通微 TriSep®-3000高效微流电动液相色谱仪
通微 TriSep®-3000高效微流电动液相色谱仪

¥50万 - 100万

10.0

通微

下载

TriSep®-3000高效微流电动液相色谱仪

--

美洲

  • 金牌
  • 第21年
  • 生产商
  • 营业执照已审核
核心参数

产地类别: 进口

仪器种类: 纳升级液相

应用场景: 专用型仪器

流速范围: 0.001~10.00mL/min

最大耐压: 40MPa

流量精度: <0.06%RSD

进样位数: 1.5mL(105个)、5mL(10个)

进样范围: 20nL、50nL

温控范围: 室温~60℃

波长范围: 190~700nm

采集频率: 100Hz

一.应用领域

广泛应用于蛋白质组学、生物医学、药物研究、环境保护、食品安全、手性化合物、教学科研等领域。


二.eHPLC双重分离机理

加压毛细管电色谱采用液相色谱固定相,依靠电渗流和液压推动流动相,使样品分子根据它们的色谱行为和电泳速率的不同而达到分析分离。具有液相色谱和毛细管电泳双重分离机理,使分离的选择性得到极大提高。对于复杂样品的分析能力远远超越单独使用HPLCCE。电渗流的塞型流型改善了样品分子在色谱柱内的流型和峰展宽,可获得远高于液相色谱的柱效。


.eHPLC特点

三高一快

优越的分离机理使用户尽享高柱效、高分辨率、高选择性及快速分离的效果!

梯度洗脱

先进的微流控制系统显著降低了体系的死体积,可实现高压梯度洗脱!

定量进样

专利的阀进样技术,大幅度提升进样的准确性和重复性。

微流化,环境友好

毛细管柱内流量为0.2-1 μL/min, 消耗溶剂和样品量是常规液相色谱的万分之一。

一机三用

根据客户需求,可实现加压毛细管电色谱、纳流液相色谱和普通液相色谱三种不同的用途。

模块设计,联用友好

独特的模块化设计,不同的组合方式,结合毛细管柱上检测技术,pCEC可与紫外检测器(UV、激光诱导荧光检测器(μLIF)、电化学检测器( μEC )及质谱( MS ),毛细管用蒸发光散射检测器(μELSD)等多种检测器联用。



四.毛细管柱上紫外可见光检测器

1.出色的信噪比

 我们运用经过改进的光学系统和高度排列整齐的数字滤光系统加强了检测器的信噪比。更优的波长精度及重现性、更宽的波长范围,大大提高了检测器的基本性能。

 

2.先进的功能

  双波长检测模式可以同时提供两个波长的谱图。全波长固定扫描模式则能提供样品的紫外/可见吸收图谱。此外,在检测器上我们还能设置完整的时间程序。

 

3.更方便的光源更换

 当需要更换光源时,您无须再进行光学系统校正。我们配备了长寿命的氘灯,并且系统还会自动记录下氘灯的使用时间供您查看。

 







  • 因为不同的药物对映体经常表现出明显不同的生物活性,因此对映体分离是药物分析中的一个重要目标。目前用于外消旋混合物手性分离的方法主要基于手性固定相(CSPs)。现在有几种CSPs可直接用于分离和测定药物对映体和外消旋体。特别是β-环糊精(β-CD)及其衍生物,因其具有特殊的分子结构,可增加额外的识别位点,最常用于不同色谱模式的对映体分离。β-CD作为手性固定相,已成功用于毛细管电色谱中对映体的分离检测。β-CD分离对映体主要有三种模式:开管柱毛细管电色谱、填充柱毛细管电色谱和整体柱毛细管电色谱。但是,到目前为止,尽管β-CD在反相和正相高效液相色谱系统下,已成功地引入手性分离领域,但其作为手性固定相用于高效微流电动液相色谱系统的研究却未见报道。因此,研究这种手性固定相的高效微流电动液相色谱技术是值得的。

    制药/生物制药 2020-04-26

  • 采用TriSep ®-3000高效微流电动液相色谱系统与ESI离子源质谱联用,系统的研究了电解质浓度和pH对ESI-MS信号强度的影响,施加电压和有机改性剂对肽分离的影响。比较了cHPLC 和eHPLC分离肽混合物的能力。为了评价本系统的可行性和可靠性,采用eHPLC-ESI-MS对细胞色素C胰蛋白酶酶解液和修饰蛋白的进行了分析。实验结果表明,基于eHPLC-ESI-MS系统,在梯度条件下实现肽的基线分离。并可完成修饰蛋白和细胞色素c胰蛋白酶解液的检测。

    生物产业 2019-12-06

  • 维生素是人和动物维持正常的生理功能而必需从食物中获得的一类微量有机物质。维生素是个庞大的家族,目前所知的维生素就有几十种,大致可分为脂溶性和水溶性两大类。脂溶性维生素主要包括VA、VD、VE和VK。目前,脂溶性维生素的检测方法有胶束电动色谱法、高效液相色谱法、薄层色谱法、荧光法、电色谱法等。其中,高效液相色谱法是应用最多、最广的方法,但同时测定脂溶性维生素(VA、VD、VE、VK)的文献报道较少,且常规液相色谱法的分离时间长,试剂样品耗费多。因此,建立一种更为简便、快速、经济的多组分脂溶性维生素分离检测的方法则成为必然趋势。 高效微流电动液相色谱(eHPLC)是近年发展起来的一种新兴微分离技术,同时具备高效液相色谱的高选择性和毛细管电泳的高柱效。其特征是电渗流和压力流同时驱动流动相,由于在流动相和固定相中分配系数的不同以及电泳淌度的差异,样品被快速、高效地分离。eHPLC系统结构简单,特点突出,通用性和稳定性好,并可与多种检测技术进行联用,目前已广泛应用于环境分析、药物分析、食品安全检测、生命科学等研究领域。

    制药/生物制药 2019-11-16

  • 维生素是人和动物维持正常的生理功能而必需从食物中获得的一类微量有机物质。维生素是个庞大的家族,目前所知的维生素就有几十种,大致可分为脂溶性和水溶性两大类。脂溶性维生素主要包括VA、VD、VE和VK。目前,脂溶性维生素的检测方法有胶束电动色谱法、高效液相色谱法、薄层色谱法、荧光法、电色谱法等。其中,高效液相色谱法是应用最多、最广的方法,但同时测定脂溶性维生素(VA、VD、VE、VK)的文献报道较少,且常规液相色谱法的分离时间长,试剂样品耗费多。因此,建立一种更为简便、快速、经济的多组分脂溶性维生素分离检测的方法则成为必然趋势。 高效微流电动液相色谱(eHPLC)是近年发展起来的一种新兴微分离技术,同时具备高效液相色谱的高选择性和毛细管电泳的高柱效。其特征是电渗流和压力流同时驱动流动相,由于在流动相和固定相中分配系数的不同以及电泳淌度的差异,样品被快速、高效地分离。eHPLC系统结构简单,特点突出,通用性和稳定性好,并可与多种检测技术进行联用,目前已广泛应用于环境分析、药物分析、食品安全检测、生命科学等研究领域。

    制药/生物制药 2019-03-18

  • 开发出SPE-eHPLC方法,为同时分离和测定蔬菜中杀虫剂所含的10种氨基甲酸酯类化合物,提供了一种快速和具有选择性的方法。在较适宜的条件下,10个氨基甲酸酯类化合物可通过等度洗脱,在20分钟内实现基线分离。与反相高效液相色谱法相比,该方法简单、省时、成本低。采用固相萃取法对复杂样品进行净化,10种氨基甲酸酯的检出限为0.05-1.6 mg/kg,8种蔬菜样品在不同浓度氨基甲酸酯下的平均回收率为51.3-109.2%。相对标准偏差小于11.4%。实际样品分析结果表明,该SPE-pCEC方法具有较高的选择性和灵敏度,可用于蔬菜中低浓度氨基甲酸酯类残留的分离和测定,为氨基甲酸酯直接测定提供了一种快速,经济的方法。

    食品/农产品 2019-12-26

  • 开发出SPE-eHPLC方法,为同时分离和测定蔬菜中杀虫剂所含的10种氨基甲酸酯类化合物,提供了一种快速和具有选择性的方法。在较适宜的条件下,10个氨基甲酸酯类化合物可通过等度洗脱,在20分钟内实现基线分离。与反相高效液相色谱法相比,该方法简单、省时、成本低。采用固相萃取法对复杂样品进行净化,10种氨基甲酸酯的检出限为0.05-1.6 mg/kg,8种蔬菜样品在不同浓度氨基甲酸酯下的平均回收率为51.3-109.2%。相对标准偏差小于11.4%。实际样品分析结果表明,该SPE-pCEC方法具有较高的选择性和灵敏度,可用于蔬菜中低浓度氨基甲酸酯类残留的分离和测定,为氨基甲酸酯直接测定提供了一种快速,经济的方法。

    食品/农产品 2019-12-26

  • 开发出SPE-eHPLC方法,为同时分离和测定蔬菜中杀虫剂所含的10种氨基甲酸酯类化合物,提供了一种快速和具有选择性的方法。在较适宜的条件下,10个氨基甲酸酯类化合物可通过等度洗脱,在20分钟内实现基线分离。与反相高效液相色谱法相比,该方法简单、省时、成本低。采用固相萃取法对复杂样品进行净化,10种氨基甲酸酯的检出限为0.05-1.6 mg/kg,8种蔬菜样品在不同浓度氨基甲酸酯下的平均回收率为51.3-109.2%。相对标准偏差小于11.4%。实际样品分析结果表明,该SPE-pCEC方法具有较高的选择性和灵敏度,可用于蔬菜中低浓度氨基甲酸酯类残留的分离和测定,为氨基甲酸酯直接测定提供了一种快速,经济的方法。

    食品/农产品 2019-12-26

  • 开发出SPE-eHPLC方法,为同时分离和测定蔬菜中杀虫剂所含的10种氨基甲酸酯类化合物,提供了一种快速和具有选择性的方法。在较适宜的条件下,10个氨基甲酸酯类化合物可通过等度洗脱,在20分钟内实现基线分离。与反相高效液相色谱法相比,该方法简单、省时、成本低。采用固相萃取法对复杂样品进行净化,10种氨基甲酸酯的检出限为0.05-1.6 mg/kg,8种蔬菜样品在不同浓度氨基甲酸酯下的平均回收率为51.3-109.2%。相对标准偏差小于11.4%。实际样品分析结果表明,该SPE-pCEC方法具有较高的选择性和灵敏度,可用于蔬菜中低浓度氨基甲酸酯类残留的分离和测定,为氨基甲酸酯直接测定提供了一种快速,经济的方法。

    食品/农产品 2019-12-26

  • 许多生物分子有具有特异性识别某种类型分子的基本特性。开发一种生产具有可识别特性的材料是非常重要的。分子印迹技术是一种简单、有效的制备聚合物基体的方法,其模板材料的选择性分子识别技术得到了人们的认可。分子印迹聚合物(MIPs)相对于生物分子的优点是成本低,并且具有良好的物理和化学稳定性。通过固相萃取、配体结合测定、传感器和色谱法可测定MIPs的识别特性。

    制药/生物制药 2020-04-26

  • 因为不同的药物对映体经常表现出明显不同的生物活性,因此对映体分离是药物分析中的一个重要目标。目前用于外消旋混合物手性分离的方法主要基于手性固定相(CSPs)。现在有几种CSPs可直接用于分离和测定药物对映体和外消旋体。特别是β-环糊精(β-CD)及其衍生物,因其具有特殊的分子结构,可增加额外的识别位点,最常用于不同色谱模式的对映体分离。β-CD作为手性固定相,已成功用于毛细管电色谱中对映体的分离检测。β-CD分离对映体主要有三种模式:开管柱毛细管电色谱、填充柱毛细管电色谱和整体柱毛细管电色谱。但是,到目前为止,尽管β-CD在反相和正相高效液相色谱系统下,已成功地引入手性分离领域,但其作为手性固定相用于高效微流电动液相色谱系统的研究却未见报道。因此,研究这种手性固定相的高效微流电动液相色谱技术是值得的。

    制药/生物制药 2020-04-26

  • 毛细管电色谱(CEC)结合了毛细管电泳(CE)和高效液相色谱(HPLC)的最佳特点:CE的分离效率高,高效液相色谱的多选择性和大样本容量。近年来,对映体的分离受到了广泛关注,许多HPLC中常见的手性固定相被用在CEC中,例如环糊精、纤维素、大环内酯类抗生素、阴离子交换型固定相和分子印迹聚合物等。然而,当在没有压力的情况下使用CEC时,特别是对于填充柱,仍然存在与气泡形成和柱干涸相关的问题和困难,在开管和整体柱中不会出现这个问题。熔融玻璃管壁似乎是形成气泡的重要因素。对于填充柱中出现的气泡和柱干涸的问题,可以通过高效微流电动液相色谱(eHPLC)系统解决,其流动相由压力流和电渗流(EOF)共同驱动。 在eHPLC系统中,可以在毛细管色谱柱的出口端和进口端施加一个大于1000 psi的压力,这样就可以避免在使用CEC模式时出现气泡和柱干涸等问题。同时,eHPLC系统中样品可通过旋转式注射器实现定量引入。另外,EOF可以与整个流动相的方向相同或相反,因此可以影响样品洗脱顺序。更重要的是EOF适用于梯度洗脱模式。因此,通过eHPLC系统,CEC的优势可以充分的实现。 我们选取一种大环内酯类抗生素-万古霉素作为手性固定相,建立了eHPLC系统分离检测手性药物的方法。

    制药/生物制药 2020-01-15

  • 我们使用相同的实验装置进行了cHPLC-ESI-MS和eHPLC-ESI-MS,从实验和理论两方面研究了eHPLC中电解质浓度和pH对ESI-MS信号强度的影响,还研究了施加电压和有机改性剂对肽分离的影响。

    制药/生物制药 2019-12-13

  • 为在分子水平上理解各种生化现象及严格监控此过程中所产生环境污染的必要性,需要对这类分析方法具有严格的要求。由于样品的复杂性以及样品中化合物含量低,因此分析技术必须具有良好的分离能力(高效率和高选择性)和良好的检测灵敏度。 高效微流电动液相色谱法(eHPLC) 是毛细管微分离体系的一种典型代表,采用压力流和电渗流双重驱动力,具有高柱效、高选择性、高分辨度、快速分离( 三高一快) 以及试剂消耗量少等优点。eHPLC联合激光诱导荧光(LIF)检测技术,可对美国分类的16种多环芳烃进行高效、高灵敏度的分析。

    环保 2019-07-11

  • 目前,手性农药的拆分方法主要有高效液相色谱法(HPLC) 和毛细管电色谱法(CEC)。迄今,还未见有对烯效唑、烯唑醇以及丙环唑等3 种手性三唑类农药同时拆分和分离的报道。然而,将小粒径色谱填料与高效微流电动液相色谱系统(eHPLC)技术相结合,利用C18 固定相的反相作用机理和手性添加剂手性选择机理,在12 min 内成功实现了3 种手性农药烯效唑、烯唑醇和丙环唑的同时拆分和分离,为手性三唑类农药的同时拆分和分离提供一个新的思路和方法。

    环保 2019-03-01

  • 高效微流电动液相色谱(eHPLC)是综合了毛细管高效液相色谱(cHPLC)和毛细管电泳(CE)的优势而发展起来的高效电动微分离色谱技术。eHPLC 技术在药物分析、手性拆分和生物样品分析等生命科学领域中具有巨大的应用前景。核壳填料因其柱效高、分离快、载样量大、反压低、耐用性好等优点,受到色谱研究者的广泛关注。但核壳型色谱填料在电色谱中的应用目前仍很少。Fanali 等预测核壳材料在eHPLC 分离模式中会有很好的表现。根据二氧化硅纳米球(KCC-1)的结构特点,再结合核壳结构本身反压和传质阻力小等优点,推测这种新型的核壳色谱填料在毛细管电色谱填充柱的应用中将具有良好的发展前景。

    环保 2018-12-10

  • 高效微流电动液相色谱(eHPLC)是综合了毛细管高效液相色谱(cHPLC)和毛细管电泳(CE)的优势而发展起来的高效电动微分离色谱技术。eHPLC 技术在药物分析、手性拆分和生物样品分析等生命科学领域中具有巨大的应用前景。核壳填料因其柱效高、分离快、载样量大、反压低、耐用性好等优点,受到色谱研究者的广泛关注。但核壳型色谱填料在电色谱中的应用目前仍很少。Fanali 等预测核壳材料在eHPLC 分离模式中会有很好的表现。根据二氧化硅纳米球(KCC-1)的结构特点,再结合核壳结构本身反压和传质阻力小等优点,推测这种新型的核壳色谱填料在毛细管电色谱填充柱的应用中将具有良好的发展前景。

    环保 2018-12-10

  • 采用TriSep ®-3000高效微流电动液相色谱系统与ESI离子源质谱联用,系统的研究了电解质浓度和pH对ESI-MS信号强度的影响,施加电压和有机改性剂对肽分离的影响。比较了cHPLC 和eHPLC分离肽混合物的能力。为了评价本系统的可行性和可靠性,采用eHPLC-ESI-MS对细胞色素C胰蛋白酶酶解液和修饰蛋白的进行了分析。 实验结果表明,基于eHPLC-ESI-MS系统,在梯度条件下实现肽的基线分离。并可完成修饰蛋白和细胞色素c胰蛋白酶解液的检测。

    生物产业 2020-06-04

  • 采用TriSep ®-3000高效微流电动液相色谱系统与ESI离子源质谱联用,系统的研究了电解质浓度和pH对ESI-MS信号强度的影响,施加电压和有机改性剂对肽分离的影响。比较了cHPLC 和eHPLC分离肽混合物的能力。为了评价本系统的可行性和可靠性,采用eHPLC-ESI-MS对细胞色素C胰蛋白酶酶解液和修饰蛋白的进行了分析。实验结果表明,基于eHPLC-ESI-MS系统,在梯度条件下实现肽的基线分离。并可完成修饰蛋白和细胞色素c胰蛋白酶解液的检测。

    生物产业 2019-12-06

  • 采用TriSep ®-3000高效微流电动液相色谱系统,配备ESI-MS检测器,通微 EP-100-20/30-3- C18色谱柱,通过在线富集,可以实现对低浓度蛋白质的检测。蛋白质标准品的检出限可提高20-100倍,此方法已成功应用于浓度为20 mg / mL的蛋白质的分析。结果表明我们提出的方法可能在蛋白质组学研究中发挥重要作用。

    生物产业 2019-11-14

售后服务承诺

保修期: 1年

是否可延长保修期:

现场技术咨询:

免费培训: 免费1次培训

免费仪器保养: 定期回访

保内维修承诺: 一年保修,终身维护

报修承诺: 24小时提供仪器的技术与故障咨询

问商家

通微液相色谱仪TriSep®-3000高效微流电动液相色谱仪的工作原理介绍

液相色谱仪TriSep®-3000高效微流电动液相色谱仪的使用方法?

通微TriSep®-3000高效微流电动液相色谱仪多少钱一台?

液相色谱仪TriSep®-3000高效微流电动液相色谱仪可以检测什么?

液相色谱仪TriSep®-3000高效微流电动液相色谱仪使用的注意事项?

通微TriSep®-3000高效微流电动液相色谱仪的说明书有吗?

通微液相色谱仪TriSep®-3000高效微流电动液相色谱仪的操作规程有吗?

通微液相色谱仪TriSep®-3000高效微流电动液相色谱仪报价含票含运吗?

通微TriSep®-3000高效微流电动液相色谱仪有现货吗?

通微 TriSep®-3000高效微流电动液相色谱仪信息由上海通微分析技术有限公司为您提供,如您想了解更多关于通微 TriSep®-3000高效微流电动液相色谱仪报价、型号、参数等信息,欢迎来电或留言咨询。
华谱科仪(北京)科技有限公司
皖仪
成都珂睿
移动端

仪器信息网App

返回顶部
仪器对比

最多添加5台