙烯是重要的工业生产原料和溶剂,主要经呼吸道吸入蒸汽而引起中毒。也可经皮肤和消化道吸收。其在体内经微粒体混合功能氧化酶的转化产生的中间氧化产物具有许多生物毒性。苯乙烯的化学结构与致突变剂和致癌剂氯乙烯相似,经代谢活化也是一种潜在的突变剂。其体内中间代谢产物苯乙烯7—8一环氧化物则为强的直接致突变剂。   长期接触苯乙烯可产生神经系统、视觉、消化系统、心血管系统等损害。   (4).四氯乙烯   四氯乙烯来源于干洗织品,装饰家具覆盖物.污流纺织洗涤剂,传真机,计算机终端以及打印机。四氯乙烯又名全氯乙烯(PCE),是无色易挥发液体,广泛用于干洗业和工业去污剂等,因此PCE是室内VOCs的重要污染物。   PCE主要经呼吸道和皮肤吸收,在肝脏经细胞色素P450酶系统氧化代谢生成二氯乙酸(1℃A),同时还可经谷胱甘肽一S一转移酶系统,与谷胱甘肽结合生成硫醇尿酸等,可引起接触者神经、肾脏和肝脏等多器官系统损伤,致肝癌、肾癌的发生。   (5).二甲苯   二甲苯属于芳香烃类。人在短时间内吸入高浓度的甲苯或二甲苯,会出现中枢神经麻醉的症状,轻者头晕、恶心、胸闷、乏力.严重的会出现昏迷甚至因呼吸循环衰竭而死亡。主要来自于合成纤维、塑料、燃料、橡胶等,隐藏在油漆、各种涂料的添加剂以及各种胶粘剂、防水材料中,还可来自燃料和烟叶的燃烧。二甲苯来源于溶剂、杀虫剂、聚酯纤维、胶带、粘合剂、墙纸、油漆、湿处理影印机、压板制成品和地毯等。   二甲苯可经呼吸道、皮肤及消化道吸收.其蒸气经呼吸道进入人体,有部分经呼吸道排出。吸收的二甲苯在体内分布以脂肪组织和肾上腺中zui多。后依次为骨髓、脑、血液、肾和肝。

厂商

2018.10.11

食品安全快速检测技术大全

  快速检测技术广泛用于食品安全快速检测,临床检验、检验检疫、毒pin检验等公共领域。食品安全快速检测是指对食品利用便携式分析仪器及配套试剂快速得到检测结果的一种检测方式。  1、食品安全问题主要有害污染物:  (1)农药,化肥:有机磷,有机氯,硝酸盐  (2)兽药:兴奋ji,镇静剂,抗生素  (3)重金属离子:镉,铅,汞,铬,砷,钼  (4)生物毒素:黄qu霉毒素,呕吐毒素,肉毒素  (5)致病菌:大肠杆菌,沙门氏菌,葡萄球菌等  2、 快速检测含义:  包括样品制备在内,能够在短时间内出据检测结果的行为称之为快速检测。三方面体现(1)实验准备要简化(2)样品经简单前处理后即可测试,后采用先进快速的样品处理方式(3)分析方法简单,快速,准确  3、食品安全快速检测分类:  1)按分析地点:现场快速检测,实验室快速检测  2)按定性定量:定性快速筛选检验,半定量检验,全量检验  4、农药残留检测方法:  (一)生物法:  (1)生物化学测定法(酶抑制率法,速测卡法)  (2)分子生物学方法(如:ELISA)  (3)活体生物测定法(发光细菌,大型水藻,家蝇)  (4)生物传感器法  (二)化学方法 酶抑制法 酶联免疫检测法  5、免疫定义:  机体识别自身非自身,并清除非自身大分子物质,从而保持机体内外环境平衡的一种生理反应。  6、 免疫基本特征:  识别自身和非自身,特异性,免疫记忆  7、免疫的基本功能:  抵抗感染,自身稳定,免疫监视  8、 抗原定义:  能刺激机体产生免疫答应,并且能与答应物(抗体或效应性淋巴细胞)特异性结合的物质,称为抗原(Antigen,Ag)  9、 抗原具有抗原性:  免疫原性,反应原性  10、抗原分类(按抗原性质):  完全抗原,半抗原(某些药物)  11、抗原表位,又称抗原决定簇:  是位于抗原物质分子表面或者其他部位的具有一定组成和结构的特殊化学基团。  12、抗体:  有抗原刺激动物的免疫系统后,由免疫系统B细胞增殖分化为浆细胞所产生,分泌的一类能与相应抗原特异性结合的具有免疫功能的球蛋白。并非所有的免疫球蛋白都是抗体  13、抗体基本结构:  a.重链H 2条 轻链L 2条  b.恒定区C区 可变区V区  c.铰链区d.Fab抗原结合片段 Fc:可结晶片段  14、ELISA的原理:  (1)抗原或抗体能以物理性吸附于固相载体表面,可能是蛋白和聚苯乙烯表面间的疏水性部分相互吸附,并保持其免疫学活性;  (2)抗原或抗体可通过共价键与酶连接形成酶结合物,而此种酶结合物仍能保持其免疫学和酶学活性;  (3)酶结合物与相应抗原或抗体结合后,可根据加入底物的颜色反应来判定是否有免疫反应的存在,而且颜色反应的深浅是与标准中相应抗原或抗体的量成一定比例的,因此,可以按底物显色的程度显示实验结果。  15、ESISA的类型:  (1)双抗夹心法(测微生物)  (2)间接法测抗体  (3)竞争法测抗原(化肥农药)  16、双抗体夹心法基本原理:  利用连接于固相载体上的抗体和酶标抗体分别与样品中被检测抗原分子上两个抗原决定簇结合,形成固相抗体-抗原-酶标抗体免疫复合物,由于反应系统中固相抗体和酶标抗体的量相对于待测抗原是过量的,因此复合物的形成量与待测抗原的含量成正比(在方法可检测范圈内),测定复合物中的酶作用于加入的底物后生成的有色物质量(OD值) ,即可确定待测抗原含量.  17、间接法测抗体基本原理:  将抗原连接到固相载体上,样品中待测抗体与之结合成固相抗原-受检抗体复合物,再用酶标二抗(针对案检抗体的抗体,如羊抗人ICG抗体)与固相免疫复合物中的抗体结合,形成固相杭原-受检抗体-酶栝二抗复合物,测定加底物后的显色程度,测定待测抗体含量.  18、竞争法测抗原基本原理:  首先将特异性抗体吸附于固相载体表面(包被),经洗涤后分成两组:一组加酶标记抗原和被测抗原的混合液,而另一组只加酶标记抗原,标本中的抗原和一定量的酶标抗原竞争与固相抗体结会(标本中抗原量含量愈多,结含在固相上的酶抗原愈少,最后的显色也愈浅),再经孵育洗涤后加底物显色,两组底物降解量之差,即为我们所要测定的未知抗原的量.  19、农药残留生物化学测定方法:  (1)农药速测卡法  (2)农药残留分光光度法(抑制率法)  20、速测卡法检测原理:  胆碱醋酶可催化靛酚乙酸酮(红色)水解为乙酸与靛酚(蓝色)有机磷或氨基甲酸脂类农药对胆碱酯酶有抑制作用,使催化、水解,变色的过程发生改变,由此判断样品中是否含有过量有机磷或氨基甲酸酯类农药的残留。  分析步骤:  A.提取:干净的菜样品---剪碎(1CM左右见方)---取5g于带盖瓶中---加纯净水或缓冲溶液(l0mL)---震摇(50次)---静置(2min以上)。  B.预反应:取一片速测卡,用白色药片沾取提取液,放置10min以上进行预反应,有条件时在37℃恒温装放置中10min.预反应后的药片表面必须保持湿润。  C.反应:将速测卡对折,用手捏3min或用恒温装置恒温3min,使红色药片与白色药片叠合发生反应 d.每批测定应设一个纯净水或缓冲液的空白对照卡。  21、速测卡法结果判定:  与空白对合奏阿卡比较,白色药片不变色或略有浅蓝色均为阳性结果,不变蓝为阳性结果,说明农药残留量较高,显浅蓝色为弱阳性结果,说明农药残留两相对较低。白色药片变为天蓝色或空白对照卡片相同,为阴性结果。对阳性结果的样品,可用其他分析方法进一步确定具体农药品种和含量。  22、农药残留分光光度计法(抑制率法)原理:  一定条件下,有机磷和氨基甲酸酯类农药对胆碱酶正常功能有抑制作用,其抑制率与农药的浓度成正相关.,正常情况下,酶催化乙酰胆碱水解,其水解产物与显色剂反应,产生黄色物质,用分光光度计在412nm处测定发光度随时间的变化值,计算出抑制率,通过抑制率可以判断出样品中是否有有机磷确和氨基甲酸酯类农药的存在。  23、酶传感器:  它将活性物质酶覆盖在电极表面,酶与被测的有机物或无机物反应,形成一种能被电极响应的物质。  24、生物传感器在食品分析中的应用:  (1)食品成分分析  (2)食品添加剂的分析  (3)农药和抗生素残留量分析  (4)微生物和生物毒素的检验  (5)食品限度的检验  25、蔬菜中硝酸盐含量的快速测定原理:  将NO3-还原N02-后,芳香胺与亚硝酸根离子发生重氮化反应,生成重氮盐,重氮盐再与芳香族化合物发生偶联反应,生成一种红颜色偶氮化合物(偶氮染料),其颜色强度与硝酸盐含量呈正比,通过试纸由无色变为红色,变色的试纸放入基于光学传感器原理的硝酸盐检测仪中比色测定硝酸盐含量。 仪器与材料:硝酸盐试纸. 快速测定仪  26、硝酸盐速测管  (1)适用范围:乳品、饮用水、蔬菜等食物中硝酸盐的快速检测。  (2)方法原理:按照国标GB/T5009. 33盐酸蔡乙二胺显色原理,在格林试剂中加入硝酸盐转化剂,并将其做成速测管,速测管中的试剂可将N03-还原为N02-后,再与芳香胺(氨基苯磺酸) 发生重氮反应,生成重氮盐,重氮盐再与芳香族化合物( A-祭胺)发生偶联反应,生成红色偶氮化合物(又叫偶氮染料),颜色深浅与硝酸盐含量成正比,与标准色卡比对,确定硝酸盐含量.  27、兽药残留定义:  动物产品的任何可食部分所含兽药的母体化合物及其代谢物,以及与兽药有关的杂质残留。  28、兽药残留快速检测微生物法检测原理:  检测管中的培养基预先接种了嗜热脂肪芽孢杆菌,并含有细菌生长所需的营养以及pH指示剂。只需加入100ul样品于检测管中。  将含有样品的检测管放入64±1℃水浴中加热一段时间。奶或奶制品在培养基中迅速扩散,若该样品中不含有抗生素(或者抗生素低于检测值),嗜热脂肪芽孢杆菌将在培养基中生长,葡萄糖呗分解后所产生的酸会改变Ph指示剂颜色,由紫色变为黄色。相反若高于检测限的抑菌剂,则嗜热脂肪芽孢杆菌不会生长,指示剂颜色不变 仍为紫色。  黄色表明该样品没有抗生素残留或抗生素残留的含量低于试剂盒的检测限(阴性) 紫色表明该样品中含有抗生素残留 且浓度高于试剂盒的检测限(阳性) 如果介于黄色紫色之间,则说明该样品可能不含抗生素残留或者抗生素残留的含量低于试剂盒的检测限(部分阳性)  29、胶体金概念:  氯金酸在还原剂作用下,可聚合成一定大小的金颗粒,形成带负电的疏水胶溶液。由于静电作用而成为稳定的胶体状态  30、免疫金标记技术原理:  胶体金颗粒表面负电荷与蛋白质的正电荷基团因静电吸附而形成牢固结合。胶体金对蛋白质有很强的吸附功能,蛋白质等高分子被吸附到胶体金颗粒表面,无共价键形成,标记后大分子物质活性不发生改变。金颗粒具有高电子密度的特性。金标蛋白在相应的配体处大量聚集时,在显微镜下可见黑褐色颗粒或肉眼可见红色或粉红色斑点。  31、放射免疫测定法原理:  放射免疫RIA:以标记抗原与反应系统中未标记抗原竞争结合特异性抗体来测定的待检样品中抗原量。 免疫放射IRMA:以过量标记抗体与抗原非竞争结合,采用固相免疫吸附载体分离游离和结合标记抗体。 其他:放射受体分析RRA;放射配体结合分析RBA  32、RRA检测食品中抗生素残留的原理:  1、每类抗生素族均是在一个母环基础上用不同功能团修饰星辰特定功效的抗生素。  2、微生物细胞表面都存在着能与各种抗生素功能基团结合的特异受点。结合反应是在标记的靶参考物与无标记的待测药物之间竞争进行的。  33、竞争性检测原理:  使用一种具有吸附所有β-内酰胺药物的特殊受体细菌,该细菌同14c标记的特定量青霉素G一起加入牛奶样品。牛奶样品中的任何一直β-内酰胺类均能和这种特殊标记的青霉素G竞争性地与细菌cell上的特异性受体结合。  34、毒shu强快速检测原理:  毒shu强可以与二羟基萘二磺酸发生反应变为浅紫红色,检出限1ug,最低检出浓度2ug/ml 浓度高时变为深紫红色。  35、鼠药氟yi酰胺的快速检测速测管法检测原理:  氟yi酰胺与奈氏试剂反应后会出现黄红或棕色沉淀。最低检出浓度10ug/ml  36、敌鼠钠盐的快速检测原理:  敌鼠化学名为2-(二苯基乙酰胺)-2,3二氢-1,3-茚三酮,可与三氯化铁反应出现砖红色。  37、砷的快速检测原理:  三氧化er砷与锌粒和酸产生的新形态氢生成AsH3,其与氯化金相遇产生反应,可使氯化金硅胶柱变成紫红或灰紫色,在装有氯化金硅胶的柱中砷含量与变色的长度成正比,以次可达到半定量的目的  38、砷 锑 铋 汞 银化物的快速检测方法:  ‘雷因须氏法’  39、 亚硝酸盐的快速检测方法原理:  按国标盐酸萘乙二胺显色原理做成的速测管,与标准色卡对比定量  40、酒醇仪测定甲醇的检测原理:  在20℃时,不同浓度的乙醇具有固定的折光率,当甲醇存在时,折光率会随着甲醇浓度的增加而降低,下降值与甲醇的含量成正比。  按照这一现象而设计的酒醇含量速测仪,可快速显示出样品中酒醇含量。当这一含量与玻璃浮计测定出的酒醇含量出现差异时,其差值即为甲醇含量。在20°时可直接定量,在非20°时,采用于样品相当浓度的乙醇对照液进行对比定量。  41、水法水产品中甲醛的快速检测原理:  在碱性条件下,甲醛与简笨三酚反应后使溶液出现橙红色特征。由于此方法的灵敏程度较低,水产品本底存在的甲醛很难参与反应。当人为加入甲醛时,本方法可迅速检测出来。  42、变质肉类的快速检测原理:  畜禽肉变质后或病害肉,其肉体内的挥发性盐基氮、ph值以及过氧化物酶都会发生改变。测试酸碱度,可初步反映出其新鲜程度;测试挥发性盐基氮,可判断是否新鲜或腐烂;测试过氧化物酶,可初步判断是否是病害肉  43、牛乳中尿素的快速检测原理:  尿素能够阻断萘胺试剂反应,不会生成紫红色物资。由此证明乳品中含有尿素成分。检出限牛乳为浓度50mg/kg;乳粉浓度500mg/kg  44、乳品中淀粉和麦芽湖景的快速检测原理:  麦芽糊精或淀粉与组合碘试剂发生反应产生棕色、紫色或棕紫色化合物。  45、乳品中pro含量的快速检测原理:  考马斯亮蓝试剂在游离状态下呈红色,当他与pro结合后变成青色,其颜色深度与pro含量成正比。检测范围:液体样品为0.5g-20g/100g,固体样品为1g-40g/100g  46、米面粉中吊白块的快速检测方法:  甲醛 二氧化硫 原理:甲醛次硫酸氢钠在食物中分解成甲醛、次硫酸氢钠和so2.甲醛与AHMT试剂反应生成紫色化合物,检出限为0.05ug  47、水溶性非食用色素的快速检测原理:  水溶性非食用色素与脱脂羊毛染色后不易去除的原理对部分水溶性非食用色素进行检测。  48、味精谷氨酸钠的快速检测原理:  利用谷氨酸钠的两性作用,加入甲醛一固定谷氨酸钠的碱性,使羟基显示出酸性,用氢氧化钠标准溶液滴定,以指示剂显示为终点,得出样品中谷氨酸钠的含量。  49、黄qu霉毒素:  AF是一类化学结构类似的化合物,均为二氢呋喃环和香豆素的衍生物。目前已发现20多种。B1是最危险的致癌物 荧光特性 : 紫外线下 B1 B2 发蓝色荧光G1G2发绿色荧光。  50、 黄qu霉毒素AF的快速检测技术:  免疫亲和柱-荧光分光光度计法和免疫亲和柱-HPLC法  (1)分析原理:免疫亲和柱试用大剂量的黄qu霉毒素的单克隆抗体固化在水不溶性的载体上,然后装柱而成。试样中AF用一定比例的甲醇/水提取,提取液经过过滤稀释后,用免疫亲和柱净化,以甲醇将亲和柱上的黄qu霉毒素林洗下来,在淋洗液中加入溴溶液衍生,以提高测定灵敏度,然后用荧光分光光度计进行定量。也可以将甲醇-黄qu霉毒素淋洗液的一部分加入HPLC中,对黄qu霉毒素B1B2G1G2分别进行定量分析。  (2)ELISA法测定黄qu霉毒素B1 原理:将已知抗原吸附在固态载体表面,洗除未吸附抗原,加入一定量抗体与待测样品提取液的混合液,竞争培养后,在固相载体表面形成抗原抗体复合物,洗除多于抗体成分,然后加入酶标记对抗球蛋白的第二抗体结合物,与吸附在固体表面的抗原抗体复合物结合,再加入酶的底物。在酶催化下底物降解,产生有色物质,通过酶标检测仪测出酶底物的降解量。推出被测样品中抗原量。  抗体:抗黄qu霉毒素B1的特异性单克隆抗体或抗血清 包被抗原:黄B1与载体蛋白结合物 酶标二抗:羊抗鼠IgG与辣根过氧化酶结合物 3.微柱筛选法:原理:样品提取液通过由氧化铝与硅镁吸附剂组成的微柱层析管,杂质被氧化铝吸附,黄qu霉毒素被硅镁吸附剂吸附,在波长365nm紫外灯下显示蓝紫色荧光环,其荧光强度与黄qu霉毒素在一定的浓度范围内成正比例关系.若硅镁型吸附层未出现蓝紫色荧光,则样品为阴性(方法灵敏度为5~10ug/kg )。由于在微柱上不能分离黄qu霉毒素B1,B2,GI,G2,所以测得结果为总黄qu霉毒素含量。  51、 细菌毒素:  内毒素 外毒素 比较 :产生方式:内:细菌崩解后释放 外:合成分泌到菌体外 化学成分:内:脂多糖LPS 外:蛋白质  52、间接凝集试验定义:  将可溶性抗原或抗体吸附于一种与免疫无关的,适当大小的载体微利表面,再与相应抗体或可溶性抗原在适宜条件下相互作用 经一定时间后出现的肉眼可见的凝集现象。  53、食品中微生物快检方法:  1)基于微生物代谢特征的检测方法;  2)改良培养基法;  3)细菌直接计数法;  4)免疫学快速检测技术  5)分子生物学快速检测技术  6)自动化检测技术  7)生物传感器检测技术。  54、ATP生物发光法 检测原理:  荧光素+ATP+O2 (上:Mg2+)—→(下:荧光素酶)氧化型荧光素+AMP+PPI+H20  55、阻抗测定法原理:  当培养基中因微生物的代谢活动而发生化学改变时,阻抗也随着改变。  56、溶氧——电流法检测原理:  应用的是氧气电极法的原理。在测量开始时 氧气溶解在培养基中,随着细菌的生长和繁殖,这些溶解氧不断被消耗。DOX系统通过检测与溶解氧量成比例的电流值来计算所含菌落总数,大肠菌群值。  57、微量量热法:  是利用细菌生长时产生热量的原理设计而成,微生物在生长和代谢的过程中,能产生大量的代谢热。由于各种微生物的代谢产物热效应不同,因此可显示出特异性的热效应曲线图。在细菌生长过程中,用微量量热计测量产热量等热数据,经过计算机处理,绘制出以产热量对比时间组成的热曲线图,以此推断细菌存在的数量。  58、放射测量法:  利用细菌在代谢碳水化合物时产生CO2的原理,把微量的放射性标记引入葡萄糖或者其他糖分子中。细菌生长时,糖被利用并放出标记的CO2,将生成的放射性CO2从培养装置中导出,利用专用的测量仪来测定CO2量,放射量与细菌数成正比。  59、快速测试片法原理:  由上下两层组成,上层的薄膜上通过粘合剂结合了指示剂,并涂覆了冷水可溶性凝胶,下层的纸片上涂覆了改良的培养基,并印有方格以便于计数。它是一种与限制备好的培养基系统,以每系统1ML的加样量将样品直接加到薄膜中间,盖上含有胶凝剂和指示剂的覆盖膜,培养后细菌在双层膜之间生产,其代谢产物与显色物质作用并显色,即可直接计数。  60、显色培养基:  是一类利用微生物只身代谢产生的酶与相应显色底物反应显色的原理来检测微生物的新型培养基。这些相应的显示底物是由产色基团和微生物部分可代谢物质组成,在特异性酶的作用下,游离出产色基团显示一定颜色,直接观察菌落颜色即可对菌种作出鉴定。优点:将菌株分离,鉴定结合在一起,无需对菌株进行分离纯化和进一步生化鉴定,**节约样品的分析检测时间。  61、固相细胞计数spc原理:  可以在单个细胞水平对细菌进行快速检测。用特殊滤膜滤过样品后,存留在滤膜上的微生物用荧光素进行荧光染色,用落射荧光显微镜对每个萤光点进行直观地检测尤其对生长缓慢的微生物,检测用时短,明显优于传统平板计数法。  62、流式细胞仪的基本原理:  A2待测细胞被致成单细胞悬液,经特异性荧光染料染色后加入样品管中,在气体压力下进入流式细胞仪的流动室B 2流动室内充满鞘液,鞘液和细胞悬液组成的细胞液注一起自流动室喷嘴口**出来,进入测量区,与水平方向的激光光束垂直相交。C2被荧光染料染色的cell受到激烈激光照射后荧光,同时产生散射光,荧光强度和被测cell中cell成分与荧光燃料的结合程度有关,散射光强度一般与cell大小成正比,D2将cell发出的荧光信号和散射光新号通过荧光光电倍增管接受,积分放大反转化为电子信号输入电子接收仪,通过计算机将数据计算出来。多参数分析实现cell的定量分析,估计微生物大小形状和数量。  63、多聚酶链式反应PCR :  (1)PCR原理:在模板DNA、引物和4种脱氧单核苷酸存在的条件下依赖于耐高温的DNA聚合酶的酶促合成反应。以欲扩增的DNA做为模板,以和模板正链和负链末端互补的两种寡聚核苷酸做为引物,经过模板DNA变性、模板引物复性结合、并在DNA聚合酶作用下发生引物链延伸反应来合成新的模板DNA。模板DNA变性、引物结合(退火)、引物延伸合成DNA这三步构成一个PCR循环.每一循环的DNA产物经变性又成为下一个循环的模板DNA。这样,目的的DNA的数量将以2年次方-2n的形式累积,在2小时内可扩增30(n)个循环,DNA量达原来的上百万倍。  (2)PCR过程:1. 模板DNA的变性:模板DNA经加热至95℃左右一定时间后,DNA双链被解离为单链并游离于溶液中的过程;2. 模板DNA与引物的退火(复性):人工合成的一对引物在适合的温度下(通常50-65℃)分别与模板DNA需要扩增区域的两翼进行准确配对结合的过程;3. 引物的延伸:在适当的温度下(通常70~75℃),以三磷酸脱氧核糖核苷(dNTP)为反应原料,DNA模板--引物结合物在TaqDNA聚合酶的作用下,单链核苷酸从引物的3’末端掺入,沿靶序列模板,按碱基配对与半保留复制原理,合成一条新的与模板DNA链互补的半保留复制链。  重复循环变性--退火--延伸三过程,就可获得更多的“半保留复制链”,而且这种新链又可成为下次循环的模板.每完成一个循环需2一4分钟,在一个由计算机控制的循环加热器上经过三十个循环,就可以把原来的样品精确地扩增了2的30次方倍.PCR特点:快速,准确,安全检测病原体。

厂商

2018.10.11

GPC凝胶色谱工作原理及操作手册

  在对各类食品、农产品、水产品中的农残、半挥发性有机物分析时,在有机样品萃取物中一般会含有大分子物质,如果不去除这些物质,则导致色谱柱分离效率降低、进样口和色谱柱的使用寿命缩短,进而影响数据分析结。因此,在农残、半挥发性有机物的样品分析前必须进行有效的净化前处理。而传统的前处理过程耗时长、溶剂消耗量大,所以,GPC大规模应用是一个必然趋势。  凝胶渗透色谱GPC(Gel Permeation Chromatography)也称作体积排斥色谱[SEC(Size Exclusion Chromatography)]是用溶剂作流动相,流经多孔填料(如多孔硅胶或多孔树脂) 作为分离介质的液相色谱法。  GPC是液相色谱的一个分支,其分离部件是一个以多孔性凝胶作为载体的色谱柱,凝胶的表面与内部含有大量彼此贯穿的大小不等的空洞。GPC仪的组成:泵系统、(自动)进样系统、凝胶色谱柱、检测系统和数据采集与处理系统。  GPC的分离机理通常用“空间排斥效应”解释。  图1分离原理简图  使用外力使含有样品的流动相(气体、液体或超临界流体)通过一固定于柱或平板上、与流动相互不相溶的固定相表面。样品中各组份在两相中进行不同程度的作用。与固定相作用强的组份随流动相流出的速度慢,反之,与固定相作用弱的组份随流动相流出的速度快。由于流出的速度的差异,使得混合组份最终形成各个单组份的“带(band)”或“区(zone)”,对依次流出的各个单组份物质可分别进行定性、定量分析。  操作指南  谱图的表示方法:柱后流出物浓度随保留值的变化  提供的信息:高聚物的平均分子量及其分布。根据所用凝胶的性质,可以分为使用水溶液的凝胶过滤色谱法(GFC)和使用有机溶剂的凝胶渗透色谱法(GPC)。  只依据尺寸大小分离,大组分先被洗提出  色谱固定相是多孔性凝胶,只有直径小于孔径的组分可以进入凝胶孔道。大组分不能进入凝胶孔洞而被排阻,只能沿着凝胶粒子之间的空隙通过,因而最大的组分先被洗提出来。  直径小于孔径的组分进入凝胶孔道  小组分可进入大部分凝胶孔洞,在色谱柱中滞留时间长,会更慢被洗提出来。溶剂分子因体积最小,可进入所有凝胶孔洞,因而是最后从色谱柱中洗提出。这也是与其他色谱法最大的不同。  依据尺寸差异,样品组分分离  适用范围  凝胶过滤色谱适于分析水溶液中的多肽、蛋白质、生物酶等生物分子;凝胶渗透色谱主要用于高聚物(如聚乙烯、聚丙烯、聚苯乙烯、聚氯乙烯、聚甲基丙烯酸甲酯)的分子量测定。  为什么要用GPC方法  1.相对分子量分布(多分散性指数)对聚合物的性质有重要影响。  2.在相对分子质量分布(多分散性指数)成为人们关注的热点后,经典方法却不能同时测定聚合物的相对分子质量分布。凝胶渗透色谱(GPC)的应用改善了测试条件,并提供了可以同时测定聚合物的相对分子质量及其分布的方法,使其成为测定高分子相对分子质量及其分布最常用、快速和有效的技术。  常见问题解答  1.溶剂的选择?  能溶解多种聚合物;不能腐蚀仪器部件;与检测器相匹配。  2.把激光光散射与凝胶色谱仪联用?  在得到浓度谱图的同时,还可得到散射光强对淋出体积的谱图,从而计算出分子量分布曲线和整个试样的各种平均分子量。  3.样本的准备?  激光光散射实验中必须对样品严格除尘。溶液除尘是光散射成败的关键。首先是溶剂除尘,配置测试样品的溶剂应进行精馏,并经过0.2μm超滤膜过滤后方可使用。配好的溶液也要用0.2μm的超滤膜过滤。另外,测试中所用的器械,如:注射器等,使用前要用洗液浸泡,清水强力冲洗。  4.GPC色谱柱选择  (1)按照样品所溶解的溶剂来选择柱子所属系列  THF、LV仿、DMF  必须选择合适的溶剂来溶解聚合物  (2)按照样品分子量范围来选择柱子型号  样品分子量应该处在排阻极限和渗透极限范围内,并且应该处在校正曲线线性范围内  5.GPC 仪器对载体的要求  (1)良好的化学稳定性和热稳定性;  (2)有一定的机械强度  (3)不易变形;  (4)流动阻力小  (5)对试样没有吸附作用  (6)分离范围越大越好(取决于孔径分布)等  (7)载体的粒度愈小,愈均匀,堆积的愈紧密,色谱柱分离效率愈高。  6.进样体积  50-100uL之间(浓度在0.05%-0.5%之间)  7.GPC系统如何平衡  (1)安装色谱柱之前,用两通管连接管路,用流动相替换系统后换上GPC柱子。(注意溶剂互溶情况)  (2)RID平衡操作  分析开始前,用流动相冲洗检测器流路。  流动相流速1ml/min,切换到R Flow,使流动相通过检测池的样品池和参比池,冲洗20min左右。  然后切换R Flow 流路数次,将气泡赶出检测池。  关闭R Flow,等待基线平稳。  当Balance 值高于50,进行Balance 调整。  (3)色谱柱平衡  等溶剂峰出峰后在经过约一次分析时间后基线才能走平。

厂商

2018.10.10

< 1 ••• 9 10 11 12 13 ••• 27 > 前往 GO

北京诚驿恒仪科技有限公司

查看电话

沟通底价

提交后,商家将派代表为您专人服务

获取验证码

{{maxedution}}s后重新发送

获取多家报价,选型效率提升30%
提交留言
点击提交代表您同意 《用户服务协议》 《隐私政策》 且同意关注厂商展位
联系方式:

公司名称: 北京诚驿恒仪科技有限公司

公司地址: 北京市海淀区中关村东路18号财智国际大厦A座1102室 联系人: 廖经理 邮编: 100083 联系电话: 400-860-5168转1029

仪器信息网APP

展位手机站